ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.41
Committed: Mon Aug 24 15:42:51 2009 UTC (14 years, 8 months ago) by jsr166
Branch: MAIN
Changes since 1.40: +0 -1 lines
Log Message:
killed unused ushortBits

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances; thus, this value is always
104 * greater than zero if there are any registered parties. The values
105 * returned by these methods may reflect transient states and so are
106 * not in general useful for synchronization control. Method {@link
107 * #toString} returns snapshots of these state queries in a form
108 * convenient for informal monitoring.
109 *
110 * <p><b>Sample usages:</b>
111 *
112 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
113 * to control a one-shot action serving a variable number of
114 * parties. The typical idiom is for the method setting this up to
115 * first register, then start the actions, then deregister, as in:
116 *
117 * <pre> {@code
118 * void runTasks(List<Runnable> tasks) {
119 * final Phaser phaser = new Phaser(1); // "1" to register self
120 * // create and start threads
121 * for (Runnable task : tasks) {
122 * phaser.register();
123 * new Thread() {
124 * public void run() {
125 * phaser.arriveAndAwaitAdvance(); // await all creation
126 * task.run();
127 * }
128 * }.start();
129 * }
130 *
131 * // allow threads to start and deregister self
132 * phaser.arriveAndDeregister();
133 * }}</pre>
134 *
135 * <p>One way to cause a set of threads to repeatedly perform actions
136 * for a given number of iterations is to override {@code onAdvance}:
137 *
138 * <pre> {@code
139 * void startTasks(List<Runnable> tasks, final int iterations) {
140 * final Phaser phaser = new Phaser() {
141 * protected boolean onAdvance(int phase, int registeredParties) {
142 * return phase >= iterations || registeredParties == 0;
143 * }
144 * };
145 * phaser.register();
146 * for (Runnable task : tasks) {
147 * phaser.register();
148 * new Thread() {
149 * public void run() {
150 * do {
151 * task.run();
152 * phaser.arriveAndAwaitAdvance();
153 * } while(!phaser.isTerminated();
154 * }
155 * }.start();
156 * }
157 * phaser.arriveAndDeregister(); // deregister self, don't wait
158 * }}</pre>
159 *
160 * If the main task must later await termination, it
161 * may re-register and then execute a similar loop:
162 * <pre> {@code
163 * // ...
164 * phaser.register();
165 * while (!phaser.isTerminated())
166 * phaser.arriveAndAwaitAdvance();
167 * }</pre>
168 *
169 * Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }
184 * }</pre>
185 *
186 *
187 * <p>To create a set of tasks using a tree of phasers,
188 * you could use code of the following form, assuming a
189 * Task class with a constructor accepting a phaser that
190 * it registers for upon construction:
191 * <pre> {@code
192 * void build(Task[] actions, int lo, int hi, Phaser b) {
193 * int step = (hi - lo) / TASKS_PER_PHASER;
194 * if (step > 1) {
195 * int i = lo;
196 * while (i < hi) {
197 * int r = Math.min(i + step, hi);
198 * build(actions, i, r, new Phaser(b));
199 * i = r;
200 * }
201 * } else {
202 * for (int i = lo; i < hi; ++i)
203 * actions[i] = new Task(b);
204 * // assumes new Task(b) performs b.register()
205 * }
206 * }
207 * // .. initially called, for n tasks via
208 * build(new Task[n], 0, n, new Phaser());}</pre>
209 *
210 * The best value of {@code TASKS_PER_PHASER} depends mainly on
211 * expected barrier synchronization rates. A value as low as four may
212 * be appropriate for extremely small per-barrier task bodies (thus
213 * high rates), or up to hundreds for extremely large ones.
214 *
215 * </pre>
216 *
217 * <p><b>Implementation notes</b>: This implementation restricts the
218 * maximum number of parties to 65535. Attempts to register additional
219 * parties result in {@code IllegalStateException}. However, you can and
220 * should create tiered phasers to accommodate arbitrarily large sets
221 * of participants.
222 *
223 * @since 1.7
224 * @author Doug Lea
225 */
226 public class Phaser {
227 /*
228 * This class implements an extension of X10 "clocks". Thanks to
229 * Vijay Saraswat for the idea, and to Vivek Sarkar for
230 * enhancements to extend functionality.
231 */
232
233 /**
234 * Barrier state representation. Conceptually, a barrier contains
235 * four values:
236 *
237 * * parties -- the number of parties to wait (16 bits)
238 * * unarrived -- the number of parties yet to hit barrier (16 bits)
239 * * phase -- the generation of the barrier (31 bits)
240 * * terminated -- set if barrier is terminated (1 bit)
241 *
242 * However, to efficiently maintain atomicity, these values are
243 * packed into a single (atomic) long. Termination uses the sign
244 * bit of 32 bit representation of phase, so phase is set to -1 on
245 * termination. Good performance relies on keeping state decoding
246 * and encoding simple, and keeping race windows short.
247 *
248 * Note: there are some cheats in arrive() that rely on unarrived
249 * count being lowest 16 bits.
250 */
251 private volatile long state;
252
253 private static final int ushortMask = 0xffff;
254 private static final int phaseMask = 0x7fffffff;
255
256 private static int unarrivedOf(long s) {
257 return (int) (s & ushortMask);
258 }
259
260 private static int partiesOf(long s) {
261 return ((int) s) >>> 16;
262 }
263
264 private static int phaseOf(long s) {
265 return (int) (s >>> 32);
266 }
267
268 private static int arrivedOf(long s) {
269 return partiesOf(s) - unarrivedOf(s);
270 }
271
272 private static long stateFor(int phase, int parties, int unarrived) {
273 return ((((long) phase) << 32) | (((long) parties) << 16) |
274 (long) unarrived);
275 }
276
277 private static long trippedStateFor(int phase, int parties) {
278 long lp = (long) parties;
279 return (((long) phase) << 32) | (lp << 16) | lp;
280 }
281
282 /**
283 * Returns message string for bad bounds exceptions.
284 */
285 private static String badBounds(int parties, int unarrived) {
286 return ("Attempt to set " + unarrived +
287 " unarrived of " + parties + " parties");
288 }
289
290 /**
291 * The parent of this phaser, or null if none
292 */
293 private final Phaser parent;
294
295 /**
296 * The root of phaser tree. Equals this if not in a tree. Used to
297 * support faster state push-down.
298 */
299 private final Phaser root;
300
301 // Wait queues
302
303 /**
304 * Heads of Treiber stacks for waiting threads. To eliminate
305 * contention while releasing some threads while adding others, we
306 * use two of them, alternating across even and odd phases.
307 */
308 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
309 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
310
311 private AtomicReference<QNode> queueFor(int phase) {
312 return ((phase & 1) == 0) ? evenQ : oddQ;
313 }
314
315 /**
316 * Returns current state, first resolving lagged propagation from
317 * root if necessary.
318 */
319 private long getReconciledState() {
320 return (parent == null) ? state : reconcileState();
321 }
322
323 /**
324 * Recursively resolves state.
325 */
326 private long reconcileState() {
327 Phaser p = parent;
328 long s = state;
329 if (p != null) {
330 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
331 long parentState = p.getReconciledState();
332 int parentPhase = phaseOf(parentState);
333 int phase = phaseOf(s = state);
334 if (phase != parentPhase) {
335 long next = trippedStateFor(parentPhase, partiesOf(s));
336 if (casState(s, next)) {
337 releaseWaiters(phase);
338 s = next;
339 }
340 }
341 }
342 }
343 return s;
344 }
345
346 /**
347 * Creates a new phaser without any initially registered parties,
348 * initial phase number 0, and no parent. Any thread using this
349 * phaser will need to first register for it.
350 */
351 public Phaser() {
352 this(null);
353 }
354
355 /**
356 * Creates a new phaser with the given numbers of registered
357 * unarrived parties, initial phase number 0, and no parent.
358 *
359 * @param parties the number of parties required to trip barrier
360 * @throws IllegalArgumentException if parties less than zero
361 * or greater than the maximum number of parties supported
362 */
363 public Phaser(int parties) {
364 this(null, parties);
365 }
366
367 /**
368 * Creates a new phaser with the given parent, without any
369 * initially registered parties. If parent is non-null this phaser
370 * is registered with the parent and its initial phase number is
371 * the same as that of parent phaser.
372 *
373 * @param parent the parent phaser
374 */
375 public Phaser(Phaser parent) {
376 int phase = 0;
377 this.parent = parent;
378 if (parent != null) {
379 this.root = parent.root;
380 phase = parent.register();
381 }
382 else
383 this.root = this;
384 this.state = trippedStateFor(phase, 0);
385 }
386
387 /**
388 * Creates a new phaser with the given parent and numbers of
389 * registered unarrived parties. If parent is non-null, this phaser
390 * is registered with the parent and its initial phase number is
391 * the same as that of parent phaser.
392 *
393 * @param parent the parent phaser
394 * @param parties the number of parties required to trip barrier
395 * @throws IllegalArgumentException if parties less than zero
396 * or greater than the maximum number of parties supported
397 */
398 public Phaser(Phaser parent, int parties) {
399 if (parties < 0 || parties > ushortMask)
400 throw new IllegalArgumentException("Illegal number of parties");
401 int phase = 0;
402 this.parent = parent;
403 if (parent != null) {
404 this.root = parent.root;
405 phase = parent.register();
406 }
407 else
408 this.root = this;
409 this.state = trippedStateFor(phase, parties);
410 }
411
412 /**
413 * Adds a new unarrived party to this phaser.
414 *
415 * @return the arrival phase number to which this registration applied
416 * @throws IllegalStateException if attempting to register more
417 * than the maximum supported number of parties
418 */
419 public int register() {
420 return doRegister(1);
421 }
422
423 /**
424 * Adds the given number of new unarrived parties to this phaser.
425 *
426 * @param parties the number of parties required to trip barrier
427 * @return the arrival phase number to which this registration applied
428 * @throws IllegalStateException if attempting to register more
429 * than the maximum supported number of parties
430 */
431 public int bulkRegister(int parties) {
432 if (parties < 0)
433 throw new IllegalArgumentException();
434 if (parties == 0)
435 return getPhase();
436 return doRegister(parties);
437 }
438
439 /**
440 * Shared code for register, bulkRegister
441 */
442 private int doRegister(int registrations) {
443 int phase;
444 for (;;) {
445 long s = getReconciledState();
446 phase = phaseOf(s);
447 int unarrived = unarrivedOf(s) + registrations;
448 int parties = partiesOf(s) + registrations;
449 if (phase < 0)
450 break;
451 if (parties > ushortMask || unarrived > ushortMask)
452 throw new IllegalStateException(badBounds(parties, unarrived));
453 if (phase == phaseOf(root.state) &&
454 casState(s, stateFor(phase, parties, unarrived)))
455 break;
456 }
457 return phase;
458 }
459
460 /**
461 * Arrives at the barrier, but does not wait for others. (You can
462 * in turn wait for others via {@link #awaitAdvance}). It is an
463 * unenforced usage error for an unregistered party to invoke this
464 * method.
465 *
466 * @return the arrival phase number, or a negative value if terminated
467 * @throws IllegalStateException if not terminated and the number
468 * of unarrived parties would become negative
469 */
470 public int arrive() {
471 int phase;
472 for (;;) {
473 long s = state;
474 phase = phaseOf(s);
475 if (phase < 0)
476 break;
477 int parties = partiesOf(s);
478 int unarrived = unarrivedOf(s) - 1;
479 if (unarrived > 0) { // Not the last arrival
480 if (casState(s, s - 1)) // s-1 adds one arrival
481 break;
482 }
483 else if (unarrived == 0) { // the last arrival
484 Phaser par = parent;
485 if (par == null) { // directly trip
486 if (casState
487 (s,
488 trippedStateFor(onAdvance(phase, parties) ? -1 :
489 ((phase + 1) & phaseMask), parties))) {
490 releaseWaiters(phase);
491 break;
492 }
493 }
494 else { // cascade to parent
495 if (casState(s, s - 1)) { // zeroes unarrived
496 par.arrive();
497 reconcileState();
498 break;
499 }
500 }
501 }
502 else if (phase != phaseOf(root.state)) // or if unreconciled
503 reconcileState();
504 else
505 throw new IllegalStateException(badBounds(parties, unarrived));
506 }
507 return phase;
508 }
509
510 /**
511 * Arrives at the barrier and deregisters from it without waiting
512 * for others. Deregistration reduces the number of parties
513 * required to trip the barrier in future phases. If this phaser
514 * has a parent, and deregistration causes this phaser to have
515 * zero parties, this phaser also arrives at and is deregistered
516 * from its parent. It is an unenforced usage error for an
517 * unregistered party to invoke this method.
518 *
519 * @return the arrival phase number, or a negative value if terminated
520 * @throws IllegalStateException if not terminated and the number
521 * of registered or unarrived parties would become negative
522 */
523 public int arriveAndDeregister() {
524 // similar code to arrive, but too different to merge
525 Phaser par = parent;
526 int phase;
527 for (;;) {
528 long s = state;
529 phase = phaseOf(s);
530 if (phase < 0)
531 break;
532 int parties = partiesOf(s) - 1;
533 int unarrived = unarrivedOf(s) - 1;
534 if (parties >= 0) {
535 if (unarrived > 0 || (unarrived == 0 && par != null)) {
536 if (casState
537 (s,
538 stateFor(phase, parties, unarrived))) {
539 if (unarrived == 0) {
540 par.arriveAndDeregister();
541 reconcileState();
542 }
543 break;
544 }
545 continue;
546 }
547 if (unarrived == 0) {
548 if (casState
549 (s,
550 trippedStateFor(onAdvance(phase, parties) ? -1 :
551 ((phase + 1) & phaseMask), parties))) {
552 releaseWaiters(phase);
553 break;
554 }
555 continue;
556 }
557 if (par != null && phase != phaseOf(root.state)) {
558 reconcileState();
559 continue;
560 }
561 }
562 throw new IllegalStateException(badBounds(parties, unarrived));
563 }
564 return phase;
565 }
566
567 /**
568 * Arrives at the barrier and awaits others. Equivalent in effect
569 * to {@code awaitAdvance(arrive())}. If you need to await with
570 * interruption or timeout, you can arrange this with an analogous
571 * construction using one of the other forms of the awaitAdvance
572 * method. If instead you need to deregister upon arrival use
573 * {@code arriveAndDeregister}. It is an unenforced usage error
574 * for an unregistered party to invoke this method.
575 *
576 * @return the arrival phase number, or a negative number if terminated
577 * @throws IllegalStateException if not terminated and the number
578 * of unarrived parties would become negative
579 */
580 public int arriveAndAwaitAdvance() {
581 return awaitAdvance(arrive());
582 }
583
584 /**
585 * Awaits the phase of the barrier to advance from the given phase
586 * value, returning immediately if the current phase of the
587 * barrier is not equal to the given phase value or this barrier
588 * is terminated. It is an unenforced usage error for an
589 * unregistered party to invoke this method.
590 *
591 * @param phase an arrival phase number, or negative value if
592 * terminated; this argument is normally the value returned by a
593 * previous call to {@code arrive} or its variants
594 * @return the next arrival phase number, or a negative value
595 * if terminated or argument is negative
596 */
597 public int awaitAdvance(int phase) {
598 if (phase < 0)
599 return phase;
600 long s = getReconciledState();
601 int p = phaseOf(s);
602 if (p != phase)
603 return p;
604 if (unarrivedOf(s) == 0 && parent != null)
605 parent.awaitAdvance(phase);
606 // Fall here even if parent waited, to reconcile and help release
607 return untimedWait(phase);
608 }
609
610 /**
611 * Awaits the phase of the barrier to advance from the given phase
612 * value, throwing {@code InterruptedException} if interrupted
613 * while waiting, or returning immediately if the current phase of
614 * the barrier is not equal to the given phase value or this
615 * barrier is terminated. It is an unenforced usage error for an
616 * unregistered party to invoke this method.
617 *
618 * @param phase an arrival phase number, or negative value if
619 * terminated; this argument is normally the value returned by a
620 * previous call to {@code arrive} or its variants
621 * @return the next arrival phase number, or a negative value
622 * if terminated or argument is negative
623 * @throws InterruptedException if thread interrupted while waiting
624 */
625 public int awaitAdvanceInterruptibly(int phase)
626 throws InterruptedException {
627 if (phase < 0)
628 return phase;
629 long s = getReconciledState();
630 int p = phaseOf(s);
631 if (p != phase)
632 return p;
633 if (unarrivedOf(s) == 0 && parent != null)
634 parent.awaitAdvanceInterruptibly(phase);
635 return interruptibleWait(phase);
636 }
637
638 /**
639 * Awaits the phase of the barrier to advance from the given phase
640 * value or the given timeout to elapse, throwing {@code
641 * InterruptedException} if interrupted while waiting, or
642 * returning immediately if the current phase of the barrier is
643 * not equal to the given phase value or this barrier is
644 * terminated. It is an unenforced usage error for an
645 * unregistered party to invoke this method.
646 *
647 * @param phase an arrival phase number, or negative value if
648 * terminated; this argument is normally the value returned by a
649 * previous call to {@code arrive} or its variants
650 * @param timeout how long to wait before giving up, in units of
651 * {@code unit}
652 * @param unit a {@code TimeUnit} determining how to interpret the
653 * {@code timeout} parameter
654 * @return the next arrival phase number, or a negative value
655 * if terminated or argument is negative
656 * @throws InterruptedException if thread interrupted while waiting
657 * @throws TimeoutException if timed out while waiting
658 */
659 public int awaitAdvanceInterruptibly(int phase,
660 long timeout, TimeUnit unit)
661 throws InterruptedException, TimeoutException {
662 if (phase < 0)
663 return phase;
664 long s = getReconciledState();
665 int p = phaseOf(s);
666 if (p != phase)
667 return p;
668 if (unarrivedOf(s) == 0 && parent != null)
669 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
670 return timedWait(phase, unit.toNanos(timeout));
671 }
672
673 /**
674 * Forces this barrier to enter termination state. Counts of
675 * arrived and registered parties are unaffected. If this phaser
676 * has a parent, it too is terminated. This method may be useful
677 * for coordinating recovery after one or more tasks encounter
678 * unexpected exceptions.
679 */
680 public void forceTermination() {
681 for (;;) {
682 long s = getReconciledState();
683 int phase = phaseOf(s);
684 int parties = partiesOf(s);
685 int unarrived = unarrivedOf(s);
686 if (phase < 0 ||
687 casState(s, stateFor(-1, parties, unarrived))) {
688 releaseWaiters(0);
689 releaseWaiters(1);
690 if (parent != null)
691 parent.forceTermination();
692 return;
693 }
694 }
695 }
696
697 /**
698 * Returns the current phase number. The maximum phase number is
699 * {@code Integer.MAX_VALUE}, after which it restarts at
700 * zero. Upon termination, the phase number is negative.
701 *
702 * @return the phase number, or a negative value if terminated
703 */
704 public final int getPhase() {
705 return phaseOf(getReconciledState());
706 }
707
708 /**
709 * Returns the number of parties registered at this barrier.
710 *
711 * @return the number of parties
712 */
713 public int getRegisteredParties() {
714 return partiesOf(state);
715 }
716
717 /**
718 * Returns the number of registered parties that have arrived at
719 * the current phase of this barrier.
720 *
721 * @return the number of arrived parties
722 */
723 public int getArrivedParties() {
724 return arrivedOf(state);
725 }
726
727 /**
728 * Returns the number of registered parties that have not yet
729 * arrived at the current phase of this barrier.
730 *
731 * @return the number of unarrived parties
732 */
733 public int getUnarrivedParties() {
734 return unarrivedOf(state);
735 }
736
737 /**
738 * Returns the parent of this phaser, or {@code null} if none.
739 *
740 * @return the parent of this phaser, or {@code null} if none
741 */
742 public Phaser getParent() {
743 return parent;
744 }
745
746 /**
747 * Returns the root ancestor of this phaser, which is the same as
748 * this phaser if it has no parent.
749 *
750 * @return the root ancestor of this phaser
751 */
752 public Phaser getRoot() {
753 return root;
754 }
755
756 /**
757 * Returns {@code true} if this barrier has been terminated.
758 *
759 * @return {@code true} if this barrier has been terminated
760 */
761 public boolean isTerminated() {
762 return getPhase() < 0;
763 }
764
765 /**
766 * Overridable method to perform an action upon phase advance, and
767 * to control termination. This method is invoked whenever the
768 * barrier is tripped (and thus all other waiting parties are
769 * dormant). If it returns {@code true}, then, rather than advance
770 * the phase number, this barrier will be set to a final
771 * termination state, and subsequent calls to {@link #isTerminated}
772 * will return true.
773 *
774 * <p>The default version returns {@code true} when the number of
775 * registered parties is zero. Normally, overrides that arrange
776 * termination for other reasons should also preserve this
777 * property.
778 *
779 * <p>You may override this method to perform an action with side
780 * effects visible to participating tasks, but it is in general
781 * only sensible to do so in designs where all parties register
782 * before any arrive, and all {@link #awaitAdvance} at each phase.
783 * Otherwise, you cannot ensure lack of interference from other
784 * parties during the invocation of this method.
785 *
786 * @param phase the phase number on entering the barrier
787 * @param registeredParties the current number of registered parties
788 * @return {@code true} if this barrier should terminate
789 */
790 protected boolean onAdvance(int phase, int registeredParties) {
791 return registeredParties <= 0;
792 }
793
794 /**
795 * Returns a string identifying this phaser, as well as its
796 * state. The state, in brackets, includes the String {@code
797 * "phase = "} followed by the phase number, {@code "parties = "}
798 * followed by the number of registered parties, and {@code
799 * "arrived = "} followed by the number of arrived parties.
800 *
801 * @return a string identifying this barrier, as well as its state
802 */
803 public String toString() {
804 long s = getReconciledState();
805 return super.toString() +
806 "[phase = " + phaseOf(s) +
807 " parties = " + partiesOf(s) +
808 " arrived = " + arrivedOf(s) + "]";
809 }
810
811 // methods for waiting
812
813 /**
814 * Wait nodes for Treiber stack representing wait queue
815 */
816 static final class QNode implements ForkJoinPool.ManagedBlocker {
817 final Phaser phaser;
818 final int phase;
819 final long startTime;
820 final long nanos;
821 final boolean timed;
822 final boolean interruptible;
823 volatile boolean wasInterrupted = false;
824 volatile Thread thread; // nulled to cancel wait
825 QNode next;
826 QNode(Phaser phaser, int phase, boolean interruptible,
827 boolean timed, long startTime, long nanos) {
828 this.phaser = phaser;
829 this.phase = phase;
830 this.timed = timed;
831 this.interruptible = interruptible;
832 this.startTime = startTime;
833 this.nanos = nanos;
834 thread = Thread.currentThread();
835 }
836 public boolean isReleasable() {
837 return (thread == null ||
838 phaser.getPhase() != phase ||
839 (interruptible && wasInterrupted) ||
840 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
841 }
842 public boolean block() {
843 if (Thread.interrupted()) {
844 wasInterrupted = true;
845 if (interruptible)
846 return true;
847 }
848 if (!timed)
849 LockSupport.park(this);
850 else {
851 long waitTime = nanos - (System.nanoTime() - startTime);
852 if (waitTime <= 0)
853 return true;
854 LockSupport.parkNanos(this, waitTime);
855 }
856 return isReleasable();
857 }
858 void signal() {
859 Thread t = thread;
860 if (t != null) {
861 thread = null;
862 LockSupport.unpark(t);
863 }
864 }
865 boolean doWait() {
866 if (thread != null) {
867 try {
868 ForkJoinPool.managedBlock(this, false);
869 } catch (InterruptedException ie) {
870 }
871 }
872 return wasInterrupted;
873 }
874
875 }
876
877 /**
878 * Removes and signals waiting threads from wait queue.
879 */
880 private void releaseWaiters(int phase) {
881 AtomicReference<QNode> head = queueFor(phase);
882 QNode q;
883 while ((q = head.get()) != null) {
884 if (head.compareAndSet(q, q.next))
885 q.signal();
886 }
887 }
888
889 /**
890 * Tries to enqueue given node in the appropriate wait queue.
891 *
892 * @return true if successful
893 */
894 private boolean tryEnqueue(QNode node) {
895 AtomicReference<QNode> head = queueFor(node.phase);
896 return head.compareAndSet(node.next = head.get(), node);
897 }
898
899 /**
900 * Enqueues node and waits unless aborted or signalled.
901 *
902 * @return current phase
903 */
904 private int untimedWait(int phase) {
905 QNode node = null;
906 boolean queued = false;
907 boolean interrupted = false;
908 int p;
909 while ((p = getPhase()) == phase) {
910 if (Thread.interrupted())
911 interrupted = true;
912 else if (node == null)
913 node = new QNode(this, phase, false, false, 0, 0);
914 else if (!queued)
915 queued = tryEnqueue(node);
916 else
917 interrupted = node.doWait();
918 }
919 if (node != null)
920 node.thread = null;
921 releaseWaiters(phase);
922 if (interrupted)
923 Thread.currentThread().interrupt();
924 return p;
925 }
926
927 /**
928 * Interruptible version
929 * @return current phase
930 */
931 private int interruptibleWait(int phase) throws InterruptedException {
932 QNode node = null;
933 boolean queued = false;
934 boolean interrupted = false;
935 int p;
936 while ((p = getPhase()) == phase && !interrupted) {
937 if (Thread.interrupted())
938 interrupted = true;
939 else if (node == null)
940 node = new QNode(this, phase, true, false, 0, 0);
941 else if (!queued)
942 queued = tryEnqueue(node);
943 else
944 interrupted = node.doWait();
945 }
946 if (node != null)
947 node.thread = null;
948 if (p != phase || (p = getPhase()) != phase)
949 releaseWaiters(phase);
950 if (interrupted)
951 throw new InterruptedException();
952 return p;
953 }
954
955 /**
956 * Timeout version.
957 * @return current phase
958 */
959 private int timedWait(int phase, long nanos)
960 throws InterruptedException, TimeoutException {
961 long startTime = System.nanoTime();
962 QNode node = null;
963 boolean queued = false;
964 boolean interrupted = false;
965 int p;
966 while ((p = getPhase()) == phase && !interrupted) {
967 if (Thread.interrupted())
968 interrupted = true;
969 else if (nanos - (System.nanoTime() - startTime) <= 0)
970 break;
971 else if (node == null)
972 node = new QNode(this, phase, true, true, startTime, nanos);
973 else if (!queued)
974 queued = tryEnqueue(node);
975 else
976 interrupted = node.doWait();
977 }
978 if (node != null)
979 node.thread = null;
980 if (p != phase || (p = getPhase()) != phase)
981 releaseWaiters(phase);
982 if (interrupted)
983 throw new InterruptedException();
984 if (p == phase)
985 throw new TimeoutException();
986 return p;
987 }
988
989 // Unsafe mechanics
990
991 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
992 private static final long stateOffset =
993 objectFieldOffset("state", Phaser.class);
994
995 private final boolean casState(long cmp, long val) {
996 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
997 }
998
999 private static long objectFieldOffset(String field, Class<?> klazz) {
1000 try {
1001 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 } catch (NoSuchFieldException e) {
1003 // Convert Exception to corresponding Error
1004 NoSuchFieldError error = new NoSuchFieldError(field);
1005 error.initCause(e);
1006 throw error;
1007 }
1008 }
1009
1010 /**
1011 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1012 * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 * into a jdk.
1014 *
1015 * @return a sun.misc.Unsafe
1016 */
1017 private static sun.misc.Unsafe getUnsafe() {
1018 try {
1019 return sun.misc.Unsafe.getUnsafe();
1020 } catch (SecurityException se) {
1021 try {
1022 return java.security.AccessController.doPrivileged
1023 (new java.security
1024 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 public sun.misc.Unsafe run() throws Exception {
1026 java.lang.reflect.Field f = sun.misc
1027 .Unsafe.class.getDeclaredField("theUnsafe");
1028 f.setAccessible(true);
1029 return (sun.misc.Unsafe) f.get(null);
1030 }});
1031 } catch (java.security.PrivilegedActionException e) {
1032 throw new RuntimeException("Could not initialize intrinsics",
1033 e.getCause());
1034 }
1035 }
1036 }
1037 }