ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.38
Committed: Mon Aug 24 12:11:00 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.37: +119 -81 lines
Log Message:
Revamp presentation style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, amd advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. (Interruptible and timeout
66 * versions are also available.) Exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all actions immediately return
79 * without updating phaser state or waiting for advance, and
80 * indicating (via a negative phase value) that execution is complete.
81 * Termination is triggered when an invocation of {@code onAdvance}
82 * returns {@code true}. As illustrated below, when phasers control
83 * actions with a fixed number of iterations, it is often convenient
84 * to override this method to cause termination when the current phase
85 * number reaches a threshold. Method {@link #forceTermination} is
86 * also available to abruptly release waiting threads and allow them
87 * to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties}, where {@link #getArrivedParties} have
101 * arrived at the current phase ({@link #getPhase}). When the
102 * remaining {@link #getUnarrivedParties}) arrive, the phase
103 * advances. Method {@link #toString} returns snapshots of these state
104 * queries in a form convenient for informal monitoring.
105 *
106 * <p><b>Sample usages:</b>
107 *
108 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
109 * to control a one-shot action serving a variable number of
110 * parties. The typical idiom is for the method setting this up to
111 * first register, then start the actions, then deregister, as in:
112 *
113 * <pre> {@code
114 * void runTasks(List<Runnable> tasks) {
115 * final Phaser phaser = new Phaser(1); // "1" to register self
116 * // create and start threads
117 * for (Runnable task : tasks) {
118 * phaser.register();
119 * new Thread() {
120 * public void run() {
121 * phaser.arriveAndAwaitAdvance(); // await all creation
122 * task.run();
123 * }
124 * }.start();
125 * }
126 *
127 * // allow threads to start and deregister self
128 * phaser.arriveAndDeregister();
129 * }}</pre>
130 *
131 * <p>One way to cause a set of threads to repeatedly perform actions
132 * for a given number of iterations is to override {@code onAdvance}:
133 *
134 * <pre> {@code
135 * void startTasks(List<Runnable> tasks, final int iterations) {
136 * final Phaser phaser = new Phaser() {
137 * protected boolean onAdvance(int phase, int registeredParties) {
138 * return phase >= iterations || registeredParties == 0;
139 * }
140 * };
141 * phaser.register();
142 * for (Runnable task : tasks) {
143 * phaser.register();
144 * new Thread() {
145 * public void run() {
146 * do {
147 * task.run();
148 * phaser.arriveAndAwaitAdvance();
149 * } while(!phaser.isTerminated();
150 * }
151 * }.start();
152 * }
153 * phaser.arriveAndDeregister(); // deregister self, don't wait
154 * }}</pre>
155 *
156 * If the main task must later await termination, it
157 * may re-register and then execute a similar loop:
158 * <pre> {@code
159 * // ...
160 * phaser.register();
161 * while (!phaser.isTerminated())
162 * phaser.arriveAndAwaitAdvance();
163 * }</pre>
164 *
165 * Related constructions may be used to await particular phase numbers
166 * in contexts where you are sure that the phase will never wrap around
167 * {@code Integer.MAX_VALUE}. For example:
168 *
169 * <pre> {@code
170 * void awaitPhase(Phaser phaser, int phase) {
171 * int p = phaser.register(); // assumes caller not already registered
172 * while (p < phase) {
173 * if (phaser.isTerminated())
174 * // ... deal with unexpected termination
175 * else
176 * p = phaser.arriveAndAwaitAdvance();
177 * }
178 * phaser.arriveAndDeregister();
179 * }
180 * }</pre>
181 *
182 *
183 * <p>To create a set of tasks using a tree of phasers,
184 * you could use code of the following form, assuming a
185 * Task class with a constructor accepting a phaser that
186 * it registers for upon construction:
187 * <pre> {@code
188 * void build(Task[] actions, int lo, int hi, Phaser b) {
189 * int step = (hi - lo) / TASKS_PER_PHASER;
190 * if (step > 1) {
191 * int i = lo;
192 * while (i < hi) {
193 * int r = Math.min(i + step, hi);
194 * build(actions, i, r, new Phaser(b));
195 * i = r;
196 * }
197 * } else {
198 * for (int i = lo; i < hi; ++i)
199 * actions[i] = new Task(b);
200 * // assumes new Task(b) performs b.register()
201 * }
202 * }
203 * // .. initially called, for n tasks via
204 * build(new Task[n], 0, n, new Phaser());}</pre>
205 *
206 * The best value of {@code TASKS_PER_PHASER} depends mainly on
207 * expected barrier synchronization rates. A value as low as four may
208 * be appropriate for extremely small per-barrier task bodies (thus
209 * high rates), or up to hundreds for extremely large ones.
210 *
211 * </pre>
212 *
213 * <p><b>Implementation notes</b>: This implementation restricts the
214 * maximum number of parties to 65535. Attempts to register additional
215 * parties result in {@code IllegalStateException}. However, you can and
216 * should create tiered phasers to accommodate arbitrarily large sets
217 * of participants.
218 *
219 * @since 1.7
220 * @author Doug Lea
221 */
222 public class Phaser {
223 /*
224 * This class implements an extension of X10 "clocks". Thanks to
225 * Vijay Saraswat for the idea, and to Vivek Sarkar for
226 * enhancements to extend functionality.
227 */
228
229 /**
230 * Barrier state representation. Conceptually, a barrier contains
231 * four values:
232 *
233 * * parties -- the number of parties to wait (16 bits)
234 * * unarrived -- the number of parties yet to hit barrier (16 bits)
235 * * phase -- the generation of the barrier (31 bits)
236 * * terminated -- set if barrier is terminated (1 bit)
237 *
238 * However, to efficiently maintain atomicity, these values are
239 * packed into a single (atomic) long. Termination uses the sign
240 * bit of 32 bit representation of phase, so phase is set to -1 on
241 * termination. Good performance relies on keeping state decoding
242 * and encoding simple, and keeping race windows short.
243 *
244 * Note: there are some cheats in arrive() that rely on unarrived
245 * count being lowest 16 bits.
246 */
247 private volatile long state;
248
249 private static final int ushortBits = 16;
250 private static final int ushortMask = 0xffff;
251 private static final int phaseMask = 0x7fffffff;
252
253 private static int unarrivedOf(long s) {
254 return (int) (s & ushortMask);
255 }
256
257 private static int partiesOf(long s) {
258 return ((int) s) >>> 16;
259 }
260
261 private static int phaseOf(long s) {
262 return (int) (s >>> 32);
263 }
264
265 private static int arrivedOf(long s) {
266 return partiesOf(s) - unarrivedOf(s);
267 }
268
269 private static long stateFor(int phase, int parties, int unarrived) {
270 return ((((long) phase) << 32) | (((long) parties) << 16) |
271 (long) unarrived);
272 }
273
274 private static long trippedStateFor(int phase, int parties) {
275 long lp = (long) parties;
276 return (((long) phase) << 32) | (lp << 16) | lp;
277 }
278
279 /**
280 * Returns message string for bad bounds exceptions.
281 */
282 private static String badBounds(int parties, int unarrived) {
283 return ("Attempt to set " + unarrived +
284 " unarrived of " + parties + " parties");
285 }
286
287 /**
288 * The parent of this phaser, or null if none
289 */
290 private final Phaser parent;
291
292 /**
293 * The root of phaser tree. Equals this if not in a tree. Used to
294 * support faster state push-down.
295 */
296 private final Phaser root;
297
298 // Wait queues
299
300 /**
301 * Heads of Treiber stacks for waiting threads. To eliminate
302 * contention while releasing some threads while adding others, we
303 * use two of them, alternating across even and odd phases.
304 */
305 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
306 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
307
308 private AtomicReference<QNode> queueFor(int phase) {
309 return ((phase & 1) == 0) ? evenQ : oddQ;
310 }
311
312 /**
313 * Returns current state, first resolving lagged propagation from
314 * root if necessary.
315 */
316 private long getReconciledState() {
317 return (parent == null) ? state : reconcileState();
318 }
319
320 /**
321 * Recursively resolves state.
322 */
323 private long reconcileState() {
324 Phaser p = parent;
325 long s = state;
326 if (p != null) {
327 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
328 long parentState = p.getReconciledState();
329 int parentPhase = phaseOf(parentState);
330 int phase = phaseOf(s = state);
331 if (phase != parentPhase) {
332 long next = trippedStateFor(parentPhase, partiesOf(s));
333 if (casState(s, next)) {
334 releaseWaiters(phase);
335 s = next;
336 }
337 }
338 }
339 }
340 return s;
341 }
342
343 /**
344 * Creates a new phaser without any initially registered parties,
345 * initial phase number 0, and no parent. Any thread using this
346 * phaser will need to first register for it.
347 */
348 public Phaser() {
349 this(null);
350 }
351
352 /**
353 * Creates a new phaser with the given numbers of registered
354 * unarrived parties, initial phase number 0, and no parent.
355 *
356 * @param parties the number of parties required to trip barrier
357 * @throws IllegalArgumentException if parties less than zero
358 * or greater than the maximum number of parties supported
359 */
360 public Phaser(int parties) {
361 this(null, parties);
362 }
363
364 /**
365 * Creates a new phaser with the given parent, without any
366 * initially registered parties. If parent is non-null this phaser
367 * is registered with the parent and its initial phase number is
368 * the same as that of parent phaser.
369 *
370 * @param parent the parent phaser
371 */
372 public Phaser(Phaser parent) {
373 int phase = 0;
374 this.parent = parent;
375 if (parent != null) {
376 this.root = parent.root;
377 phase = parent.register();
378 }
379 else
380 this.root = this;
381 this.state = trippedStateFor(phase, 0);
382 }
383
384 /**
385 * Creates a new phaser with the given parent and numbers of
386 * registered unarrived parties. If parent is non-null, this phaser
387 * is registered with the parent and its initial phase number is
388 * the same as that of parent phaser.
389 *
390 * @param parent the parent phaser
391 * @param parties the number of parties required to trip barrier
392 * @throws IllegalArgumentException if parties less than zero
393 * or greater than the maximum number of parties supported
394 */
395 public Phaser(Phaser parent, int parties) {
396 if (parties < 0 || parties > ushortMask)
397 throw new IllegalArgumentException("Illegal number of parties");
398 int phase = 0;
399 this.parent = parent;
400 if (parent != null) {
401 this.root = parent.root;
402 phase = parent.register();
403 }
404 else
405 this.root = this;
406 this.state = trippedStateFor(phase, parties);
407 }
408
409 /**
410 * Adds a new unarrived party to this phaser.
411 *
412 * @return the arrival phase number to which this registration applied
413 * @throws IllegalStateException if attempting to register more
414 * than the maximum supported number of parties
415 */
416 public int register() {
417 return doRegister(1);
418 }
419
420 /**
421 * Adds the given number of new unarrived parties to this phaser.
422 *
423 * @param parties the number of parties required to trip barrier
424 * @return the arrival phase number to which this registration applied
425 * @throws IllegalStateException if attempting to register more
426 * than the maximum supported number of parties
427 */
428 public int bulkRegister(int parties) {
429 if (parties < 0)
430 throw new IllegalArgumentException();
431 if (parties == 0)
432 return getPhase();
433 return doRegister(parties);
434 }
435
436 /**
437 * Shared code for register, bulkRegister
438 */
439 private int doRegister(int registrations) {
440 int phase;
441 for (;;) {
442 long s = getReconciledState();
443 phase = phaseOf(s);
444 int unarrived = unarrivedOf(s) + registrations;
445 int parties = partiesOf(s) + registrations;
446 if (phase < 0)
447 break;
448 if (parties > ushortMask || unarrived > ushortMask)
449 throw new IllegalStateException(badBounds(parties, unarrived));
450 if (phase == phaseOf(root.state) &&
451 casState(s, stateFor(phase, parties, unarrived)))
452 break;
453 }
454 return phase;
455 }
456
457 /**
458 * Arrives at the barrier, but does not wait for others. (You can
459 * in turn wait for others via {@link #awaitAdvance}). It is an
460 * unenforced usage error for an unregistered party to invoke this
461 * method.
462 *
463 * @return the arrival phase number, or a negative value if terminated
464 * @throws IllegalStateException if not terminated and the number
465 * of unarrived parties would become negative
466 */
467 public int arrive() {
468 int phase;
469 for (;;) {
470 long s = state;
471 phase = phaseOf(s);
472 if (phase < 0)
473 break;
474 int parties = partiesOf(s);
475 int unarrived = unarrivedOf(s) - 1;
476 if (unarrived > 0) { // Not the last arrival
477 if (casState(s, s - 1)) // s-1 adds one arrival
478 break;
479 }
480 else if (unarrived == 0) { // the last arrival
481 Phaser par = parent;
482 if (par == null) { // directly trip
483 if (casState
484 (s,
485 trippedStateFor(onAdvance(phase, parties) ? -1 :
486 ((phase + 1) & phaseMask), parties))) {
487 releaseWaiters(phase);
488 break;
489 }
490 }
491 else { // cascade to parent
492 if (casState(s, s - 1)) { // zeroes unarrived
493 par.arrive();
494 reconcileState();
495 break;
496 }
497 }
498 }
499 else if (phase != phaseOf(root.state)) // or if unreconciled
500 reconcileState();
501 else
502 throw new IllegalStateException(badBounds(parties, unarrived));
503 }
504 return phase;
505 }
506
507 /**
508 * Arrives at the barrier and deregisters from it without waiting
509 * for others. Deregistration reduces the number of parties
510 * required to trip the barrier in future phases. If this phaser
511 * has a parent, and deregistration causes this phaser to have
512 * zero parties, this phaser also arrives at and is deregistered
513 * from its parent. It is an unenforced usage error for an
514 * unregistered party to invoke this method.
515 *
516 * @return the arrival phase number, or a negative value if terminated
517 * @throws IllegalStateException if not terminated and the number
518 * of registered or unarrived parties would become negative
519 */
520 public int arriveAndDeregister() {
521 // similar code to arrive, but too different to merge
522 Phaser par = parent;
523 int phase;
524 for (;;) {
525 long s = state;
526 phase = phaseOf(s);
527 if (phase < 0)
528 break;
529 int parties = partiesOf(s) - 1;
530 int unarrived = unarrivedOf(s) - 1;
531 if (parties >= 0) {
532 if (unarrived > 0 || (unarrived == 0 && par != null)) {
533 if (casState
534 (s,
535 stateFor(phase, parties, unarrived))) {
536 if (unarrived == 0) {
537 par.arriveAndDeregister();
538 reconcileState();
539 }
540 break;
541 }
542 continue;
543 }
544 if (unarrived == 0) {
545 if (casState
546 (s,
547 trippedStateFor(onAdvance(phase, parties) ? -1 :
548 ((phase + 1) & phaseMask), parties))) {
549 releaseWaiters(phase);
550 break;
551 }
552 continue;
553 }
554 if (par != null && phase != phaseOf(root.state)) {
555 reconcileState();
556 continue;
557 }
558 }
559 throw new IllegalStateException(badBounds(parties, unarrived));
560 }
561 return phase;
562 }
563
564 /**
565 * Arrives at the barrier and awaits others. Equivalent in effect
566 * to {@code awaitAdvance(arrive())}. If you need to await with
567 * interruption or timeout, you can arrange this with an analogous
568 * construction using one of the other forms of the awaitAdvance
569 * method. If instead you need to deregister upon arrival use
570 * {@code arriveAndDeregister}. It is an unenforced usage error
571 * for an unregistered party to invoke this method.
572 *
573 * @return the arrival phase number, or a negative number if terminated
574 * @throws IllegalStateException if not terminated and the number
575 * of unarrived parties would become negative
576 */
577 public int arriveAndAwaitAdvance() {
578 return awaitAdvance(arrive());
579 }
580
581 /**
582 * Awaits the phase of the barrier to advance from the given phase
583 * value, returning immediately if the current phase of the
584 * barrier is not equal to the given phase value or this barrier
585 * is terminated. It is an unenforced usage error for an
586 * unregistered party to invoke this method.
587 *
588 * @param phase an arrival phase number, or negative value if
589 * terminated; this argument is normally the value returned by a
590 * previous call to {@code arrive} or its variants
591 * @return the next arrival phase number, or a negative value
592 * if terminated or argument is negative
593 */
594 public int awaitAdvance(int phase) {
595 if (phase < 0)
596 return phase;
597 long s = getReconciledState();
598 int p = phaseOf(s);
599 if (p != phase)
600 return p;
601 if (unarrivedOf(s) == 0 && parent != null)
602 parent.awaitAdvance(phase);
603 // Fall here even if parent waited, to reconcile and help release
604 return untimedWait(phase);
605 }
606
607 /**
608 * Awaits the phase of the barrier to advance from the given phase
609 * value, throwing {@code InterruptedException} if interrupted
610 * while waiting, or returning immediately if the current phase of
611 * the barrier is not equal to the given phase value or this
612 * barrier is terminated. It is an unenforced usage error for an
613 * unregistered party to invoke this method.
614 *
615 * @param phase an arrival phase number, or negative value if
616 * terminated; this argument is normally the value returned by a
617 * previous call to {@code arrive} or its variants
618 * @return the next arrival phase number, or a negative value
619 * if terminated or argument is negative
620 * @throws InterruptedException if thread interrupted while waiting
621 */
622 public int awaitAdvanceInterruptibly(int phase)
623 throws InterruptedException {
624 if (phase < 0)
625 return phase;
626 long s = getReconciledState();
627 int p = phaseOf(s);
628 if (p != phase)
629 return p;
630 if (unarrivedOf(s) == 0 && parent != null)
631 parent.awaitAdvanceInterruptibly(phase);
632 return interruptibleWait(phase);
633 }
634
635 /**
636 * Awaits the phase of the barrier to advance from the given phase
637 * value or the given timeout to elapse, throwing {@code
638 * InterruptedException} if interrupted while waiting, or
639 * returning immediately if the current phase of the barrier is
640 * not equal to the given phase value or this barrier is
641 * terminated. It is an unenforced usage error for an
642 * unregistered party to invoke this method.
643 *
644 * @param phase an arrival phase number, or negative value if
645 * terminated; this argument is normally the value returned by a
646 * previous call to {@code arrive} or its variants
647 * @param timeout how long to wait before giving up, in units of
648 * {@code unit}
649 * @param unit a {@code TimeUnit} determining how to interpret the
650 * {@code timeout} parameter
651 * @return the next arrival phase number, or a negative value
652 * if terminated or argument is negative
653 * @throws InterruptedException if thread interrupted while waiting
654 * @throws TimeoutException if timed out while waiting
655 */
656 public int awaitAdvanceInterruptibly(int phase,
657 long timeout, TimeUnit unit)
658 throws InterruptedException, TimeoutException {
659 if (phase < 0)
660 return phase;
661 long s = getReconciledState();
662 int p = phaseOf(s);
663 if (p != phase)
664 return p;
665 if (unarrivedOf(s) == 0 && parent != null)
666 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
667 return timedWait(phase, unit.toNanos(timeout));
668 }
669
670 /**
671 * Forces this barrier to enter termination state. Counts of
672 * arrived and registered parties are unaffected. If this phaser
673 * has a parent, it too is terminated. This method may be useful
674 * for coordinating recovery after one or more tasks encounter
675 * unexpected exceptions.
676 */
677 public void forceTermination() {
678 for (;;) {
679 long s = getReconciledState();
680 int phase = phaseOf(s);
681 int parties = partiesOf(s);
682 int unarrived = unarrivedOf(s);
683 if (phase < 0 ||
684 casState(s, stateFor(-1, parties, unarrived))) {
685 releaseWaiters(0);
686 releaseWaiters(1);
687 if (parent != null)
688 parent.forceTermination();
689 return;
690 }
691 }
692 }
693
694 /**
695 * Returns the current phase number. The maximum phase number is
696 * {@code Integer.MAX_VALUE}, after which it restarts at
697 * zero. Upon termination, the phase number is negative.
698 *
699 * @return the phase number, or a negative value if terminated
700 */
701 public final int getPhase() {
702 return phaseOf(getReconciledState());
703 }
704
705 /**
706 * Returns the number of parties registered at this barrier.
707 *
708 * @return the number of parties
709 */
710 public int getRegisteredParties() {
711 return partiesOf(state);
712 }
713
714 /**
715 * Returns the number of registered parties that have arrived at
716 * the current phase of this barrier.
717 *
718 * @return the number of arrived parties
719 */
720 public int getArrivedParties() {
721 return arrivedOf(state);
722 }
723
724 /**
725 * Returns the number of registered parties that have not yet
726 * arrived at the current phase of this barrier.
727 *
728 * @return the number of unarrived parties
729 */
730 public int getUnarrivedParties() {
731 return unarrivedOf(state);
732 }
733
734 /**
735 * Returns the parent of this phaser, or {@code null} if none.
736 *
737 * @return the parent of this phaser, or {@code null} if none
738 */
739 public Phaser getParent() {
740 return parent;
741 }
742
743 /**
744 * Returns the root ancestor of this phaser, which is the same as
745 * this phaser if it has no parent.
746 *
747 * @return the root ancestor of this phaser
748 */
749 public Phaser getRoot() {
750 return root;
751 }
752
753 /**
754 * Returns {@code true} if this barrier has been terminated.
755 *
756 * @return {@code true} if this barrier has been terminated
757 */
758 public boolean isTerminated() {
759 return getPhase() < 0;
760 }
761
762 /**
763 * Overridable method to perform an action upon phase advance, and
764 * to control termination. This method is invoked whenever the
765 * barrier is tripped (and thus all other waiting parties are
766 * dormant). If it returns {@code true}, then, rather than advance
767 * the phase number, this barrier will be set to a final
768 * termination state, and subsequent calls to {@link #isTerminated}
769 * will return true.
770 *
771 * <p>The default version returns {@code true} when the number of
772 * registered parties is zero. Normally, overrides that arrange
773 * termination for other reasons should also preserve this
774 * property.
775 *
776 * <p>You may override this method to perform an action with side
777 * effects visible to participating tasks, but it is in general
778 * only sensible to do so in designs where all parties register
779 * before any arrive, and all {@link #awaitAdvance} at each phase.
780 * Otherwise, you cannot ensure lack of interference from other
781 * parties during the invocation of this method.
782 *
783 * @param phase the phase number on entering the barrier
784 * @param registeredParties the current number of registered parties
785 * @return {@code true} if this barrier should terminate
786 */
787 protected boolean onAdvance(int phase, int registeredParties) {
788 return registeredParties <= 0;
789 }
790
791 /**
792 * Returns a string identifying this phaser, as well as its
793 * state. The state, in brackets, includes the String {@code
794 * "phase = "} followed by the phase number, {@code "parties = "}
795 * followed by the number of registered parties, and {@code
796 * "arrived = "} followed by the number of arrived parties.
797 *
798 * @return a string identifying this barrier, as well as its state
799 */
800 public String toString() {
801 long s = getReconciledState();
802 return super.toString() +
803 "[phase = " + phaseOf(s) +
804 " parties = " + partiesOf(s) +
805 " arrived = " + arrivedOf(s) + "]";
806 }
807
808 // methods for waiting
809
810 /**
811 * Wait nodes for Treiber stack representing wait queue
812 */
813 static final class QNode implements ForkJoinPool.ManagedBlocker {
814 final Phaser phaser;
815 final int phase;
816 final long startTime;
817 final long nanos;
818 final boolean timed;
819 final boolean interruptible;
820 volatile boolean wasInterrupted = false;
821 volatile Thread thread; // nulled to cancel wait
822 QNode next;
823 QNode(Phaser phaser, int phase, boolean interruptible,
824 boolean timed, long startTime, long nanos) {
825 this.phaser = phaser;
826 this.phase = phase;
827 this.timed = timed;
828 this.interruptible = interruptible;
829 this.startTime = startTime;
830 this.nanos = nanos;
831 thread = Thread.currentThread();
832 }
833 public boolean isReleasable() {
834 return (thread == null ||
835 phaser.getPhase() != phase ||
836 (interruptible && wasInterrupted) ||
837 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
838 }
839 public boolean block() {
840 if (Thread.interrupted()) {
841 wasInterrupted = true;
842 if (interruptible)
843 return true;
844 }
845 if (!timed)
846 LockSupport.park(this);
847 else {
848 long waitTime = nanos - (System.nanoTime() - startTime);
849 if (waitTime <= 0)
850 return true;
851 LockSupport.parkNanos(this, waitTime);
852 }
853 return isReleasable();
854 }
855 void signal() {
856 Thread t = thread;
857 if (t != null) {
858 thread = null;
859 LockSupport.unpark(t);
860 }
861 }
862 boolean doWait() {
863 if (thread != null) {
864 try {
865 ForkJoinPool.managedBlock(this, false);
866 } catch (InterruptedException ie) {
867 }
868 }
869 return wasInterrupted;
870 }
871
872 }
873
874 /**
875 * Removes and signals waiting threads from wait queue.
876 */
877 private void releaseWaiters(int phase) {
878 AtomicReference<QNode> head = queueFor(phase);
879 QNode q;
880 while ((q = head.get()) != null) {
881 if (head.compareAndSet(q, q.next))
882 q.signal();
883 }
884 }
885
886 /**
887 * Tries to enqueue given node in the appropriate wait queue.
888 *
889 * @return true if successful
890 */
891 private boolean tryEnqueue(QNode node) {
892 AtomicReference<QNode> head = queueFor(node.phase);
893 return head.compareAndSet(node.next = head.get(), node);
894 }
895
896 /**
897 * Enqueues node and waits unless aborted or signalled.
898 *
899 * @return current phase
900 */
901 private int untimedWait(int phase) {
902 QNode node = null;
903 boolean queued = false;
904 boolean interrupted = false;
905 int p;
906 while ((p = getPhase()) == phase) {
907 if (Thread.interrupted())
908 interrupted = true;
909 else if (node == null)
910 node = new QNode(this, phase, false, false, 0, 0);
911 else if (!queued)
912 queued = tryEnqueue(node);
913 else
914 interrupted = node.doWait();
915 }
916 if (node != null)
917 node.thread = null;
918 releaseWaiters(phase);
919 if (interrupted)
920 Thread.currentThread().interrupt();
921 return p;
922 }
923
924 /**
925 * Interruptible version
926 * @return current phase
927 */
928 private int interruptibleWait(int phase) throws InterruptedException {
929 QNode node = null;
930 boolean queued = false;
931 boolean interrupted = false;
932 int p;
933 while ((p = getPhase()) == phase && !interrupted) {
934 if (Thread.interrupted())
935 interrupted = true;
936 else if (node == null)
937 node = new QNode(this, phase, true, false, 0, 0);
938 else if (!queued)
939 queued = tryEnqueue(node);
940 else
941 interrupted = node.doWait();
942 }
943 if (node != null)
944 node.thread = null;
945 if (p != phase || (p = getPhase()) != phase)
946 releaseWaiters(phase);
947 if (interrupted)
948 throw new InterruptedException();
949 return p;
950 }
951
952 /**
953 * Timeout version.
954 * @return current phase
955 */
956 private int timedWait(int phase, long nanos)
957 throws InterruptedException, TimeoutException {
958 long startTime = System.nanoTime();
959 QNode node = null;
960 boolean queued = false;
961 boolean interrupted = false;
962 int p;
963 while ((p = getPhase()) == phase && !interrupted) {
964 if (Thread.interrupted())
965 interrupted = true;
966 else if (nanos - (System.nanoTime() - startTime) <= 0)
967 break;
968 else if (node == null)
969 node = new QNode(this, phase, true, true, startTime, nanos);
970 else if (!queued)
971 queued = tryEnqueue(node);
972 else
973 interrupted = node.doWait();
974 }
975 if (node != null)
976 node.thread = null;
977 if (p != phase || (p = getPhase()) != phase)
978 releaseWaiters(phase);
979 if (interrupted)
980 throw new InterruptedException();
981 if (p == phase)
982 throw new TimeoutException();
983 return p;
984 }
985
986 // Unsafe mechanics
987
988 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
989 private static final long stateOffset =
990 objectFieldOffset("state", Phaser.class);
991
992 private final boolean casState(long cmp, long val) {
993 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
994 }
995
996 private static long objectFieldOffset(String field, Class<?> klazz) {
997 try {
998 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
999 } catch (NoSuchFieldException e) {
1000 // Convert Exception to corresponding Error
1001 NoSuchFieldError error = new NoSuchFieldError(field);
1002 error.initCause(e);
1003 throw error;
1004 }
1005 }
1006
1007 /**
1008 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1009 * Replace with a simple call to Unsafe.getUnsafe when integrating
1010 * into a jdk.
1011 *
1012 * @return a sun.misc.Unsafe
1013 */
1014 private static sun.misc.Unsafe getUnsafe() {
1015 try {
1016 return sun.misc.Unsafe.getUnsafe();
1017 } catch (SecurityException se) {
1018 try {
1019 return java.security.AccessController.doPrivileged
1020 (new java.security
1021 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1022 public sun.misc.Unsafe run() throws Exception {
1023 java.lang.reflect.Field f = sun.misc
1024 .Unsafe.class.getDeclaredField("theUnsafe");
1025 f.setAccessible(true);
1026 return (sun.misc.Unsafe) f.get(null);
1027 }});
1028 } catch (java.security.PrivilegedActionException e) {
1029 throw new RuntimeException("Could not initialize intrinsics",
1030 e.getCause());
1031 }
1032 }
1033 }
1034 }