ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.46
Committed: Sun Aug 30 11:08:25 2009 UTC (14 years, 8 months ago) by dl
Branch: MAIN
Changes since 1.45: +7 -6 lines
Log Message:
Clarify onAdvance

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of
113 * parties. The typical idiom is for the method setting this up to
114 * first register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers for upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * </pre>
211 *
212 * <p><b>Implementation notes</b>: This implementation restricts the
213 * maximum number of parties to 65535. Attempts to register additional
214 * parties result in {@code IllegalStateException}. However, you can and
215 * should create tiered phasers to accommodate arbitrarily large sets
216 * of participants.
217 *
218 * @since 1.7
219 * @author Doug Lea
220 */
221 public class Phaser {
222 /*
223 * This class implements an extension of X10 "clocks". Thanks to
224 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 * enhancements to extend functionality.
226 */
227
228 /**
229 * Barrier state representation. Conceptually, a barrier contains
230 * four values:
231 *
232 * * parties -- the number of parties to wait (16 bits)
233 * * unarrived -- the number of parties yet to hit barrier (16 bits)
234 * * phase -- the generation of the barrier (31 bits)
235 * * terminated -- set if barrier is terminated (1 bit)
236 *
237 * However, to efficiently maintain atomicity, these values are
238 * packed into a single (atomic) long. Termination uses the sign
239 * bit of 32 bit representation of phase, so phase is set to -1 on
240 * termination. Good performance relies on keeping state decoding
241 * and encoding simple, and keeping race windows short.
242 *
243 * Note: there are some cheats in arrive() that rely on unarrived
244 * count being lowest 16 bits.
245 */
246 private volatile long state;
247
248 private static final int ushortMask = 0xffff;
249 private static final int phaseMask = 0x7fffffff;
250
251 private static int unarrivedOf(long s) {
252 return (int) (s & ushortMask);
253 }
254
255 private static int partiesOf(long s) {
256 return ((int) s) >>> 16;
257 }
258
259 private static int phaseOf(long s) {
260 return (int) (s >>> 32);
261 }
262
263 private static int arrivedOf(long s) {
264 return partiesOf(s) - unarrivedOf(s);
265 }
266
267 private static long stateFor(int phase, int parties, int unarrived) {
268 return ((((long) phase) << 32) | (((long) parties) << 16) |
269 (long) unarrived);
270 }
271
272 private static long trippedStateFor(int phase, int parties) {
273 long lp = (long) parties;
274 return (((long) phase) << 32) | (lp << 16) | lp;
275 }
276
277 /**
278 * Returns message string for bad bounds exceptions.
279 */
280 private static String badBounds(int parties, int unarrived) {
281 return ("Attempt to set " + unarrived +
282 " unarrived of " + parties + " parties");
283 }
284
285 /**
286 * The parent of this phaser, or null if none
287 */
288 private final Phaser parent;
289
290 /**
291 * The root of phaser tree. Equals this if not in a tree. Used to
292 * support faster state push-down.
293 */
294 private final Phaser root;
295
296 // Wait queues
297
298 /**
299 * Heads of Treiber stacks for waiting threads. To eliminate
300 * contention while releasing some threads while adding others, we
301 * use two of them, alternating across even and odd phases.
302 */
303 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
304 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
305
306 private AtomicReference<QNode> queueFor(int phase) {
307 return ((phase & 1) == 0) ? evenQ : oddQ;
308 }
309
310 /**
311 * Returns current state, first resolving lagged propagation from
312 * root if necessary.
313 */
314 private long getReconciledState() {
315 return (parent == null) ? state : reconcileState();
316 }
317
318 /**
319 * Recursively resolves state.
320 */
321 private long reconcileState() {
322 Phaser p = parent;
323 long s = state;
324 if (p != null) {
325 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
326 long parentState = p.getReconciledState();
327 int parentPhase = phaseOf(parentState);
328 int phase = phaseOf(s = state);
329 if (phase != parentPhase) {
330 long next = trippedStateFor(parentPhase, partiesOf(s));
331 if (casState(s, next)) {
332 releaseWaiters(phase);
333 s = next;
334 }
335 }
336 }
337 }
338 return s;
339 }
340
341 /**
342 * Creates a new phaser without any initially registered parties,
343 * initial phase number 0, and no parent. Any thread using this
344 * phaser will need to first register for it.
345 */
346 public Phaser() {
347 this(null);
348 }
349
350 /**
351 * Creates a new phaser with the given numbers of registered
352 * unarrived parties, initial phase number 0, and no parent.
353 *
354 * @param parties the number of parties required to trip barrier
355 * @throws IllegalArgumentException if parties less than zero
356 * or greater than the maximum number of parties supported
357 */
358 public Phaser(int parties) {
359 this(null, parties);
360 }
361
362 /**
363 * Creates a new phaser with the given parent, without any
364 * initially registered parties. If parent is non-null this phaser
365 * is registered with the parent and its initial phase number is
366 * the same as that of parent phaser.
367 *
368 * @param parent the parent phaser
369 */
370 public Phaser(Phaser parent) {
371 int phase = 0;
372 this.parent = parent;
373 if (parent != null) {
374 this.root = parent.root;
375 phase = parent.register();
376 }
377 else
378 this.root = this;
379 this.state = trippedStateFor(phase, 0);
380 }
381
382 /**
383 * Creates a new phaser with the given parent and numbers of
384 * registered unarrived parties. If parent is non-null, this phaser
385 * is registered with the parent and its initial phase number is
386 * the same as that of parent phaser.
387 *
388 * @param parent the parent phaser
389 * @param parties the number of parties required to trip barrier
390 * @throws IllegalArgumentException if parties less than zero
391 * or greater than the maximum number of parties supported
392 */
393 public Phaser(Phaser parent, int parties) {
394 if (parties < 0 || parties > ushortMask)
395 throw new IllegalArgumentException("Illegal number of parties");
396 int phase = 0;
397 this.parent = parent;
398 if (parent != null) {
399 this.root = parent.root;
400 phase = parent.register();
401 }
402 else
403 this.root = this;
404 this.state = trippedStateFor(phase, parties);
405 }
406
407 /**
408 * Adds a new unarrived party to this phaser.
409 *
410 * @return the arrival phase number to which this registration applied
411 * @throws IllegalStateException if attempting to register more
412 * than the maximum supported number of parties
413 */
414 public int register() {
415 return doRegister(1);
416 }
417
418 /**
419 * Adds the given number of new unarrived parties to this phaser.
420 *
421 * @param parties the number of parties required to trip barrier
422 * @return the arrival phase number to which this registration applied
423 * @throws IllegalStateException if attempting to register more
424 * than the maximum supported number of parties
425 */
426 public int bulkRegister(int parties) {
427 if (parties < 0)
428 throw new IllegalArgumentException();
429 if (parties == 0)
430 return getPhase();
431 return doRegister(parties);
432 }
433
434 /**
435 * Shared code for register, bulkRegister
436 */
437 private int doRegister(int registrations) {
438 int phase;
439 for (;;) {
440 long s = getReconciledState();
441 phase = phaseOf(s);
442 int unarrived = unarrivedOf(s) + registrations;
443 int parties = partiesOf(s) + registrations;
444 if (phase < 0)
445 break;
446 if (parties > ushortMask || unarrived > ushortMask)
447 throw new IllegalStateException(badBounds(parties, unarrived));
448 if (phase == phaseOf(root.state) &&
449 casState(s, stateFor(phase, parties, unarrived)))
450 break;
451 }
452 return phase;
453 }
454
455 /**
456 * Arrives at the barrier, but does not wait for others. (You can
457 * in turn wait for others via {@link #awaitAdvance}). It is an
458 * unenforced usage error for an unregistered party to invoke this
459 * method.
460 *
461 * @return the arrival phase number, or a negative value if terminated
462 * @throws IllegalStateException if not terminated and the number
463 * of unarrived parties would become negative
464 */
465 public int arrive() {
466 int phase;
467 for (;;) {
468 long s = state;
469 phase = phaseOf(s);
470 if (phase < 0)
471 break;
472 int parties = partiesOf(s);
473 int unarrived = unarrivedOf(s) - 1;
474 if (unarrived > 0) { // Not the last arrival
475 if (casState(s, s - 1)) // s-1 adds one arrival
476 break;
477 }
478 else if (unarrived == 0) { // the last arrival
479 Phaser par = parent;
480 if (par == null) { // directly trip
481 if (casState
482 (s,
483 trippedStateFor(onAdvance(phase, parties) ? -1 :
484 ((phase + 1) & phaseMask), parties))) {
485 releaseWaiters(phase);
486 break;
487 }
488 }
489 else { // cascade to parent
490 if (casState(s, s - 1)) { // zeroes unarrived
491 par.arrive();
492 reconcileState();
493 break;
494 }
495 }
496 }
497 else if (phase != phaseOf(root.state)) // or if unreconciled
498 reconcileState();
499 else
500 throw new IllegalStateException(badBounds(parties, unarrived));
501 }
502 return phase;
503 }
504
505 /**
506 * Arrives at the barrier and deregisters from it without waiting
507 * for others. Deregistration reduces the number of parties
508 * required to trip the barrier in future phases. If this phaser
509 * has a parent, and deregistration causes this phaser to have
510 * zero parties, this phaser also arrives at and is deregistered
511 * from its parent. It is an unenforced usage error for an
512 * unregistered party to invoke this method.
513 *
514 * @return the arrival phase number, or a negative value if terminated
515 * @throws IllegalStateException if not terminated and the number
516 * of registered or unarrived parties would become negative
517 */
518 public int arriveAndDeregister() {
519 // similar code to arrive, but too different to merge
520 Phaser par = parent;
521 int phase;
522 for (;;) {
523 long s = state;
524 phase = phaseOf(s);
525 if (phase < 0)
526 break;
527 int parties = partiesOf(s) - 1;
528 int unarrived = unarrivedOf(s) - 1;
529 if (parties >= 0) {
530 if (unarrived > 0 || (unarrived == 0 && par != null)) {
531 if (casState
532 (s,
533 stateFor(phase, parties, unarrived))) {
534 if (unarrived == 0) {
535 par.arriveAndDeregister();
536 reconcileState();
537 }
538 break;
539 }
540 continue;
541 }
542 if (unarrived == 0) {
543 if (casState
544 (s,
545 trippedStateFor(onAdvance(phase, parties) ? -1 :
546 ((phase + 1) & phaseMask), parties))) {
547 releaseWaiters(phase);
548 break;
549 }
550 continue;
551 }
552 if (par != null && phase != phaseOf(root.state)) {
553 reconcileState();
554 continue;
555 }
556 }
557 throw new IllegalStateException(badBounds(parties, unarrived));
558 }
559 return phase;
560 }
561
562 /**
563 * Arrives at the barrier and awaits others. Equivalent in effect
564 * to {@code awaitAdvance(arrive())}. If you need to await with
565 * interruption or timeout, you can arrange this with an analogous
566 * construction using one of the other forms of the awaitAdvance
567 * method. If instead you need to deregister upon arrival use
568 * {@code arriveAndDeregister}. It is an unenforced usage error
569 * for an unregistered party to invoke this method.
570 *
571 * @return the arrival phase number, or a negative number if terminated
572 * @throws IllegalStateException if not terminated and the number
573 * of unarrived parties would become negative
574 */
575 public int arriveAndAwaitAdvance() {
576 return awaitAdvance(arrive());
577 }
578
579 /**
580 * Awaits the phase of the barrier to advance from the given phase
581 * value, returning immediately if the current phase of the
582 * barrier is not equal to the given phase value or this barrier
583 * is terminated. It is an unenforced usage error for an
584 * unregistered party to invoke this method.
585 *
586 * @param phase an arrival phase number, or negative value if
587 * terminated; this argument is normally the value returned by a
588 * previous call to {@code arrive} or its variants
589 * @return the next arrival phase number, or a negative value
590 * if terminated or argument is negative
591 */
592 public int awaitAdvance(int phase) {
593 if (phase < 0)
594 return phase;
595 long s = getReconciledState();
596 int p = phaseOf(s);
597 if (p != phase)
598 return p;
599 if (unarrivedOf(s) == 0 && parent != null)
600 parent.awaitAdvance(phase);
601 // Fall here even if parent waited, to reconcile and help release
602 return untimedWait(phase);
603 }
604
605 /**
606 * Awaits the phase of the barrier to advance from the given phase
607 * value, throwing {@code InterruptedException} if interrupted
608 * while waiting, or returning immediately if the current phase of
609 * the barrier is not equal to the given phase value or this
610 * barrier is terminated. It is an unenforced usage error for an
611 * unregistered party to invoke this method.
612 *
613 * @param phase an arrival phase number, or negative value if
614 * terminated; this argument is normally the value returned by a
615 * previous call to {@code arrive} or its variants
616 * @return the next arrival phase number, or a negative value
617 * if terminated or argument is negative
618 * @throws InterruptedException if thread interrupted while waiting
619 */
620 public int awaitAdvanceInterruptibly(int phase)
621 throws InterruptedException {
622 if (phase < 0)
623 return phase;
624 long s = getReconciledState();
625 int p = phaseOf(s);
626 if (p != phase)
627 return p;
628 if (unarrivedOf(s) == 0 && parent != null)
629 parent.awaitAdvanceInterruptibly(phase);
630 return interruptibleWait(phase);
631 }
632
633 /**
634 * Awaits the phase of the barrier to advance from the given phase
635 * value or the given timeout to elapse, throwing {@code
636 * InterruptedException} if interrupted while waiting, or
637 * returning immediately if the current phase of the barrier is
638 * not equal to the given phase value or this barrier is
639 * terminated. It is an unenforced usage error for an
640 * unregistered party to invoke this method.
641 *
642 * @param phase an arrival phase number, or negative value if
643 * terminated; this argument is normally the value returned by a
644 * previous call to {@code arrive} or its variants
645 * @param timeout how long to wait before giving up, in units of
646 * {@code unit}
647 * @param unit a {@code TimeUnit} determining how to interpret the
648 * {@code timeout} parameter
649 * @return the next arrival phase number, or a negative value
650 * if terminated or argument is negative
651 * @throws InterruptedException if thread interrupted while waiting
652 * @throws TimeoutException if timed out while waiting
653 */
654 public int awaitAdvanceInterruptibly(int phase,
655 long timeout, TimeUnit unit)
656 throws InterruptedException, TimeoutException {
657 if (phase < 0)
658 return phase;
659 long s = getReconciledState();
660 int p = phaseOf(s);
661 if (p != phase)
662 return p;
663 if (unarrivedOf(s) == 0 && parent != null)
664 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
665 return timedWait(phase, unit.toNanos(timeout));
666 }
667
668 /**
669 * Forces this barrier to enter termination state. Counts of
670 * arrived and registered parties are unaffected. If this phaser
671 * has a parent, it too is terminated. This method may be useful
672 * for coordinating recovery after one or more tasks encounter
673 * unexpected exceptions.
674 */
675 public void forceTermination() {
676 for (;;) {
677 long s = getReconciledState();
678 int phase = phaseOf(s);
679 int parties = partiesOf(s);
680 int unarrived = unarrivedOf(s);
681 if (phase < 0 ||
682 casState(s, stateFor(-1, parties, unarrived))) {
683 releaseWaiters(0);
684 releaseWaiters(1);
685 if (parent != null)
686 parent.forceTermination();
687 return;
688 }
689 }
690 }
691
692 /**
693 * Returns the current phase number. The maximum phase number is
694 * {@code Integer.MAX_VALUE}, after which it restarts at
695 * zero. Upon termination, the phase number is negative.
696 *
697 * @return the phase number, or a negative value if terminated
698 */
699 public final int getPhase() {
700 return phaseOf(getReconciledState());
701 }
702
703 /**
704 * Returns the number of parties registered at this barrier.
705 *
706 * @return the number of parties
707 */
708 public int getRegisteredParties() {
709 return partiesOf(state);
710 }
711
712 /**
713 * Returns the number of registered parties that have arrived at
714 * the current phase of this barrier.
715 *
716 * @return the number of arrived parties
717 */
718 public int getArrivedParties() {
719 return arrivedOf(state);
720 }
721
722 /**
723 * Returns the number of registered parties that have not yet
724 * arrived at the current phase of this barrier.
725 *
726 * @return the number of unarrived parties
727 */
728 public int getUnarrivedParties() {
729 return unarrivedOf(state);
730 }
731
732 /**
733 * Returns the parent of this phaser, or {@code null} if none.
734 *
735 * @return the parent of this phaser, or {@code null} if none
736 */
737 public Phaser getParent() {
738 return parent;
739 }
740
741 /**
742 * Returns the root ancestor of this phaser, which is the same as
743 * this phaser if it has no parent.
744 *
745 * @return the root ancestor of this phaser
746 */
747 public Phaser getRoot() {
748 return root;
749 }
750
751 /**
752 * Returns {@code true} if this barrier has been terminated.
753 *
754 * @return {@code true} if this barrier has been terminated
755 */
756 public boolean isTerminated() {
757 return getPhase() < 0;
758 }
759
760 /**
761 * Overridable method to perform an action upon impending phase
762 * advance, and to control termination. This method is invoked
763 * upon arrival of the party tripping the barrier (when all other
764 * waiting parties are dormant). If this method returns {@code
765 * true}, then, rather than advance the phase number, this barrier
766 * will be set to a final termination state, and subsequent calls
767 * to {@link #isTerminated} will return true. Any (unchecked)
768 * Exception or Error thrown by an invocation of this method is
769 * propagated to the party attempting to trip the barrier, in
770 * which case no advance occurs.
771 *
772 * <p>The arguments to this method provide the state of the phaser
773 * prevailing for the current transition. (When called from within
774 * an implementation of {@code onAdvance} the values returned by
775 * methods such as {@code getPhase} may or may not reliably
776 * indicate the state to which this transition applies.)
777 *
778 * <p>The default version returns {@code true} when the number of
779 * registered parties is zero. Normally, overrides that arrange
780 * termination for other reasons should also preserve this
781 * property.
782 *
783 * <p>You may override this method to perform an action with side
784 * effects visible to participating tasks, but it is only sensible
785 * to do so in designs where all parties register before any
786 * arrive, and all {@link #awaitAdvance} at each phase.
787 * Otherwise, you cannot ensure lack of interference from other
788 * parties during the invocation of this method. Additionally,
789 * method {@code onAdvance} may be invoked more than once per
790 * transition if registrations are intermixed with arrivals.
791 *
792 * @param phase the phase number on entering the barrier
793 * @param registeredParties the current number of registered parties
794 * @return {@code true} if this barrier should terminate
795 */
796 protected boolean onAdvance(int phase, int registeredParties) {
797 return registeredParties <= 0;
798 }
799
800 /**
801 * Returns a string identifying this phaser, as well as its
802 * state. The state, in brackets, includes the String {@code
803 * "phase = "} followed by the phase number, {@code "parties = "}
804 * followed by the number of registered parties, and {@code
805 * "arrived = "} followed by the number of arrived parties.
806 *
807 * @return a string identifying this barrier, as well as its state
808 */
809 public String toString() {
810 long s = getReconciledState();
811 return super.toString() +
812 "[phase = " + phaseOf(s) +
813 " parties = " + partiesOf(s) +
814 " arrived = " + arrivedOf(s) + "]";
815 }
816
817 // methods for waiting
818
819 /**
820 * Wait nodes for Treiber stack representing wait queue
821 */
822 static final class QNode implements ForkJoinPool.ManagedBlocker {
823 final Phaser phaser;
824 final int phase;
825 final long startTime;
826 final long nanos;
827 final boolean timed;
828 final boolean interruptible;
829 volatile boolean wasInterrupted = false;
830 volatile Thread thread; // nulled to cancel wait
831 QNode next;
832 QNode(Phaser phaser, int phase, boolean interruptible,
833 boolean timed, long startTime, long nanos) {
834 this.phaser = phaser;
835 this.phase = phase;
836 this.timed = timed;
837 this.interruptible = interruptible;
838 this.startTime = startTime;
839 this.nanos = nanos;
840 thread = Thread.currentThread();
841 }
842 public boolean isReleasable() {
843 return (thread == null ||
844 phaser.getPhase() != phase ||
845 (interruptible && wasInterrupted) ||
846 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
847 }
848 public boolean block() {
849 if (Thread.interrupted()) {
850 wasInterrupted = true;
851 if (interruptible)
852 return true;
853 }
854 if (!timed)
855 LockSupport.park(this);
856 else {
857 long waitTime = nanos - (System.nanoTime() - startTime);
858 if (waitTime <= 0)
859 return true;
860 LockSupport.parkNanos(this, waitTime);
861 }
862 return isReleasable();
863 }
864 void signal() {
865 Thread t = thread;
866 if (t != null) {
867 thread = null;
868 LockSupport.unpark(t);
869 }
870 }
871 boolean doWait() {
872 if (thread != null) {
873 try {
874 ForkJoinPool.managedBlock(this, false);
875 } catch (InterruptedException ie) {
876 }
877 }
878 return wasInterrupted;
879 }
880
881 }
882
883 /**
884 * Removes and signals waiting threads from wait queue.
885 */
886 private void releaseWaiters(int phase) {
887 AtomicReference<QNode> head = queueFor(phase);
888 QNode q;
889 while ((q = head.get()) != null) {
890 if (head.compareAndSet(q, q.next))
891 q.signal();
892 }
893 }
894
895 /**
896 * Tries to enqueue given node in the appropriate wait queue.
897 *
898 * @return true if successful
899 */
900 private boolean tryEnqueue(QNode node) {
901 AtomicReference<QNode> head = queueFor(node.phase);
902 return head.compareAndSet(node.next = head.get(), node);
903 }
904
905 /**
906 * Enqueues node and waits unless aborted or signalled.
907 *
908 * @return current phase
909 */
910 private int untimedWait(int phase) {
911 QNode node = null;
912 boolean queued = false;
913 boolean interrupted = false;
914 int p;
915 while ((p = getPhase()) == phase) {
916 if (Thread.interrupted())
917 interrupted = true;
918 else if (node == null)
919 node = new QNode(this, phase, false, false, 0, 0);
920 else if (!queued)
921 queued = tryEnqueue(node);
922 else
923 interrupted = node.doWait();
924 }
925 if (node != null)
926 node.thread = null;
927 releaseWaiters(phase);
928 if (interrupted)
929 Thread.currentThread().interrupt();
930 return p;
931 }
932
933 /**
934 * Interruptible version
935 * @return current phase
936 */
937 private int interruptibleWait(int phase) throws InterruptedException {
938 QNode node = null;
939 boolean queued = false;
940 boolean interrupted = false;
941 int p;
942 while ((p = getPhase()) == phase && !interrupted) {
943 if (Thread.interrupted())
944 interrupted = true;
945 else if (node == null)
946 node = new QNode(this, phase, true, false, 0, 0);
947 else if (!queued)
948 queued = tryEnqueue(node);
949 else
950 interrupted = node.doWait();
951 }
952 if (node != null)
953 node.thread = null;
954 if (p != phase || (p = getPhase()) != phase)
955 releaseWaiters(phase);
956 if (interrupted)
957 throw new InterruptedException();
958 return p;
959 }
960
961 /**
962 * Timeout version.
963 * @return current phase
964 */
965 private int timedWait(int phase, long nanos)
966 throws InterruptedException, TimeoutException {
967 long startTime = System.nanoTime();
968 QNode node = null;
969 boolean queued = false;
970 boolean interrupted = false;
971 int p;
972 while ((p = getPhase()) == phase && !interrupted) {
973 if (Thread.interrupted())
974 interrupted = true;
975 else if (nanos - (System.nanoTime() - startTime) <= 0)
976 break;
977 else if (node == null)
978 node = new QNode(this, phase, true, true, startTime, nanos);
979 else if (!queued)
980 queued = tryEnqueue(node);
981 else
982 interrupted = node.doWait();
983 }
984 if (node != null)
985 node.thread = null;
986 if (p != phase || (p = getPhase()) != phase)
987 releaseWaiters(phase);
988 if (interrupted)
989 throw new InterruptedException();
990 if (p == phase)
991 throw new TimeoutException();
992 return p;
993 }
994
995 // Unsafe mechanics
996
997 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
998 private static final long stateOffset =
999 objectFieldOffset("state", Phaser.class);
1000
1001 private final boolean casState(long cmp, long val) {
1002 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1003 }
1004
1005 private static long objectFieldOffset(String field, Class<?> klazz) {
1006 try {
1007 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1008 } catch (NoSuchFieldException e) {
1009 // Convert Exception to corresponding Error
1010 NoSuchFieldError error = new NoSuchFieldError(field);
1011 error.initCause(e);
1012 throw error;
1013 }
1014 }
1015
1016 /**
1017 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1018 * Replace with a simple call to Unsafe.getUnsafe when integrating
1019 * into a jdk.
1020 *
1021 * @return a sun.misc.Unsafe
1022 */
1023 private static sun.misc.Unsafe getUnsafe() {
1024 try {
1025 return sun.misc.Unsafe.getUnsafe();
1026 } catch (SecurityException se) {
1027 try {
1028 return java.security.AccessController.doPrivileged
1029 (new java.security
1030 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1031 public sun.misc.Unsafe run() throws Exception {
1032 java.lang.reflect.Field f = sun.misc
1033 .Unsafe.class.getDeclaredField("theUnsafe");
1034 f.setAccessible(true);
1035 return (sun.misc.Unsafe) f.get(null);
1036 }});
1037 } catch (java.security.PrivilegedActionException e) {
1038 throw new RuntimeException("Could not initialize intrinsics",
1039 e.getCause());
1040 }
1041 }
1042 }
1043 }