ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.34
Committed: Wed Aug 19 23:05:32 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.33: +9 -3 lines
Log Message:
Fix @return specs

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
36 * awaited. Method {@link #arriveAndAwaitAdvance} has effect
37 * analogous to {@link java.util.concurrent.CyclicBarrier#await
38 * CyclicBarrier.await}. However, phasers separate two aspects of
39 * coordination, which may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@link #arrive} and
44 * {@link #arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance, are arranged by overriding method {@link #onAdvance(int,
55 * int)}, which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier action to a
57 * {@code CyclicBarrier}.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * actions immediately return without updating phaser state or waiting
61 * for advance, and indicating (via a negative phase value) that
62 * execution is complete. Termination is triggered when an invocation
63 * of {@code onAdvance} returns {@code true}. When a phaser is
64 * controlling an action with a fixed number of iterations, it is
65 * often convenient to override this method to cause termination when
66 * the current phase number reaches a threshold. Method {@link
67 * #forceTermination} is also available to abruptly release waiting
68 * threads and allow them to terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * {@code CyclicBarrier}, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * <li>Phasers may be used to coordinate tasks executing in a {@link
85 * ForkJoinPool}, which will ensure sufficient parallelism to execute
86 * tasks when others are blocked waiting for a phase to advance.
87 *
88 * </ul>
89 *
90 * <p><b>Sample usages:</b>
91 *
92 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
93 * to control a one-shot action serving a variable number of
94 * parties. The typical idiom is for the method setting this up to
95 * first register, then start the actions, then deregister, as in:
96 *
97 * <pre> {@code
98 * void runTasks(List<Runnable> tasks) {
99 * final Phaser phaser = new Phaser(1); // "1" to register self
100 * // create and start threads
101 * for (Runnable task : tasks) {
102 * phaser.register();
103 * new Thread() {
104 * public void run() {
105 * phaser.arriveAndAwaitAdvance(); // await all creation
106 * task.run();
107 * }
108 * }.start();
109 * }
110 *
111 * // allow threads to start and deregister self
112 * phaser.arriveAndDeregister();
113 * }}</pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre> {@code
119 * void startTasks(List<Runnable> tasks, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase >= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable task : tasks) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * task.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }}</pre>
139 *
140 * <p>To create a set of tasks using a tree of phasers,
141 * you could use code of the following form, assuming a
142 * Task class with a constructor accepting a phaser that
143 * it registers for upon construction:
144 * <pre> {@code
145 * void build(Task[] actions, int lo, int hi, Phaser b) {
146 * int step = (hi - lo) / TASKS_PER_PHASER;
147 * if (step > 1) {
148 * int i = lo;
149 * while (i < hi) {
150 * int r = Math.min(i + step, hi);
151 * build(actions, i, r, new Phaser(b));
152 * i = r;
153 * }
154 * } else {
155 * for (int i = lo; i < hi; ++i)
156 * actions[i] = new Task(b);
157 * // assumes new Task(b) performs b.register()
158 * }
159 * }
160 * // .. initially called, for n tasks via
161 * build(new Task[n], 0, n, new Phaser());}</pre>
162 *
163 * The best value of {@code TASKS_PER_PHASER} depends mainly on
164 * expected barrier synchronization rates. A value as low as four may
165 * be appropriate for extremely small per-barrier task bodies (thus
166 * high rates), or up to hundreds for extremely large ones.
167 *
168 * </pre>
169 *
170 * <p><b>Implementation notes</b>: This implementation restricts the
171 * maximum number of parties to 65535. Attempts to register additional
172 * parties result in {@code IllegalStateException}. However, you can and
173 * should create tiered phasers to accommodate arbitrarily large sets
174 * of participants.
175 *
176 * @since 1.7
177 * @author Doug Lea
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performance relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * count being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = 0xffff;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int) (s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return ((int) s) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int) (s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return ((((long) phase) << 32) | (((long) parties) << 16) |
228 (long) unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 long lp = (long) parties;
233 return (((long) phase) << 32) | (lp << 16) | lp;
234 }
235
236 /**
237 * Returns message string for bad bounds exceptions.
238 */
239 private static String badBounds(int parties, int unarrived) {
240 return ("Attempt to set " + unarrived +
241 " unarrived of " + parties + " parties");
242 }
243
244 /**
245 * The parent of this phaser, or null if none
246 */
247 private final Phaser parent;
248
249 /**
250 * The root of phaser tree. Equals this if not in a tree. Used to
251 * support faster state push-down.
252 */
253 private final Phaser root;
254
255 // Wait queues
256
257 /**
258 * Heads of Treiber stacks for waiting threads. To eliminate
259 * contention while releasing some threads while adding others, we
260 * use two of them, alternating across even and odd phases.
261 */
262 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
263 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
264
265 private AtomicReference<QNode> queueFor(int phase) {
266 return ((phase & 1) == 0) ? evenQ : oddQ;
267 }
268
269 /**
270 * Returns current state, first resolving lagged propagation from
271 * root if necessary.
272 */
273 private long getReconciledState() {
274 return (parent == null) ? state : reconcileState();
275 }
276
277 /**
278 * Recursively resolves state.
279 */
280 private long reconcileState() {
281 Phaser p = parent;
282 long s = state;
283 if (p != null) {
284 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
285 long parentState = p.getReconciledState();
286 int parentPhase = phaseOf(parentState);
287 int phase = phaseOf(s = state);
288 if (phase != parentPhase) {
289 long next = trippedStateFor(parentPhase, partiesOf(s));
290 if (casState(s, next)) {
291 releaseWaiters(phase);
292 s = next;
293 }
294 }
295 }
296 }
297 return s;
298 }
299
300 /**
301 * Creates a new phaser without any initially registered parties,
302 * initial phase number 0, and no parent. Any thread using this
303 * phaser will need to first register for it.
304 */
305 public Phaser() {
306 this(null);
307 }
308
309 /**
310 * Creates a new phaser with the given numbers of registered
311 * unarrived parties, initial phase number 0, and no parent.
312 *
313 * @param parties the number of parties required to trip barrier
314 * @throws IllegalArgumentException if parties less than zero
315 * or greater than the maximum number of parties supported
316 */
317 public Phaser(int parties) {
318 this(null, parties);
319 }
320
321 /**
322 * Creates a new phaser with the given parent, without any
323 * initially registered parties. If parent is non-null this phaser
324 * is registered with the parent and its initial phase number is
325 * the same as that of parent phaser.
326 *
327 * @param parent the parent phaser
328 */
329 public Phaser(Phaser parent) {
330 int phase = 0;
331 this.parent = parent;
332 if (parent != null) {
333 this.root = parent.root;
334 phase = parent.register();
335 }
336 else
337 this.root = this;
338 this.state = trippedStateFor(phase, 0);
339 }
340
341 /**
342 * Creates a new phaser with the given parent and numbers of
343 * registered unarrived parties. If parent is non-null, this phaser
344 * is registered with the parent and its initial phase number is
345 * the same as that of parent phaser.
346 *
347 * @param parent the parent phaser
348 * @param parties the number of parties required to trip barrier
349 * @throws IllegalArgumentException if parties less than zero
350 * or greater than the maximum number of parties supported
351 */
352 public Phaser(Phaser parent, int parties) {
353 if (parties < 0 || parties > ushortMask)
354 throw new IllegalArgumentException("Illegal number of parties");
355 int phase = 0;
356 this.parent = parent;
357 if (parent != null) {
358 this.root = parent.root;
359 phase = parent.register();
360 }
361 else
362 this.root = this;
363 this.state = trippedStateFor(phase, parties);
364 }
365
366 /**
367 * Adds a new unarrived party to this phaser.
368 *
369 * @return the current barrier phase number upon registration
370 * @throws IllegalStateException if attempting to register more
371 * than the maximum supported number of parties
372 */
373 public int register() {
374 return doRegister(1);
375 }
376
377 /**
378 * Adds the given number of new unarrived parties to this phaser.
379 *
380 * @param parties the number of parties required to trip barrier
381 * @return the current barrier phase number upon registration
382 * @throws IllegalStateException if attempting to register more
383 * than the maximum supported number of parties
384 */
385 public int bulkRegister(int parties) {
386 if (parties < 0)
387 throw new IllegalArgumentException();
388 if (parties == 0)
389 return getPhase();
390 return doRegister(parties);
391 }
392
393 /**
394 * Shared code for register, bulkRegister
395 */
396 private int doRegister(int registrations) {
397 int phase;
398 for (;;) {
399 long s = getReconciledState();
400 phase = phaseOf(s);
401 int unarrived = unarrivedOf(s) + registrations;
402 int parties = partiesOf(s) + registrations;
403 if (phase < 0)
404 break;
405 if (parties > ushortMask || unarrived > ushortMask)
406 throw new IllegalStateException(badBounds(parties, unarrived));
407 if (phase == phaseOf(root.state) &&
408 casState(s, stateFor(phase, parties, unarrived)))
409 break;
410 }
411 return phase;
412 }
413
414 /**
415 * Arrives at the barrier, but does not wait for others. (You can
416 * in turn wait for others via {@link #awaitAdvance}).
417 *
418 * @return the barrier phase number upon entry to this method, or a
419 * negative value if terminated
420 * @throws IllegalStateException if not terminated and the number
421 * of unarrived parties would become negative
422 */
423 public int arrive() {
424 int phase;
425 for (;;) {
426 long s = state;
427 phase = phaseOf(s);
428 if (phase < 0)
429 break;
430 int parties = partiesOf(s);
431 int unarrived = unarrivedOf(s) - 1;
432 if (unarrived > 0) { // Not the last arrival
433 if (casState(s, s - 1)) // s-1 adds one arrival
434 break;
435 }
436 else if (unarrived == 0) { // the last arrival
437 Phaser par = parent;
438 if (par == null) { // directly trip
439 if (casState
440 (s,
441 trippedStateFor(onAdvance(phase, parties) ? -1 :
442 ((phase + 1) & phaseMask), parties))) {
443 releaseWaiters(phase);
444 break;
445 }
446 }
447 else { // cascade to parent
448 if (casState(s, s - 1)) { // zeroes unarrived
449 par.arrive();
450 reconcileState();
451 break;
452 }
453 }
454 }
455 else if (phase != phaseOf(root.state)) // or if unreconciled
456 reconcileState();
457 else
458 throw new IllegalStateException(badBounds(parties, unarrived));
459 }
460 return phase;
461 }
462
463 /**
464 * Arrives at the barrier and deregisters from it without waiting
465 * for others. Deregistration reduces the number of parties
466 * required to trip the barrier in future phases. If this phaser
467 * has a parent, and deregistration causes this phaser to have
468 * zero parties, this phaser also arrives at and is deregistered
469 * from its parent.
470 *
471 * @return the current barrier phase number upon entry to
472 * this method, or a negative value if terminated
473 * @throws IllegalStateException if not terminated and the number
474 * of registered or unarrived parties would become negative
475 */
476 public int arriveAndDeregister() {
477 // similar code to arrive, but too different to merge
478 Phaser par = parent;
479 int phase;
480 for (;;) {
481 long s = state;
482 phase = phaseOf(s);
483 if (phase < 0)
484 break;
485 int parties = partiesOf(s) - 1;
486 int unarrived = unarrivedOf(s) - 1;
487 if (parties >= 0) {
488 if (unarrived > 0 || (unarrived == 0 && par != null)) {
489 if (casState
490 (s,
491 stateFor(phase, parties, unarrived))) {
492 if (unarrived == 0) {
493 par.arriveAndDeregister();
494 reconcileState();
495 }
496 break;
497 }
498 continue;
499 }
500 if (unarrived == 0) {
501 if (casState
502 (s,
503 trippedStateFor(onAdvance(phase, parties) ? -1 :
504 ((phase + 1) & phaseMask), parties))) {
505 releaseWaiters(phase);
506 break;
507 }
508 continue;
509 }
510 if (par != null && phase != phaseOf(root.state)) {
511 reconcileState();
512 continue;
513 }
514 }
515 throw new IllegalStateException(badBounds(parties, unarrived));
516 }
517 return phase;
518 }
519
520 /**
521 * Arrives at the barrier and awaits others. Equivalent in effect
522 * to {@code awaitAdvance(arrive())}. If you need to await with
523 * interruption or timeout, you can arrange this with an analogous
524 * construction using one of the other forms of the awaitAdvance
525 * method. If instead you need to deregister upon arrival use
526 * {@code arriveAndDeregister}.
527 *
528 * @return the phase on entry to this method
529 * @throws IllegalStateException if not terminated and the number
530 * of unarrived parties would become negative
531 */
532 public int arriveAndAwaitAdvance() {
533 return awaitAdvance(arrive());
534 }
535
536 /**
537 * Awaits the phase of the barrier to advance from the given phase
538 * value, returning immediately if the current phase of the
539 * barrier is not equal to the given phase value or this barrier
540 * is terminated.
541 *
542 * @param phase the phase on entry to this method
543 * @return the current barrier phase number upon exit of
544 * this method, or a negative value if terminated or
545 * argument is negative
546 */
547 public int awaitAdvance(int phase) {
548 if (phase < 0)
549 return phase;
550 long s = getReconciledState();
551 int p = phaseOf(s);
552 if (p != phase)
553 return p;
554 if (unarrivedOf(s) == 0 && parent != null)
555 parent.awaitAdvance(phase);
556 // Fall here even if parent waited, to reconcile and help release
557 return untimedWait(phase);
558 }
559
560 /**
561 * Awaits the phase of the barrier to advance from the given phase
562 * value, throwing {@code InterruptedException} if interrupted while
563 * waiting, or returning immediately if the current phase of the
564 * barrier is not equal to the given phase value or this barrier
565 * is terminated.
566 *
567 * @param phase the phase on entry to this method
568 * @return the current barrier phase number upon exit of
569 * this method, or a negative value if terminated or
570 * argument is negative
571 * @throws InterruptedException if thread interrupted while waiting
572 */
573 public int awaitAdvanceInterruptibly(int phase)
574 throws InterruptedException {
575 if (phase < 0)
576 return phase;
577 long s = getReconciledState();
578 int p = phaseOf(s);
579 if (p != phase)
580 return p;
581 if (unarrivedOf(s) == 0 && parent != null)
582 parent.awaitAdvanceInterruptibly(phase);
583 return interruptibleWait(phase);
584 }
585
586 /**
587 * Awaits the phase of the barrier to advance from the given phase
588 * value or the given timeout to elapse, throwing
589 * {@code InterruptedException} if interrupted while waiting, or
590 * returning immediately if the current phase of the barrier is not
591 * equal to the given phase value or this barrier is terminated.
592 *
593 * @param phase the phase on entry to this method
594 * @param timeout how long to wait before giving up, in units of
595 * {@code unit}
596 * @param unit a {@code TimeUnit} determining how to interpret the
597 * {@code timeout} parameter
598 * @return the current barrier phase number upon exit of
599 * this method, or a negative value if terminated or
600 * argument is negative
601 * @throws InterruptedException if thread interrupted while waiting
602 * @throws TimeoutException if timed out while waiting
603 */
604 public int awaitAdvanceInterruptibly(int phase,
605 long timeout, TimeUnit unit)
606 throws InterruptedException, TimeoutException {
607 if (phase < 0)
608 return phase;
609 long s = getReconciledState();
610 int p = phaseOf(s);
611 if (p != phase)
612 return p;
613 if (unarrivedOf(s) == 0 && parent != null)
614 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
615 return timedWait(phase, unit.toNanos(timeout));
616 }
617
618 /**
619 * Forces this barrier to enter termination state. Counts of
620 * arrived and registered parties are unaffected. If this phaser
621 * has a parent, it too is terminated. This method may be useful
622 * for coordinating recovery after one or more tasks encounter
623 * unexpected exceptions.
624 */
625 public void forceTermination() {
626 for (;;) {
627 long s = getReconciledState();
628 int phase = phaseOf(s);
629 int parties = partiesOf(s);
630 int unarrived = unarrivedOf(s);
631 if (phase < 0 ||
632 casState(s, stateFor(-1, parties, unarrived))) {
633 releaseWaiters(0);
634 releaseWaiters(1);
635 if (parent != null)
636 parent.forceTermination();
637 return;
638 }
639 }
640 }
641
642 /**
643 * Returns the current phase number. The maximum phase number is
644 * {@code Integer.MAX_VALUE}, after which it restarts at
645 * zero. Upon termination, the phase number is negative.
646 *
647 * @return the phase number, or a negative value if terminated
648 */
649 public final int getPhase() {
650 return phaseOf(getReconciledState());
651 }
652
653 /**
654 * Returns the number of parties registered at this barrier.
655 *
656 * @return the number of parties
657 */
658 public int getRegisteredParties() {
659 return partiesOf(state);
660 }
661
662 /**
663 * Returns the number of parties that have arrived at the current
664 * phase of this barrier.
665 *
666 * @return the number of arrived parties
667 */
668 public int getArrivedParties() {
669 return arrivedOf(state);
670 }
671
672 /**
673 * Returns the number of registered parties that have not yet
674 * arrived at the current phase of this barrier.
675 *
676 * @return the number of unarrived parties
677 */
678 public int getUnarrivedParties() {
679 return unarrivedOf(state);
680 }
681
682 /**
683 * Returns the parent of this phaser, or {@code null} if none.
684 *
685 * @return the parent of this phaser, or {@code null} if none
686 */
687 public Phaser getParent() {
688 return parent;
689 }
690
691 /**
692 * Returns the root ancestor of this phaser, which is the same as
693 * this phaser if it has no parent.
694 *
695 * @return the root ancestor of this phaser
696 */
697 public Phaser getRoot() {
698 return root;
699 }
700
701 /**
702 * Returns {@code true} if this barrier has been terminated.
703 *
704 * @return {@code true} if this barrier has been terminated
705 */
706 public boolean isTerminated() {
707 return getPhase() < 0;
708 }
709
710 /**
711 * Overridable method to perform an action upon phase advance, and
712 * to control termination. This method is invoked whenever the
713 * barrier is tripped (and thus all other waiting parties are
714 * dormant). If it returns {@code true}, then, rather than advance
715 * the phase number, this barrier will be set to a final
716 * termination state, and subsequent calls to {@link #isTerminated}
717 * will return true.
718 *
719 * <p>The default version returns {@code true} when the number of
720 * registered parties is zero. Normally, overrides that arrange
721 * termination for other reasons should also preserve this
722 * property.
723 *
724 * <p>You may override this method to perform an action with side
725 * effects visible to participating tasks, but it is in general
726 * only sensible to do so in designs where all parties register
727 * before any arrive, and all {@link #awaitAdvance} at each phase.
728 * Otherwise, you cannot ensure lack of interference from other
729 * parties during the invocation of this method.
730 *
731 * @param phase the phase number on entering the barrier
732 * @param registeredParties the current number of registered parties
733 * @return {@code true} if this barrier should terminate
734 */
735 protected boolean onAdvance(int phase, int registeredParties) {
736 return registeredParties <= 0;
737 }
738
739 /**
740 * Returns a string identifying this phaser, as well as its
741 * state. The state, in brackets, includes the String {@code
742 * "phase = "} followed by the phase number, {@code "parties = "}
743 * followed by the number of registered parties, and {@code
744 * "arrived = "} followed by the number of arrived parties.
745 *
746 * @return a string identifying this barrier, as well as its state
747 */
748 public String toString() {
749 long s = getReconciledState();
750 return super.toString() +
751 "[phase = " + phaseOf(s) +
752 " parties = " + partiesOf(s) +
753 " arrived = " + arrivedOf(s) + "]";
754 }
755
756 // methods for waiting
757
758 /**
759 * Wait nodes for Treiber stack representing wait queue
760 */
761 static final class QNode implements ForkJoinPool.ManagedBlocker {
762 final Phaser phaser;
763 final int phase;
764 final long startTime;
765 final long nanos;
766 final boolean timed;
767 final boolean interruptible;
768 volatile boolean wasInterrupted = false;
769 volatile Thread thread; // nulled to cancel wait
770 QNode next;
771 QNode(Phaser phaser, int phase, boolean interruptible,
772 boolean timed, long startTime, long nanos) {
773 this.phaser = phaser;
774 this.phase = phase;
775 this.timed = timed;
776 this.interruptible = interruptible;
777 this.startTime = startTime;
778 this.nanos = nanos;
779 thread = Thread.currentThread();
780 }
781 public boolean isReleasable() {
782 return (thread == null ||
783 phaser.getPhase() != phase ||
784 (interruptible && wasInterrupted) ||
785 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
786 }
787 public boolean block() {
788 if (Thread.interrupted()) {
789 wasInterrupted = true;
790 if (interruptible)
791 return true;
792 }
793 if (!timed)
794 LockSupport.park(this);
795 else {
796 long waitTime = nanos - (System.nanoTime() - startTime);
797 if (waitTime <= 0)
798 return true;
799 LockSupport.parkNanos(this, waitTime);
800 }
801 return isReleasable();
802 }
803 void signal() {
804 Thread t = thread;
805 if (t != null) {
806 thread = null;
807 LockSupport.unpark(t);
808 }
809 }
810 boolean doWait() {
811 if (thread != null) {
812 try {
813 ForkJoinPool.managedBlock(this, false);
814 } catch (InterruptedException ie) {
815 }
816 }
817 return wasInterrupted;
818 }
819
820 }
821
822 /**
823 * Removes and signals waiting threads from wait queue.
824 */
825 private void releaseWaiters(int phase) {
826 AtomicReference<QNode> head = queueFor(phase);
827 QNode q;
828 while ((q = head.get()) != null) {
829 if (head.compareAndSet(q, q.next))
830 q.signal();
831 }
832 }
833
834 /**
835 * Tries to enqueue given node in the appropriate wait queue.
836 *
837 * @return true if successful
838 */
839 private boolean tryEnqueue(QNode node) {
840 AtomicReference<QNode> head = queueFor(node.phase);
841 return head.compareAndSet(node.next = head.get(), node);
842 }
843
844 /**
845 * Enqueues node and waits unless aborted or signalled.
846 *
847 * @return current phase
848 */
849 private int untimedWait(int phase) {
850 QNode node = null;
851 boolean queued = false;
852 boolean interrupted = false;
853 int p;
854 while ((p = getPhase()) == phase) {
855 if (Thread.interrupted())
856 interrupted = true;
857 else if (node == null)
858 node = new QNode(this, phase, false, false, 0, 0);
859 else if (!queued)
860 queued = tryEnqueue(node);
861 else
862 interrupted = node.doWait();
863 }
864 if (node != null)
865 node.thread = null;
866 releaseWaiters(phase);
867 if (interrupted)
868 Thread.currentThread().interrupt();
869 return p;
870 }
871
872 /**
873 * Interruptible version
874 * @return current phase
875 */
876 private int interruptibleWait(int phase) throws InterruptedException {
877 QNode node = null;
878 boolean queued = false;
879 boolean interrupted = false;
880 int p;
881 while ((p = getPhase()) == phase && !interrupted) {
882 if (Thread.interrupted())
883 interrupted = true;
884 else if (node == null)
885 node = new QNode(this, phase, true, false, 0, 0);
886 else if (!queued)
887 queued = tryEnqueue(node);
888 else
889 interrupted = node.doWait();
890 }
891 if (node != null)
892 node.thread = null;
893 if (p != phase || (p = getPhase()) != phase)
894 releaseWaiters(phase);
895 if (interrupted)
896 throw new InterruptedException();
897 return p;
898 }
899
900 /**
901 * Timeout version.
902 * @return current phase
903 */
904 private int timedWait(int phase, long nanos)
905 throws InterruptedException, TimeoutException {
906 long startTime = System.nanoTime();
907 QNode node = null;
908 boolean queued = false;
909 boolean interrupted = false;
910 int p;
911 while ((p = getPhase()) == phase && !interrupted) {
912 if (Thread.interrupted())
913 interrupted = true;
914 else if (nanos - (System.nanoTime() - startTime) <= 0)
915 break;
916 else if (node == null)
917 node = new QNode(this, phase, true, true, startTime, nanos);
918 else if (!queued)
919 queued = tryEnqueue(node);
920 else
921 interrupted = node.doWait();
922 }
923 if (node != null)
924 node.thread = null;
925 if (p != phase || (p = getPhase()) != phase)
926 releaseWaiters(phase);
927 if (interrupted)
928 throw new InterruptedException();
929 if (p == phase)
930 throw new TimeoutException();
931 return p;
932 }
933
934 // Unsafe mechanics
935
936 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
937 private static final long stateOffset =
938 objectFieldOffset("state", Phaser.class);
939
940 private final boolean casState(long cmp, long val) {
941 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
942 }
943
944 private static long objectFieldOffset(String field, Class<?> klazz) {
945 try {
946 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
947 } catch (NoSuchFieldException e) {
948 // Convert Exception to corresponding Error
949 NoSuchFieldError error = new NoSuchFieldError(field);
950 error.initCause(e);
951 throw error;
952 }
953 }
954
955 /**
956 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
957 * Replace with a simple call to Unsafe.getUnsafe when integrating
958 * into a jdk.
959 *
960 * @return a sun.misc.Unsafe
961 */
962 private static sun.misc.Unsafe getUnsafe() {
963 try {
964 return sun.misc.Unsafe.getUnsafe();
965 } catch (SecurityException se) {
966 try {
967 return java.security.AccessController.doPrivileged
968 (new java.security
969 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
970 public sun.misc.Unsafe run() throws Exception {
971 java.lang.reflect.Field f = sun.misc
972 .Unsafe.class.getDeclaredField("theUnsafe");
973 f.setAccessible(true);
974 return (sun.misc.Unsafe) f.get(null);
975 }});
976 } catch (java.security.PrivilegedActionException e) {
977 throw new RuntimeException("Could not initialize intrinsics",
978 e.getCause());
979 }
980 }
981 }
982 }