ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.43
Committed: Mon Aug 24 23:08:18 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.42: +16 -15 lines
Log Message:
Clarify onAdvance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of
113 * parties. The typical idiom is for the method setting this up to
114 * first register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while(!phaser.isTerminated();
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();
166 * }</pre>
167 *
168 * Related constructions may be used to await particular phase numbers
169 * in contexts where you are sure that the phase will never wrap around
170 * {@code Integer.MAX_VALUE}. For example:
171 *
172 * <pre> {@code
173 * void awaitPhase(Phaser phaser, int phase) {
174 * int p = phaser.register(); // assumes caller not already registered
175 * while (p < phase) {
176 * if (phaser.isTerminated())
177 * // ... deal with unexpected termination
178 * else
179 * p = phaser.arriveAndAwaitAdvance();
180 * }
181 * phaser.arriveAndDeregister();
182 * }
183 * }</pre>
184 *
185 *
186 * <p>To create a set of tasks using a tree of phasers,
187 * you could use code of the following form, assuming a
188 * Task class with a constructor accepting a phaser that
189 * it registers for upon construction:
190 * <pre> {@code
191 * void build(Task[] actions, int lo, int hi, Phaser b) {
192 * int step = (hi - lo) / TASKS_PER_PHASER;
193 * if (step > 1) {
194 * int i = lo;
195 * while (i < hi) {
196 * int r = Math.min(i + step, hi);
197 * build(actions, i, r, new Phaser(b));
198 * i = r;
199 * }
200 * } else {
201 * for (int i = lo; i < hi; ++i)
202 * actions[i] = new Task(b);
203 * // assumes new Task(b) performs b.register()
204 * }
205 * }
206 * // .. initially called, for n tasks via
207 * build(new Task[n], 0, n, new Phaser());}</pre>
208 *
209 * The best value of {@code TASKS_PER_PHASER} depends mainly on
210 * expected barrier synchronization rates. A value as low as four may
211 * be appropriate for extremely small per-barrier task bodies (thus
212 * high rates), or up to hundreds for extremely large ones.
213 *
214 * </pre>
215 *
216 * <p><b>Implementation notes</b>: This implementation restricts the
217 * maximum number of parties to 65535. Attempts to register additional
218 * parties result in {@code IllegalStateException}. However, you can and
219 * should create tiered phasers to accommodate arbitrarily large sets
220 * of participants.
221 *
222 * @since 1.7
223 * @author Doug Lea
224 */
225 public class Phaser {
226 /*
227 * This class implements an extension of X10 "clocks". Thanks to
228 * Vijay Saraswat for the idea, and to Vivek Sarkar for
229 * enhancements to extend functionality.
230 */
231
232 /**
233 * Barrier state representation. Conceptually, a barrier contains
234 * four values:
235 *
236 * * parties -- the number of parties to wait (16 bits)
237 * * unarrived -- the number of parties yet to hit barrier (16 bits)
238 * * phase -- the generation of the barrier (31 bits)
239 * * terminated -- set if barrier is terminated (1 bit)
240 *
241 * However, to efficiently maintain atomicity, these values are
242 * packed into a single (atomic) long. Termination uses the sign
243 * bit of 32 bit representation of phase, so phase is set to -1 on
244 * termination. Good performance relies on keeping state decoding
245 * and encoding simple, and keeping race windows short.
246 *
247 * Note: there are some cheats in arrive() that rely on unarrived
248 * count being lowest 16 bits.
249 */
250 private volatile long state;
251
252 private static final int ushortMask = 0xffff;
253 private static final int phaseMask = 0x7fffffff;
254
255 private static int unarrivedOf(long s) {
256 return (int) (s & ushortMask);
257 }
258
259 private static int partiesOf(long s) {
260 return ((int) s) >>> 16;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> 32);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 private static long stateFor(int phase, int parties, int unarrived) {
272 return ((((long) phase) << 32) | (((long) parties) << 16) |
273 (long) unarrived);
274 }
275
276 private static long trippedStateFor(int phase, int parties) {
277 long lp = (long) parties;
278 return (((long) phase) << 32) | (lp << 16) | lp;
279 }
280
281 /**
282 * Returns message string for bad bounds exceptions.
283 */
284 private static String badBounds(int parties, int unarrived) {
285 return ("Attempt to set " + unarrived +
286 " unarrived of " + parties + " parties");
287 }
288
289 /**
290 * The parent of this phaser, or null if none
291 */
292 private final Phaser parent;
293
294 /**
295 * The root of phaser tree. Equals this if not in a tree. Used to
296 * support faster state push-down.
297 */
298 private final Phaser root;
299
300 // Wait queues
301
302 /**
303 * Heads of Treiber stacks for waiting threads. To eliminate
304 * contention while releasing some threads while adding others, we
305 * use two of them, alternating across even and odd phases.
306 */
307 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
308 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
309
310 private AtomicReference<QNode> queueFor(int phase) {
311 return ((phase & 1) == 0) ? evenQ : oddQ;
312 }
313
314 /**
315 * Returns current state, first resolving lagged propagation from
316 * root if necessary.
317 */
318 private long getReconciledState() {
319 return (parent == null) ? state : reconcileState();
320 }
321
322 /**
323 * Recursively resolves state.
324 */
325 private long reconcileState() {
326 Phaser p = parent;
327 long s = state;
328 if (p != null) {
329 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
330 long parentState = p.getReconciledState();
331 int parentPhase = phaseOf(parentState);
332 int phase = phaseOf(s = state);
333 if (phase != parentPhase) {
334 long next = trippedStateFor(parentPhase, partiesOf(s));
335 if (casState(s, next)) {
336 releaseWaiters(phase);
337 s = next;
338 }
339 }
340 }
341 }
342 return s;
343 }
344
345 /**
346 * Creates a new phaser without any initially registered parties,
347 * initial phase number 0, and no parent. Any thread using this
348 * phaser will need to first register for it.
349 */
350 public Phaser() {
351 this(null);
352 }
353
354 /**
355 * Creates a new phaser with the given numbers of registered
356 * unarrived parties, initial phase number 0, and no parent.
357 *
358 * @param parties the number of parties required to trip barrier
359 * @throws IllegalArgumentException if parties less than zero
360 * or greater than the maximum number of parties supported
361 */
362 public Phaser(int parties) {
363 this(null, parties);
364 }
365
366 /**
367 * Creates a new phaser with the given parent, without any
368 * initially registered parties. If parent is non-null this phaser
369 * is registered with the parent and its initial phase number is
370 * the same as that of parent phaser.
371 *
372 * @param parent the parent phaser
373 */
374 public Phaser(Phaser parent) {
375 int phase = 0;
376 this.parent = parent;
377 if (parent != null) {
378 this.root = parent.root;
379 phase = parent.register();
380 }
381 else
382 this.root = this;
383 this.state = trippedStateFor(phase, 0);
384 }
385
386 /**
387 * Creates a new phaser with the given parent and numbers of
388 * registered unarrived parties. If parent is non-null, this phaser
389 * is registered with the parent and its initial phase number is
390 * the same as that of parent phaser.
391 *
392 * @param parent the parent phaser
393 * @param parties the number of parties required to trip barrier
394 * @throws IllegalArgumentException if parties less than zero
395 * or greater than the maximum number of parties supported
396 */
397 public Phaser(Phaser parent, int parties) {
398 if (parties < 0 || parties > ushortMask)
399 throw new IllegalArgumentException("Illegal number of parties");
400 int phase = 0;
401 this.parent = parent;
402 if (parent != null) {
403 this.root = parent.root;
404 phase = parent.register();
405 }
406 else
407 this.root = this;
408 this.state = trippedStateFor(phase, parties);
409 }
410
411 /**
412 * Adds a new unarrived party to this phaser.
413 *
414 * @return the arrival phase number to which this registration applied
415 * @throws IllegalStateException if attempting to register more
416 * than the maximum supported number of parties
417 */
418 public int register() {
419 return doRegister(1);
420 }
421
422 /**
423 * Adds the given number of new unarrived parties to this phaser.
424 *
425 * @param parties the number of parties required to trip barrier
426 * @return the arrival phase number to which this registration applied
427 * @throws IllegalStateException if attempting to register more
428 * than the maximum supported number of parties
429 */
430 public int bulkRegister(int parties) {
431 if (parties < 0)
432 throw new IllegalArgumentException();
433 if (parties == 0)
434 return getPhase();
435 return doRegister(parties);
436 }
437
438 /**
439 * Shared code for register, bulkRegister
440 */
441 private int doRegister(int registrations) {
442 int phase;
443 for (;;) {
444 long s = getReconciledState();
445 phase = phaseOf(s);
446 int unarrived = unarrivedOf(s) + registrations;
447 int parties = partiesOf(s) + registrations;
448 if (phase < 0)
449 break;
450 if (parties > ushortMask || unarrived > ushortMask)
451 throw new IllegalStateException(badBounds(parties, unarrived));
452 if (phase == phaseOf(root.state) &&
453 casState(s, stateFor(phase, parties, unarrived)))
454 break;
455 }
456 return phase;
457 }
458
459 /**
460 * Arrives at the barrier, but does not wait for others. (You can
461 * in turn wait for others via {@link #awaitAdvance}). It is an
462 * unenforced usage error for an unregistered party to invoke this
463 * method.
464 *
465 * @return the arrival phase number, or a negative value if terminated
466 * @throws IllegalStateException if not terminated and the number
467 * of unarrived parties would become negative
468 */
469 public int arrive() {
470 int phase;
471 for (;;) {
472 long s = state;
473 phase = phaseOf(s);
474 if (phase < 0)
475 break;
476 int parties = partiesOf(s);
477 int unarrived = unarrivedOf(s) - 1;
478 if (unarrived > 0) { // Not the last arrival
479 if (casState(s, s - 1)) // s-1 adds one arrival
480 break;
481 }
482 else if (unarrived == 0) { // the last arrival
483 Phaser par = parent;
484 if (par == null) { // directly trip
485 if (casState
486 (s,
487 trippedStateFor(onAdvance(phase, parties) ? -1 :
488 ((phase + 1) & phaseMask), parties))) {
489 releaseWaiters(phase);
490 break;
491 }
492 }
493 else { // cascade to parent
494 if (casState(s, s - 1)) { // zeroes unarrived
495 par.arrive();
496 reconcileState();
497 break;
498 }
499 }
500 }
501 else if (phase != phaseOf(root.state)) // or if unreconciled
502 reconcileState();
503 else
504 throw new IllegalStateException(badBounds(parties, unarrived));
505 }
506 return phase;
507 }
508
509 /**
510 * Arrives at the barrier and deregisters from it without waiting
511 * for others. Deregistration reduces the number of parties
512 * required to trip the barrier in future phases. If this phaser
513 * has a parent, and deregistration causes this phaser to have
514 * zero parties, this phaser also arrives at and is deregistered
515 * from its parent. It is an unenforced usage error for an
516 * unregistered party to invoke this method.
517 *
518 * @return the arrival phase number, or a negative value if terminated
519 * @throws IllegalStateException if not terminated and the number
520 * of registered or unarrived parties would become negative
521 */
522 public int arriveAndDeregister() {
523 // similar code to arrive, but too different to merge
524 Phaser par = parent;
525 int phase;
526 for (;;) {
527 long s = state;
528 phase = phaseOf(s);
529 if (phase < 0)
530 break;
531 int parties = partiesOf(s) - 1;
532 int unarrived = unarrivedOf(s) - 1;
533 if (parties >= 0) {
534 if (unarrived > 0 || (unarrived == 0 && par != null)) {
535 if (casState
536 (s,
537 stateFor(phase, parties, unarrived))) {
538 if (unarrived == 0) {
539 par.arriveAndDeregister();
540 reconcileState();
541 }
542 break;
543 }
544 continue;
545 }
546 if (unarrived == 0) {
547 if (casState
548 (s,
549 trippedStateFor(onAdvance(phase, parties) ? -1 :
550 ((phase + 1) & phaseMask), parties))) {
551 releaseWaiters(phase);
552 break;
553 }
554 continue;
555 }
556 if (par != null && phase != phaseOf(root.state)) {
557 reconcileState();
558 continue;
559 }
560 }
561 throw new IllegalStateException(badBounds(parties, unarrived));
562 }
563 return phase;
564 }
565
566 /**
567 * Arrives at the barrier and awaits others. Equivalent in effect
568 * to {@code awaitAdvance(arrive())}. If you need to await with
569 * interruption or timeout, you can arrange this with an analogous
570 * construction using one of the other forms of the awaitAdvance
571 * method. If instead you need to deregister upon arrival use
572 * {@code arriveAndDeregister}. It is an unenforced usage error
573 * for an unregistered party to invoke this method.
574 *
575 * @return the arrival phase number, or a negative number if terminated
576 * @throws IllegalStateException if not terminated and the number
577 * of unarrived parties would become negative
578 */
579 public int arriveAndAwaitAdvance() {
580 return awaitAdvance(arrive());
581 }
582
583 /**
584 * Awaits the phase of the barrier to advance from the given phase
585 * value, returning immediately if the current phase of the
586 * barrier is not equal to the given phase value or this barrier
587 * is terminated. It is an unenforced usage error for an
588 * unregistered party to invoke this method.
589 *
590 * @param phase an arrival phase number, or negative value if
591 * terminated; this argument is normally the value returned by a
592 * previous call to {@code arrive} or its variants
593 * @return the next arrival phase number, or a negative value
594 * if terminated or argument is negative
595 */
596 public int awaitAdvance(int phase) {
597 if (phase < 0)
598 return phase;
599 long s = getReconciledState();
600 int p = phaseOf(s);
601 if (p != phase)
602 return p;
603 if (unarrivedOf(s) == 0 && parent != null)
604 parent.awaitAdvance(phase);
605 // Fall here even if parent waited, to reconcile and help release
606 return untimedWait(phase);
607 }
608
609 /**
610 * Awaits the phase of the barrier to advance from the given phase
611 * value, throwing {@code InterruptedException} if interrupted
612 * while waiting, or returning immediately if the current phase of
613 * the barrier is not equal to the given phase value or this
614 * barrier is terminated. It is an unenforced usage error for an
615 * unregistered party to invoke this method.
616 *
617 * @param phase an arrival phase number, or negative value if
618 * terminated; this argument is normally the value returned by a
619 * previous call to {@code arrive} or its variants
620 * @return the next arrival phase number, or a negative value
621 * if terminated or argument is negative
622 * @throws InterruptedException if thread interrupted while waiting
623 */
624 public int awaitAdvanceInterruptibly(int phase)
625 throws InterruptedException {
626 if (phase < 0)
627 return phase;
628 long s = getReconciledState();
629 int p = phaseOf(s);
630 if (p != phase)
631 return p;
632 if (unarrivedOf(s) == 0 && parent != null)
633 parent.awaitAdvanceInterruptibly(phase);
634 return interruptibleWait(phase);
635 }
636
637 /**
638 * Awaits the phase of the barrier to advance from the given phase
639 * value or the given timeout to elapse, throwing {@code
640 * InterruptedException} if interrupted while waiting, or
641 * returning immediately if the current phase of the barrier is
642 * not equal to the given phase value or this barrier is
643 * terminated. It is an unenforced usage error for an
644 * unregistered party to invoke this method.
645 *
646 * @param phase an arrival phase number, or negative value if
647 * terminated; this argument is normally the value returned by a
648 * previous call to {@code arrive} or its variants
649 * @param timeout how long to wait before giving up, in units of
650 * {@code unit}
651 * @param unit a {@code TimeUnit} determining how to interpret the
652 * {@code timeout} parameter
653 * @return the next arrival phase number, or a negative value
654 * if terminated or argument is negative
655 * @throws InterruptedException if thread interrupted while waiting
656 * @throws TimeoutException if timed out while waiting
657 */
658 public int awaitAdvanceInterruptibly(int phase,
659 long timeout, TimeUnit unit)
660 throws InterruptedException, TimeoutException {
661 if (phase < 0)
662 return phase;
663 long s = getReconciledState();
664 int p = phaseOf(s);
665 if (p != phase)
666 return p;
667 if (unarrivedOf(s) == 0 && parent != null)
668 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
669 return timedWait(phase, unit.toNanos(timeout));
670 }
671
672 /**
673 * Forces this barrier to enter termination state. Counts of
674 * arrived and registered parties are unaffected. If this phaser
675 * has a parent, it too is terminated. This method may be useful
676 * for coordinating recovery after one or more tasks encounter
677 * unexpected exceptions.
678 */
679 public void forceTermination() {
680 for (;;) {
681 long s = getReconciledState();
682 int phase = phaseOf(s);
683 int parties = partiesOf(s);
684 int unarrived = unarrivedOf(s);
685 if (phase < 0 ||
686 casState(s, stateFor(-1, parties, unarrived))) {
687 releaseWaiters(0);
688 releaseWaiters(1);
689 if (parent != null)
690 parent.forceTermination();
691 return;
692 }
693 }
694 }
695
696 /**
697 * Returns the current phase number. The maximum phase number is
698 * {@code Integer.MAX_VALUE}, after which it restarts at
699 * zero. Upon termination, the phase number is negative.
700 *
701 * @return the phase number, or a negative value if terminated
702 */
703 public final int getPhase() {
704 return phaseOf(getReconciledState());
705 }
706
707 /**
708 * Returns the number of parties registered at this barrier.
709 *
710 * @return the number of parties
711 */
712 public int getRegisteredParties() {
713 return partiesOf(state);
714 }
715
716 /**
717 * Returns the number of registered parties that have arrived at
718 * the current phase of this barrier.
719 *
720 * @return the number of arrived parties
721 */
722 public int getArrivedParties() {
723 return arrivedOf(state);
724 }
725
726 /**
727 * Returns the number of registered parties that have not yet
728 * arrived at the current phase of this barrier.
729 *
730 * @return the number of unarrived parties
731 */
732 public int getUnarrivedParties() {
733 return unarrivedOf(state);
734 }
735
736 /**
737 * Returns the parent of this phaser, or {@code null} if none.
738 *
739 * @return the parent of this phaser, or {@code null} if none
740 */
741 public Phaser getParent() {
742 return parent;
743 }
744
745 /**
746 * Returns the root ancestor of this phaser, which is the same as
747 * this phaser if it has no parent.
748 *
749 * @return the root ancestor of this phaser
750 */
751 public Phaser getRoot() {
752 return root;
753 }
754
755 /**
756 * Returns {@code true} if this barrier has been terminated.
757 *
758 * @return {@code true} if this barrier has been terminated
759 */
760 public boolean isTerminated() {
761 return getPhase() < 0;
762 }
763
764 /**
765 * Overridable method to perform an action upon impending phase
766 * advance, and to control termination. This method is invoked
767 * upon arrival of the party tripping the barrier (when all other
768 * waiting parties are dormant). If this method returns {@code
769 * true}, then, rather than advance the phase number, this barrier
770 * will be set to a final termination state, and subsequent calls
771 * to {@link #isTerminated} will return true. Any (unchecked)
772 * Exception or Error thrown by an invocation of this method is
773 * propagated to the party attempting to trip the barrier, in
774 * which case no advance occurs.
775 *
776 * <p>The arguments to this method provide the state of the phaser
777 * prevailing for the current transition. (When called from within
778 * an implementation of {@code onAdvance} the values returned by
779 * methods such as {@code getPhase} may or may not reliably
780 * indicate the state to which this transition applies.)
781 *
782 * <p>The default version returns {@code true} when the number of
783 * registered parties is zero. Normally, overrides that arrange
784 * termination for other reasons should also preserve this
785 * property.
786 *
787 * <p>You may override this method to perform an action with side
788 * effects visible to participating tasks, but doing so requires
789 * care: Method {@code onAdvance} may be invoked more than once
790 * per transition. Further, unless all parties register before
791 * any arrive, and all {@link #awaitAdvance} at each phase, then
792 * you cannot ensure lack of interference from other parties
793 * during the invocation of this method.
794 *
795 * @param phase the phase number on entering the barrier
796 * @param registeredParties the current number of registered parties
797 * @return {@code true} if this barrier should terminate
798 */
799 protected boolean onAdvance(int phase, int registeredParties) {
800 return registeredParties <= 0;
801 }
802
803 /**
804 * Returns a string identifying this phaser, as well as its
805 * state. The state, in brackets, includes the String {@code
806 * "phase = "} followed by the phase number, {@code "parties = "}
807 * followed by the number of registered parties, and {@code
808 * "arrived = "} followed by the number of arrived parties.
809 *
810 * @return a string identifying this barrier, as well as its state
811 */
812 public String toString() {
813 long s = getReconciledState();
814 return super.toString() +
815 "[phase = " + phaseOf(s) +
816 " parties = " + partiesOf(s) +
817 " arrived = " + arrivedOf(s) + "]";
818 }
819
820 // methods for waiting
821
822 /**
823 * Wait nodes for Treiber stack representing wait queue
824 */
825 static final class QNode implements ForkJoinPool.ManagedBlocker {
826 final Phaser phaser;
827 final int phase;
828 final long startTime;
829 final long nanos;
830 final boolean timed;
831 final boolean interruptible;
832 volatile boolean wasInterrupted = false;
833 volatile Thread thread; // nulled to cancel wait
834 QNode next;
835 QNode(Phaser phaser, int phase, boolean interruptible,
836 boolean timed, long startTime, long nanos) {
837 this.phaser = phaser;
838 this.phase = phase;
839 this.timed = timed;
840 this.interruptible = interruptible;
841 this.startTime = startTime;
842 this.nanos = nanos;
843 thread = Thread.currentThread();
844 }
845 public boolean isReleasable() {
846 return (thread == null ||
847 phaser.getPhase() != phase ||
848 (interruptible && wasInterrupted) ||
849 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
850 }
851 public boolean block() {
852 if (Thread.interrupted()) {
853 wasInterrupted = true;
854 if (interruptible)
855 return true;
856 }
857 if (!timed)
858 LockSupport.park(this);
859 else {
860 long waitTime = nanos - (System.nanoTime() - startTime);
861 if (waitTime <= 0)
862 return true;
863 LockSupport.parkNanos(this, waitTime);
864 }
865 return isReleasable();
866 }
867 void signal() {
868 Thread t = thread;
869 if (t != null) {
870 thread = null;
871 LockSupport.unpark(t);
872 }
873 }
874 boolean doWait() {
875 if (thread != null) {
876 try {
877 ForkJoinPool.managedBlock(this, false);
878 } catch (InterruptedException ie) {
879 }
880 }
881 return wasInterrupted;
882 }
883
884 }
885
886 /**
887 * Removes and signals waiting threads from wait queue.
888 */
889 private void releaseWaiters(int phase) {
890 AtomicReference<QNode> head = queueFor(phase);
891 QNode q;
892 while ((q = head.get()) != null) {
893 if (head.compareAndSet(q, q.next))
894 q.signal();
895 }
896 }
897
898 /**
899 * Tries to enqueue given node in the appropriate wait queue.
900 *
901 * @return true if successful
902 */
903 private boolean tryEnqueue(QNode node) {
904 AtomicReference<QNode> head = queueFor(node.phase);
905 return head.compareAndSet(node.next = head.get(), node);
906 }
907
908 /**
909 * Enqueues node and waits unless aborted or signalled.
910 *
911 * @return current phase
912 */
913 private int untimedWait(int phase) {
914 QNode node = null;
915 boolean queued = false;
916 boolean interrupted = false;
917 int p;
918 while ((p = getPhase()) == phase) {
919 if (Thread.interrupted())
920 interrupted = true;
921 else if (node == null)
922 node = new QNode(this, phase, false, false, 0, 0);
923 else if (!queued)
924 queued = tryEnqueue(node);
925 else
926 interrupted = node.doWait();
927 }
928 if (node != null)
929 node.thread = null;
930 releaseWaiters(phase);
931 if (interrupted)
932 Thread.currentThread().interrupt();
933 return p;
934 }
935
936 /**
937 * Interruptible version
938 * @return current phase
939 */
940 private int interruptibleWait(int phase) throws InterruptedException {
941 QNode node = null;
942 boolean queued = false;
943 boolean interrupted = false;
944 int p;
945 while ((p = getPhase()) == phase && !interrupted) {
946 if (Thread.interrupted())
947 interrupted = true;
948 else if (node == null)
949 node = new QNode(this, phase, true, false, 0, 0);
950 else if (!queued)
951 queued = tryEnqueue(node);
952 else
953 interrupted = node.doWait();
954 }
955 if (node != null)
956 node.thread = null;
957 if (p != phase || (p = getPhase()) != phase)
958 releaseWaiters(phase);
959 if (interrupted)
960 throw new InterruptedException();
961 return p;
962 }
963
964 /**
965 * Timeout version.
966 * @return current phase
967 */
968 private int timedWait(int phase, long nanos)
969 throws InterruptedException, TimeoutException {
970 long startTime = System.nanoTime();
971 QNode node = null;
972 boolean queued = false;
973 boolean interrupted = false;
974 int p;
975 while ((p = getPhase()) == phase && !interrupted) {
976 if (Thread.interrupted())
977 interrupted = true;
978 else if (nanos - (System.nanoTime() - startTime) <= 0)
979 break;
980 else if (node == null)
981 node = new QNode(this, phase, true, true, startTime, nanos);
982 else if (!queued)
983 queued = tryEnqueue(node);
984 else
985 interrupted = node.doWait();
986 }
987 if (node != null)
988 node.thread = null;
989 if (p != phase || (p = getPhase()) != phase)
990 releaseWaiters(phase);
991 if (interrupted)
992 throw new InterruptedException();
993 if (p == phase)
994 throw new TimeoutException();
995 return p;
996 }
997
998 // Unsafe mechanics
999
1000 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1001 private static final long stateOffset =
1002 objectFieldOffset("state", Phaser.class);
1003
1004 private final boolean casState(long cmp, long val) {
1005 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1006 }
1007
1008 private static long objectFieldOffset(String field, Class<?> klazz) {
1009 try {
1010 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1011 } catch (NoSuchFieldException e) {
1012 // Convert Exception to corresponding Error
1013 NoSuchFieldError error = new NoSuchFieldError(field);
1014 error.initCause(e);
1015 throw error;
1016 }
1017 }
1018
1019 /**
1020 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1021 * Replace with a simple call to Unsafe.getUnsafe when integrating
1022 * into a jdk.
1023 *
1024 * @return a sun.misc.Unsafe
1025 */
1026 private static sun.misc.Unsafe getUnsafe() {
1027 try {
1028 return sun.misc.Unsafe.getUnsafe();
1029 } catch (SecurityException se) {
1030 try {
1031 return java.security.AccessController.doPrivileged
1032 (new java.security
1033 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1034 public sun.misc.Unsafe run() throws Exception {
1035 java.lang.reflect.Field f = sun.misc
1036 .Unsafe.class.getDeclaredField("theUnsafe");
1037 f.setAccessible(true);
1038 return (sun.misc.Unsafe) f.get(null);
1039 }});
1040 } catch (java.security.PrivilegedActionException e) {
1041 throw new RuntimeException("Could not initialize intrinsics",
1042 e.getCause());
1043 }
1044 }
1045 }
1046 }