ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.36
Committed: Sun Aug 23 20:12:24 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.35: +14 -6 lines
Log Message:
Improve overviews

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties <em>registered</em> to synchronize on a
23 * phaser may vary over time. Tasks may be registered at any time
24 * (using methods {@link #register}, {@link #bulkRegister}, or forms
25 * of constructors establishing initial numbers of parties), and may
26 * optionally be deregistered upon any arrival (using {@link
27 * #arriveAndDeregister}). As is the case with most basic
28 * synchronization constructs, registration and deregistration affect
29 * only internal counts; they do not establish any further internal
30 * bookkeeping, so tasks cannot query whether they are
31 * registered. (However, you can introduce such bookkeeping by
32 * subclassing this class.)
33 *
34 * <li> Each generation has an associated phase number. The phase
35 * number starts at zero, amd advances when all parties arrive at the
36 * barrier, wrapping around to zero after reaching {@code
37 * Integer.MAX_VALUE}.
38 *
39 * <li> Like a {@code CyclicBarrier}, a phaser may be repeatedly
40 * awaited. Method {@link #arriveAndAwaitAdvance} has effect
41 * analogous to {@link java.util.concurrent.CyclicBarrier#await
42 * CyclicBarrier.await}. However, phasers separate two aspects of
43 * coordination, which may also be invoked independently:
44 *
45 * <ul>
46 *
47 * <li> Arriving at a barrier. Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} do not block, but return
49 * an associated <em>arrival phase number</em>;
50 * that is, the phase number of the barrier to which the
51 * arrival applied.
52 *
53 * <li> Awaiting others. Method {@link #awaitAdvance} requires an
54 * argument indicating an arrival phase number, and returns
55 * when the barrier advances to a new phase.
56 * </ul>
57 *
58 * <li> Barrier actions, performed by the task triggering a phase
59 * advance, are arranged by overriding method {@link #onAdvance(int,
60 * int)}, which also controls termination. Overriding this method is
61 * similar to, but more flexible than, providing a barrier action to a
62 * {@code CyclicBarrier}.
63 *
64 * <li> Phasers may enter a <em>termination</em> state in which all
65 * actions immediately return without updating phaser state or waiting
66 * for advance, and indicating (via a negative phase value) that
67 * execution is complete. Termination is triggered when an invocation
68 * of {@code onAdvance} returns {@code true}. When a phaser is
69 * controlling an action with a fixed number of iterations, it is
70 * often convenient to override this method to cause termination when
71 * the current phase number reaches a threshold. Method {@link
72 * #forceTermination} is also available to abruptly release waiting
73 * threads and allow them to terminate.
74 *
75 * <li> Phasers may be tiered to reduce contention. Phasers with large
76 * numbers of parties that would otherwise experience heavy
77 * synchronization contention costs may instead be arranged in trees.
78 * This will typically greatly increase throughput even though it
79 * incurs somewhat greater per-operation overhead.
80 *
81 * <li> By default, {@code awaitAdvance} continues to wait even if
82 * the waiting thread is interrupted. And unlike the case in
83 * {@code CyclicBarrier}, exceptions encountered while tasks wait
84 * interruptibly or with timeout do not change the state of the
85 * barrier. If necessary, you can perform any associated recovery
86 * within handlers of those exceptions, often after invoking
87 * {@code forceTermination}.
88 *
89 * <li>Phasers may be used to coordinate tasks executing in a {@link
90 * ForkJoinPool}, which will ensure sufficient parallelism to execute
91 * tasks when others are blocked waiting for a phase to advance.
92 *
93 * <li>The current state of a phaser may be monitored. At any given
94 * moment there are {@link #getRegisteredParties}, where {@link
95 * #getArrivedParties} have arrived at the current phase ({@link
96 * #getPhase}). When the remaining {@link #getUnarrivedParties})
97 * arrive, the phase advances. Method {@link #toString} returns
98 * snapshots of these state queries in a form convenient for
99 * informal monitoring.
100 *
101 * </ul>
102 *
103 * <p><b>Sample usages:</b>
104 *
105 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
106 * to control a one-shot action serving a variable number of
107 * parties. The typical idiom is for the method setting this up to
108 * first register, then start the actions, then deregister, as in:
109 *
110 * <pre> {@code
111 * void runTasks(List<Runnable> tasks) {
112 * final Phaser phaser = new Phaser(1); // "1" to register self
113 * // create and start threads
114 * for (Runnable task : tasks) {
115 * phaser.register();
116 * new Thread() {
117 * public void run() {
118 * phaser.arriveAndAwaitAdvance(); // await all creation
119 * task.run();
120 * }
121 * }.start();
122 * }
123 *
124 * // allow threads to start and deregister self
125 * phaser.arriveAndDeregister();
126 * }}</pre>
127 *
128 * <p>One way to cause a set of threads to repeatedly perform actions
129 * for a given number of iterations is to override {@code onAdvance}:
130 *
131 * <pre> {@code
132 * void startTasks(List<Runnable> tasks, final int iterations) {
133 * final Phaser phaser = new Phaser() {
134 * public boolean onAdvance(int phase, int registeredParties) {
135 * return phase >= iterations || registeredParties == 0;
136 * }
137 * };
138 * phaser.register();
139 * for (Runnable task : tasks) {
140 * phaser.register();
141 * new Thread() {
142 * public void run() {
143 * do {
144 * task.run();
145 * phaser.arriveAndAwaitAdvance();
146 * } while(!phaser.isTerminated();
147 * }
148 * }.start();
149 * }
150 * phaser.arriveAndDeregister(); // deregister self, don't wait
151 * }}</pre>
152 *
153 * <p>To create a set of tasks using a tree of phasers,
154 * you could use code of the following form, assuming a
155 * Task class with a constructor accepting a phaser that
156 * it registers for upon construction:
157 * <pre> {@code
158 * void build(Task[] actions, int lo, int hi, Phaser b) {
159 * int step = (hi - lo) / TASKS_PER_PHASER;
160 * if (step > 1) {
161 * int i = lo;
162 * while (i < hi) {
163 * int r = Math.min(i + step, hi);
164 * build(actions, i, r, new Phaser(b));
165 * i = r;
166 * }
167 * } else {
168 * for (int i = lo; i < hi; ++i)
169 * actions[i] = new Task(b);
170 * // assumes new Task(b) performs b.register()
171 * }
172 * }
173 * // .. initially called, for n tasks via
174 * build(new Task[n], 0, n, new Phaser());}</pre>
175 *
176 * The best value of {@code TASKS_PER_PHASER} depends mainly on
177 * expected barrier synchronization rates. A value as low as four may
178 * be appropriate for extremely small per-barrier task bodies (thus
179 * high rates), or up to hundreds for extremely large ones.
180 *
181 * </pre>
182 *
183 * <p><b>Implementation notes</b>: This implementation restricts the
184 * maximum number of parties to 65535. Attempts to register additional
185 * parties result in {@code IllegalStateException}. However, you can and
186 * should create tiered phasers to accommodate arbitrarily large sets
187 * of participants.
188 *
189 * @since 1.7
190 * @author Doug Lea
191 */
192 public class Phaser {
193 /*
194 * This class implements an extension of X10 "clocks". Thanks to
195 * Vijay Saraswat for the idea, and to Vivek Sarkar for
196 * enhancements to extend functionality.
197 */
198
199 /**
200 * Barrier state representation. Conceptually, a barrier contains
201 * four values:
202 *
203 * * parties -- the number of parties to wait (16 bits)
204 * * unarrived -- the number of parties yet to hit barrier (16 bits)
205 * * phase -- the generation of the barrier (31 bits)
206 * * terminated -- set if barrier is terminated (1 bit)
207 *
208 * However, to efficiently maintain atomicity, these values are
209 * packed into a single (atomic) long. Termination uses the sign
210 * bit of 32 bit representation of phase, so phase is set to -1 on
211 * termination. Good performance relies on keeping state decoding
212 * and encoding simple, and keeping race windows short.
213 *
214 * Note: there are some cheats in arrive() that rely on unarrived
215 * count being lowest 16 bits.
216 */
217 private volatile long state;
218
219 private static final int ushortBits = 16;
220 private static final int ushortMask = 0xffff;
221 private static final int phaseMask = 0x7fffffff;
222
223 private static int unarrivedOf(long s) {
224 return (int) (s & ushortMask);
225 }
226
227 private static int partiesOf(long s) {
228 return ((int) s) >>> 16;
229 }
230
231 private static int phaseOf(long s) {
232 return (int) (s >>> 32);
233 }
234
235 private static int arrivedOf(long s) {
236 return partiesOf(s) - unarrivedOf(s);
237 }
238
239 private static long stateFor(int phase, int parties, int unarrived) {
240 return ((((long) phase) << 32) | (((long) parties) << 16) |
241 (long) unarrived);
242 }
243
244 private static long trippedStateFor(int phase, int parties) {
245 long lp = (long) parties;
246 return (((long) phase) << 32) | (lp << 16) | lp;
247 }
248
249 /**
250 * Returns message string for bad bounds exceptions.
251 */
252 private static String badBounds(int parties, int unarrived) {
253 return ("Attempt to set " + unarrived +
254 " unarrived of " + parties + " parties");
255 }
256
257 /**
258 * The parent of this phaser, or null if none
259 */
260 private final Phaser parent;
261
262 /**
263 * The root of phaser tree. Equals this if not in a tree. Used to
264 * support faster state push-down.
265 */
266 private final Phaser root;
267
268 // Wait queues
269
270 /**
271 * Heads of Treiber stacks for waiting threads. To eliminate
272 * contention while releasing some threads while adding others, we
273 * use two of them, alternating across even and odd phases.
274 */
275 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
276 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
277
278 private AtomicReference<QNode> queueFor(int phase) {
279 return ((phase & 1) == 0) ? evenQ : oddQ;
280 }
281
282 /**
283 * Returns current state, first resolving lagged propagation from
284 * root if necessary.
285 */
286 private long getReconciledState() {
287 return (parent == null) ? state : reconcileState();
288 }
289
290 /**
291 * Recursively resolves state.
292 */
293 private long reconcileState() {
294 Phaser p = parent;
295 long s = state;
296 if (p != null) {
297 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
298 long parentState = p.getReconciledState();
299 int parentPhase = phaseOf(parentState);
300 int phase = phaseOf(s = state);
301 if (phase != parentPhase) {
302 long next = trippedStateFor(parentPhase, partiesOf(s));
303 if (casState(s, next)) {
304 releaseWaiters(phase);
305 s = next;
306 }
307 }
308 }
309 }
310 return s;
311 }
312
313 /**
314 * Creates a new phaser without any initially registered parties,
315 * initial phase number 0, and no parent. Any thread using this
316 * phaser will need to first register for it.
317 */
318 public Phaser() {
319 this(null);
320 }
321
322 /**
323 * Creates a new phaser with the given numbers of registered
324 * unarrived parties, initial phase number 0, and no parent.
325 *
326 * @param parties the number of parties required to trip barrier
327 * @throws IllegalArgumentException if parties less than zero
328 * or greater than the maximum number of parties supported
329 */
330 public Phaser(int parties) {
331 this(null, parties);
332 }
333
334 /**
335 * Creates a new phaser with the given parent, without any
336 * initially registered parties. If parent is non-null this phaser
337 * is registered with the parent and its initial phase number is
338 * the same as that of parent phaser.
339 *
340 * @param parent the parent phaser
341 */
342 public Phaser(Phaser parent) {
343 int phase = 0;
344 this.parent = parent;
345 if (parent != null) {
346 this.root = parent.root;
347 phase = parent.register();
348 }
349 else
350 this.root = this;
351 this.state = trippedStateFor(phase, 0);
352 }
353
354 /**
355 * Creates a new phaser with the given parent and numbers of
356 * registered unarrived parties. If parent is non-null, this phaser
357 * is registered with the parent and its initial phase number is
358 * the same as that of parent phaser.
359 *
360 * @param parent the parent phaser
361 * @param parties the number of parties required to trip barrier
362 * @throws IllegalArgumentException if parties less than zero
363 * or greater than the maximum number of parties supported
364 */
365 public Phaser(Phaser parent, int parties) {
366 if (parties < 0 || parties > ushortMask)
367 throw new IllegalArgumentException("Illegal number of parties");
368 int phase = 0;
369 this.parent = parent;
370 if (parent != null) {
371 this.root = parent.root;
372 phase = parent.register();
373 }
374 else
375 this.root = this;
376 this.state = trippedStateFor(phase, parties);
377 }
378
379 /**
380 * Adds a new unarrived party to this phaser.
381 *
382 * @return the arrival phase number to which this registration applied
383 * @throws IllegalStateException if attempting to register more
384 * than the maximum supported number of parties
385 */
386 public int register() {
387 return doRegister(1);
388 }
389
390 /**
391 * Adds the given number of new unarrived parties to this phaser.
392 *
393 * @param parties the number of parties required to trip barrier
394 * @return the arrival phase number to which this registration applied
395 * @throws IllegalStateException if attempting to register more
396 * than the maximum supported number of parties
397 */
398 public int bulkRegister(int parties) {
399 if (parties < 0)
400 throw new IllegalArgumentException();
401 if (parties == 0)
402 return getPhase();
403 return doRegister(parties);
404 }
405
406 /**
407 * Shared code for register, bulkRegister
408 */
409 private int doRegister(int registrations) {
410 int phase;
411 for (;;) {
412 long s = getReconciledState();
413 phase = phaseOf(s);
414 int unarrived = unarrivedOf(s) + registrations;
415 int parties = partiesOf(s) + registrations;
416 if (phase < 0)
417 break;
418 if (parties > ushortMask || unarrived > ushortMask)
419 throw new IllegalStateException(badBounds(parties, unarrived));
420 if (phase == phaseOf(root.state) &&
421 casState(s, stateFor(phase, parties, unarrived)))
422 break;
423 }
424 return phase;
425 }
426
427 /**
428 * Arrives at the barrier, but does not wait for others. (You can
429 * in turn wait for others via {@link #awaitAdvance}).
430 *
431 * @return the arrival phase number, or a negative value if terminated
432 * @throws IllegalStateException if not terminated and the number
433 * of unarrived parties would become negative
434 */
435 public int arrive() {
436 int phase;
437 for (;;) {
438 long s = state;
439 phase = phaseOf(s);
440 if (phase < 0)
441 break;
442 int parties = partiesOf(s);
443 int unarrived = unarrivedOf(s) - 1;
444 if (unarrived > 0) { // Not the last arrival
445 if (casState(s, s - 1)) // s-1 adds one arrival
446 break;
447 }
448 else if (unarrived == 0) { // the last arrival
449 Phaser par = parent;
450 if (par == null) { // directly trip
451 if (casState
452 (s,
453 trippedStateFor(onAdvance(phase, parties) ? -1 :
454 ((phase + 1) & phaseMask), parties))) {
455 releaseWaiters(phase);
456 break;
457 }
458 }
459 else { // cascade to parent
460 if (casState(s, s - 1)) { // zeroes unarrived
461 par.arrive();
462 reconcileState();
463 break;
464 }
465 }
466 }
467 else if (phase != phaseOf(root.state)) // or if unreconciled
468 reconcileState();
469 else
470 throw new IllegalStateException(badBounds(parties, unarrived));
471 }
472 return phase;
473 }
474
475 /**
476 * Arrives at the barrier and deregisters from it without waiting
477 * for others. Deregistration reduces the number of parties
478 * required to trip the barrier in future phases. If this phaser
479 * has a parent, and deregistration causes this phaser to have
480 * zero parties, this phaser also arrives at and is deregistered
481 * from its parent.
482 *
483 * @return the arrival phase number, or a negative value if terminated
484 * @throws IllegalStateException if not terminated and the number
485 * of registered or unarrived parties would become negative
486 */
487 public int arriveAndDeregister() {
488 // similar code to arrive, but too different to merge
489 Phaser par = parent;
490 int phase;
491 for (;;) {
492 long s = state;
493 phase = phaseOf(s);
494 if (phase < 0)
495 break;
496 int parties = partiesOf(s) - 1;
497 int unarrived = unarrivedOf(s) - 1;
498 if (parties >= 0) {
499 if (unarrived > 0 || (unarrived == 0 && par != null)) {
500 if (casState
501 (s,
502 stateFor(phase, parties, unarrived))) {
503 if (unarrived == 0) {
504 par.arriveAndDeregister();
505 reconcileState();
506 }
507 break;
508 }
509 continue;
510 }
511 if (unarrived == 0) {
512 if (casState
513 (s,
514 trippedStateFor(onAdvance(phase, parties) ? -1 :
515 ((phase + 1) & phaseMask), parties))) {
516 releaseWaiters(phase);
517 break;
518 }
519 continue;
520 }
521 if (par != null && phase != phaseOf(root.state)) {
522 reconcileState();
523 continue;
524 }
525 }
526 throw new IllegalStateException(badBounds(parties, unarrived));
527 }
528 return phase;
529 }
530
531 /**
532 * Arrives at the barrier and awaits others. Equivalent in effect
533 * to {@code awaitAdvance(arrive())}. If you need to await with
534 * interruption or timeout, you can arrange this with an analogous
535 * construction using one of the other forms of the awaitAdvance
536 * method. If instead you need to deregister upon arrival use
537 * {@code arriveAndDeregister}.
538 *
539 * @return the arrival phase number, or a negative number if terminated
540 * @throws IllegalStateException if not terminated and the number
541 * of unarrived parties would become negative
542 */
543 public int arriveAndAwaitAdvance() {
544 return awaitAdvance(arrive());
545 }
546
547 /**
548 * Awaits the phase of the barrier to advance from the given phase
549 * value, returning immediately if the current phase of the
550 * barrier is not equal to the given phase value or this barrier
551 * is terminated.
552 *
553 * @param phase an arrival phase number, or negative value if
554 * terminated; this argument is normally the value returned by a
555 * previous call to {@code arrive} or its variants
556 * @return the next arrival phase number, or a negative value
557 * if terminated or argument is negative
558 */
559 public int awaitAdvance(int phase) {
560 if (phase < 0)
561 return phase;
562 long s = getReconciledState();
563 int p = phaseOf(s);
564 if (p != phase)
565 return p;
566 if (unarrivedOf(s) == 0 && parent != null)
567 parent.awaitAdvance(phase);
568 // Fall here even if parent waited, to reconcile and help release
569 return untimedWait(phase);
570 }
571
572 /**
573 * Awaits the phase of the barrier to advance from the given phase
574 * value, throwing {@code InterruptedException} if interrupted while
575 * waiting, or returning immediately if the current phase of the
576 * barrier is not equal to the given phase value or this barrier
577 * is terminated.
578 *
579 * @param phase an arrival phase number, or negative value if
580 * terminated; this argument is normally the value returned by a
581 * previous call to {@code arrive} or its variants
582 * @return the next arrival phase number, or a negative value
583 * if terminated or argument is negative
584 * @throws InterruptedException if thread interrupted while waiting
585 */
586 public int awaitAdvanceInterruptibly(int phase)
587 throws InterruptedException {
588 if (phase < 0)
589 return phase;
590 long s = getReconciledState();
591 int p = phaseOf(s);
592 if (p != phase)
593 return p;
594 if (unarrivedOf(s) == 0 && parent != null)
595 parent.awaitAdvanceInterruptibly(phase);
596 return interruptibleWait(phase);
597 }
598
599 /**
600 * Awaits the phase of the barrier to advance from the given phase
601 * value or the given timeout to elapse, throwing
602 * {@code InterruptedException} if interrupted while waiting, or
603 * returning immediately if the current phase of the barrier is not
604 * equal to the given phase value or this barrier is terminated.
605 *
606 * @param phase an arrival phase number, or negative value if
607 * terminated; this argument is normally the value returned by a
608 * previous call to {@code arrive} or its variants
609 * @param timeout how long to wait before giving up, in units of
610 * {@code unit}
611 * @param unit a {@code TimeUnit} determining how to interpret the
612 * {@code timeout} parameter
613 * @return the next arrival phase number, or a negative value
614 * if terminated or argument is negative
615 * @throws InterruptedException if thread interrupted while waiting
616 * @throws TimeoutException if timed out while waiting
617 */
618 public int awaitAdvanceInterruptibly(int phase,
619 long timeout, TimeUnit unit)
620 throws InterruptedException, TimeoutException {
621 if (phase < 0)
622 return phase;
623 long s = getReconciledState();
624 int p = phaseOf(s);
625 if (p != phase)
626 return p;
627 if (unarrivedOf(s) == 0 && parent != null)
628 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
629 return timedWait(phase, unit.toNanos(timeout));
630 }
631
632 /**
633 * Forces this barrier to enter termination state. Counts of
634 * arrived and registered parties are unaffected. If this phaser
635 * has a parent, it too is terminated. This method may be useful
636 * for coordinating recovery after one or more tasks encounter
637 * unexpected exceptions.
638 */
639 public void forceTermination() {
640 for (;;) {
641 long s = getReconciledState();
642 int phase = phaseOf(s);
643 int parties = partiesOf(s);
644 int unarrived = unarrivedOf(s);
645 if (phase < 0 ||
646 casState(s, stateFor(-1, parties, unarrived))) {
647 releaseWaiters(0);
648 releaseWaiters(1);
649 if (parent != null)
650 parent.forceTermination();
651 return;
652 }
653 }
654 }
655
656 /**
657 * Returns the current phase number. The maximum phase number is
658 * {@code Integer.MAX_VALUE}, after which it restarts at
659 * zero. Upon termination, the phase number is negative.
660 *
661 * @return the phase number, or a negative value if terminated
662 */
663 public final int getPhase() {
664 return phaseOf(getReconciledState());
665 }
666
667 /**
668 * Returns the number of parties registered at this barrier.
669 *
670 * @return the number of parties
671 */
672 public int getRegisteredParties() {
673 return partiesOf(state);
674 }
675
676 /**
677 * Returns the number of registered parties that have arrived at
678 * the current phase of this barrier.
679 *
680 * @return the number of arrived parties
681 */
682 public int getArrivedParties() {
683 return arrivedOf(state);
684 }
685
686 /**
687 * Returns the number of registered parties that have not yet
688 * arrived at the current phase of this barrier.
689 *
690 * @return the number of unarrived parties
691 */
692 public int getUnarrivedParties() {
693 return unarrivedOf(state);
694 }
695
696 /**
697 * Returns the parent of this phaser, or {@code null} if none.
698 *
699 * @return the parent of this phaser, or {@code null} if none
700 */
701 public Phaser getParent() {
702 return parent;
703 }
704
705 /**
706 * Returns the root ancestor of this phaser, which is the same as
707 * this phaser if it has no parent.
708 *
709 * @return the root ancestor of this phaser
710 */
711 public Phaser getRoot() {
712 return root;
713 }
714
715 /**
716 * Returns {@code true} if this barrier has been terminated.
717 *
718 * @return {@code true} if this barrier has been terminated
719 */
720 public boolean isTerminated() {
721 return getPhase() < 0;
722 }
723
724 /**
725 * Overridable method to perform an action upon phase advance, and
726 * to control termination. This method is invoked whenever the
727 * barrier is tripped (and thus all other waiting parties are
728 * dormant). If it returns {@code true}, then, rather than advance
729 * the phase number, this barrier will be set to a final
730 * termination state, and subsequent calls to {@link #isTerminated}
731 * will return true.
732 *
733 * <p>The default version returns {@code true} when the number of
734 * registered parties is zero. Normally, overrides that arrange
735 * termination for other reasons should also preserve this
736 * property.
737 *
738 * <p>You may override this method to perform an action with side
739 * effects visible to participating tasks, but it is in general
740 * only sensible to do so in designs where all parties register
741 * before any arrive, and all {@link #awaitAdvance} at each phase.
742 * Otherwise, you cannot ensure lack of interference from other
743 * parties during the invocation of this method.
744 *
745 * @param phase the phase number on entering the barrier
746 * @param registeredParties the current number of registered parties
747 * @return {@code true} if this barrier should terminate
748 */
749 protected boolean onAdvance(int phase, int registeredParties) {
750 return registeredParties <= 0;
751 }
752
753 /**
754 * Returns a string identifying this phaser, as well as its
755 * state. The state, in brackets, includes the String {@code
756 * "phase = "} followed by the phase number, {@code "parties = "}
757 * followed by the number of registered parties, and {@code
758 * "arrived = "} followed by the number of arrived parties.
759 *
760 * @return a string identifying this barrier, as well as its state
761 */
762 public String toString() {
763 long s = getReconciledState();
764 return super.toString() +
765 "[phase = " + phaseOf(s) +
766 " parties = " + partiesOf(s) +
767 " arrived = " + arrivedOf(s) + "]";
768 }
769
770 // methods for waiting
771
772 /**
773 * Wait nodes for Treiber stack representing wait queue
774 */
775 static final class QNode implements ForkJoinPool.ManagedBlocker {
776 final Phaser phaser;
777 final int phase;
778 final long startTime;
779 final long nanos;
780 final boolean timed;
781 final boolean interruptible;
782 volatile boolean wasInterrupted = false;
783 volatile Thread thread; // nulled to cancel wait
784 QNode next;
785 QNode(Phaser phaser, int phase, boolean interruptible,
786 boolean timed, long startTime, long nanos) {
787 this.phaser = phaser;
788 this.phase = phase;
789 this.timed = timed;
790 this.interruptible = interruptible;
791 this.startTime = startTime;
792 this.nanos = nanos;
793 thread = Thread.currentThread();
794 }
795 public boolean isReleasable() {
796 return (thread == null ||
797 phaser.getPhase() != phase ||
798 (interruptible && wasInterrupted) ||
799 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
800 }
801 public boolean block() {
802 if (Thread.interrupted()) {
803 wasInterrupted = true;
804 if (interruptible)
805 return true;
806 }
807 if (!timed)
808 LockSupport.park(this);
809 else {
810 long waitTime = nanos - (System.nanoTime() - startTime);
811 if (waitTime <= 0)
812 return true;
813 LockSupport.parkNanos(this, waitTime);
814 }
815 return isReleasable();
816 }
817 void signal() {
818 Thread t = thread;
819 if (t != null) {
820 thread = null;
821 LockSupport.unpark(t);
822 }
823 }
824 boolean doWait() {
825 if (thread != null) {
826 try {
827 ForkJoinPool.managedBlock(this, false);
828 } catch (InterruptedException ie) {
829 }
830 }
831 return wasInterrupted;
832 }
833
834 }
835
836 /**
837 * Removes and signals waiting threads from wait queue.
838 */
839 private void releaseWaiters(int phase) {
840 AtomicReference<QNode> head = queueFor(phase);
841 QNode q;
842 while ((q = head.get()) != null) {
843 if (head.compareAndSet(q, q.next))
844 q.signal();
845 }
846 }
847
848 /**
849 * Tries to enqueue given node in the appropriate wait queue.
850 *
851 * @return true if successful
852 */
853 private boolean tryEnqueue(QNode node) {
854 AtomicReference<QNode> head = queueFor(node.phase);
855 return head.compareAndSet(node.next = head.get(), node);
856 }
857
858 /**
859 * Enqueues node and waits unless aborted or signalled.
860 *
861 * @return current phase
862 */
863 private int untimedWait(int phase) {
864 QNode node = null;
865 boolean queued = false;
866 boolean interrupted = false;
867 int p;
868 while ((p = getPhase()) == phase) {
869 if (Thread.interrupted())
870 interrupted = true;
871 else if (node == null)
872 node = new QNode(this, phase, false, false, 0, 0);
873 else if (!queued)
874 queued = tryEnqueue(node);
875 else
876 interrupted = node.doWait();
877 }
878 if (node != null)
879 node.thread = null;
880 releaseWaiters(phase);
881 if (interrupted)
882 Thread.currentThread().interrupt();
883 return p;
884 }
885
886 /**
887 * Interruptible version
888 * @return current phase
889 */
890 private int interruptibleWait(int phase) throws InterruptedException {
891 QNode node = null;
892 boolean queued = false;
893 boolean interrupted = false;
894 int p;
895 while ((p = getPhase()) == phase && !interrupted) {
896 if (Thread.interrupted())
897 interrupted = true;
898 else if (node == null)
899 node = new QNode(this, phase, true, false, 0, 0);
900 else if (!queued)
901 queued = tryEnqueue(node);
902 else
903 interrupted = node.doWait();
904 }
905 if (node != null)
906 node.thread = null;
907 if (p != phase || (p = getPhase()) != phase)
908 releaseWaiters(phase);
909 if (interrupted)
910 throw new InterruptedException();
911 return p;
912 }
913
914 /**
915 * Timeout version.
916 * @return current phase
917 */
918 private int timedWait(int phase, long nanos)
919 throws InterruptedException, TimeoutException {
920 long startTime = System.nanoTime();
921 QNode node = null;
922 boolean queued = false;
923 boolean interrupted = false;
924 int p;
925 while ((p = getPhase()) == phase && !interrupted) {
926 if (Thread.interrupted())
927 interrupted = true;
928 else if (nanos - (System.nanoTime() - startTime) <= 0)
929 break;
930 else if (node == null)
931 node = new QNode(this, phase, true, true, startTime, nanos);
932 else if (!queued)
933 queued = tryEnqueue(node);
934 else
935 interrupted = node.doWait();
936 }
937 if (node != null)
938 node.thread = null;
939 if (p != phase || (p = getPhase()) != phase)
940 releaseWaiters(phase);
941 if (interrupted)
942 throw new InterruptedException();
943 if (p == phase)
944 throw new TimeoutException();
945 return p;
946 }
947
948 // Unsafe mechanics
949
950 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
951 private static final long stateOffset =
952 objectFieldOffset("state", Phaser.class);
953
954 private final boolean casState(long cmp, long val) {
955 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
956 }
957
958 private static long objectFieldOffset(String field, Class<?> klazz) {
959 try {
960 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
961 } catch (NoSuchFieldException e) {
962 // Convert Exception to corresponding Error
963 NoSuchFieldError error = new NoSuchFieldError(field);
964 error.initCause(e);
965 throw error;
966 }
967 }
968
969 /**
970 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
971 * Replace with a simple call to Unsafe.getUnsafe when integrating
972 * into a jdk.
973 *
974 * @return a sun.misc.Unsafe
975 */
976 private static sun.misc.Unsafe getUnsafe() {
977 try {
978 return sun.misc.Unsafe.getUnsafe();
979 } catch (SecurityException se) {
980 try {
981 return java.security.AccessController.doPrivileged
982 (new java.security
983 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
984 public sun.misc.Unsafe run() throws Exception {
985 java.lang.reflect.Field f = sun.misc
986 .Unsafe.class.getDeclaredField("theUnsafe");
987 f.setAccessible(true);
988 return (sun.misc.Unsafe) f.get(null);
989 }});
990 } catch (java.security.PrivilegedActionException e) {
991 throw new RuntimeException("Could not initialize intrinsics",
992 e.getCause());
993 }
994 }
995 }
996 }