ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.48
Committed: Sun Oct 24 21:45:39 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.47: +24 -20 lines
Log Message:
Don't overwrite record of interrupt

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * parties -- the number of parties to wait (16 bits)
231 * * unarrived -- the number of parties yet to hit barrier (16 bits)
232 * * phase -- the generation of the barrier (31 bits)
233 * * terminated -- set if barrier is terminated (1 bit)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 *
241 * Note: there are some cheats in arrive() that rely on unarrived
242 * count being lowest 16 bits.
243 */
244 private volatile long state;
245
246 private static final int ushortMask = 0xffff;
247 private static final int phaseMask = 0x7fffffff;
248
249 private static int unarrivedOf(long s) {
250 return (int) (s & ushortMask);
251 }
252
253 private static int partiesOf(long s) {
254 return ((int) s) >>> 16;
255 }
256
257 private static int phaseOf(long s) {
258 return (int) (s >>> 32);
259 }
260
261 private static int arrivedOf(long s) {
262 return partiesOf(s) - unarrivedOf(s);
263 }
264
265 private static long stateFor(int phase, int parties, int unarrived) {
266 return ((((long) phase) << 32) | (((long) parties) << 16) |
267 (long) unarrived);
268 }
269
270 private static long trippedStateFor(int phase, int parties) {
271 long lp = (long) parties;
272 return (((long) phase) << 32) | (lp << 16) | lp;
273 }
274
275 /**
276 * Returns message string for bad bounds exceptions.
277 */
278 private static String badBounds(int parties, int unarrived) {
279 return ("Attempt to set " + unarrived +
280 " unarrived of " + parties + " parties");
281 }
282
283 /**
284 * The parent of this phaser, or null if none
285 */
286 private final Phaser parent;
287
288 /**
289 * The root of phaser tree. Equals this if not in a tree. Used to
290 * support faster state push-down.
291 */
292 private final Phaser root;
293
294 // Wait queues
295
296 /**
297 * Heads of Treiber stacks for waiting threads. To eliminate
298 * contention while releasing some threads while adding others, we
299 * use two of them, alternating across even and odd phases.
300 */
301 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
302 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
303
304 private AtomicReference<QNode> queueFor(int phase) {
305 return ((phase & 1) == 0) ? evenQ : oddQ;
306 }
307
308 /**
309 * Returns current state, first resolving lagged propagation from
310 * root if necessary.
311 */
312 private long getReconciledState() {
313 return (parent == null) ? state : reconcileState();
314 }
315
316 /**
317 * Recursively resolves state.
318 */
319 private long reconcileState() {
320 Phaser p = parent;
321 long s = state;
322 if (p != null) {
323 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
324 long parentState = p.getReconciledState();
325 int parentPhase = phaseOf(parentState);
326 int phase = phaseOf(s = state);
327 if (phase != parentPhase) {
328 long next = trippedStateFor(parentPhase, partiesOf(s));
329 if (casState(s, next)) {
330 releaseWaiters(phase);
331 s = next;
332 }
333 }
334 }
335 }
336 return s;
337 }
338
339 /**
340 * Creates a new phaser without any initially registered parties,
341 * initial phase number 0, and no parent. Any thread using this
342 * phaser will need to first register for it.
343 */
344 public Phaser() {
345 this(null);
346 }
347
348 /**
349 * Creates a new phaser with the given number of registered
350 * unarrived parties, initial phase number 0, and no parent.
351 *
352 * @param parties the number of parties required to trip barrier
353 * @throws IllegalArgumentException if parties less than zero
354 * or greater than the maximum number of parties supported
355 */
356 public Phaser(int parties) {
357 this(null, parties);
358 }
359
360 /**
361 * Creates a new phaser with the given parent, without any
362 * initially registered parties. If parent is non-null this phaser
363 * is registered with the parent and its initial phase number is
364 * the same as that of parent phaser.
365 *
366 * @param parent the parent phaser
367 */
368 public Phaser(Phaser parent) {
369 int phase = 0;
370 this.parent = parent;
371 if (parent != null) {
372 this.root = parent.root;
373 phase = parent.register();
374 }
375 else
376 this.root = this;
377 this.state = trippedStateFor(phase, 0);
378 }
379
380 /**
381 * Creates a new phaser with the given parent and number of
382 * registered unarrived parties. If parent is non-null, this phaser
383 * is registered with the parent and its initial phase number is
384 * the same as that of parent phaser.
385 *
386 * @param parent the parent phaser
387 * @param parties the number of parties required to trip barrier
388 * @throws IllegalArgumentException if parties less than zero
389 * or greater than the maximum number of parties supported
390 */
391 public Phaser(Phaser parent, int parties) {
392 if (parties < 0 || parties > ushortMask)
393 throw new IllegalArgumentException("Illegal number of parties");
394 int phase = 0;
395 this.parent = parent;
396 if (parent != null) {
397 this.root = parent.root;
398 phase = parent.register();
399 }
400 else
401 this.root = this;
402 this.state = trippedStateFor(phase, parties);
403 }
404
405 /**
406 * Adds a new unarrived party to this phaser.
407 *
408 * @return the arrival phase number to which this registration applied
409 * @throws IllegalStateException if attempting to register more
410 * than the maximum supported number of parties
411 */
412 public int register() {
413 return doRegister(1);
414 }
415
416 /**
417 * Adds the given number of new unarrived parties to this phaser.
418 *
419 * @param parties the number of additional parties required to trip barrier
420 * @return the arrival phase number to which this registration applied
421 * @throws IllegalStateException if attempting to register more
422 * than the maximum supported number of parties
423 * @throws IllegalArgumentException if {@code parties < 0}
424 */
425 public int bulkRegister(int parties) {
426 if (parties < 0)
427 throw new IllegalArgumentException();
428 if (parties == 0)
429 return getPhase();
430 return doRegister(parties);
431 }
432
433 /**
434 * Shared code for register, bulkRegister
435 */
436 private int doRegister(int registrations) {
437 int phase;
438 for (;;) {
439 long s = getReconciledState();
440 phase = phaseOf(s);
441 int unarrived = unarrivedOf(s) + registrations;
442 int parties = partiesOf(s) + registrations;
443 if (phase < 0)
444 break;
445 if (parties > ushortMask || unarrived > ushortMask)
446 throw new IllegalStateException(badBounds(parties, unarrived));
447 if (phase == phaseOf(root.state) &&
448 casState(s, stateFor(phase, parties, unarrived)))
449 break;
450 }
451 return phase;
452 }
453
454 /**
455 * Arrives at the barrier, but does not wait for others. (You can
456 * in turn wait for others via {@link #awaitAdvance}). It is an
457 * unenforced usage error for an unregistered party to invoke this
458 * method.
459 *
460 * @return the arrival phase number, or a negative value if terminated
461 * @throws IllegalStateException if not terminated and the number
462 * of unarrived parties would become negative
463 */
464 public int arrive() {
465 int phase;
466 for (;;) {
467 long s = state;
468 phase = phaseOf(s);
469 if (phase < 0)
470 break;
471 int parties = partiesOf(s);
472 int unarrived = unarrivedOf(s) - 1;
473 if (unarrived > 0) { // Not the last arrival
474 if (casState(s, s - 1)) // s-1 adds one arrival
475 break;
476 }
477 else if (unarrived == 0) { // the last arrival
478 Phaser par = parent;
479 if (par == null) { // directly trip
480 if (casState
481 (s,
482 trippedStateFor(onAdvance(phase, parties) ? -1 :
483 ((phase + 1) & phaseMask), parties))) {
484 releaseWaiters(phase);
485 break;
486 }
487 }
488 else { // cascade to parent
489 if (casState(s, s - 1)) { // zeroes unarrived
490 par.arrive();
491 reconcileState();
492 break;
493 }
494 }
495 }
496 else if (phase != phaseOf(root.state)) // or if unreconciled
497 reconcileState();
498 else
499 throw new IllegalStateException(badBounds(parties, unarrived));
500 }
501 return phase;
502 }
503
504 /**
505 * Arrives at the barrier and deregisters from it without waiting
506 * for others. Deregistration reduces the number of parties
507 * required to trip the barrier in future phases. If this phaser
508 * has a parent, and deregistration causes this phaser to have
509 * zero parties, this phaser also arrives at and is deregistered
510 * from its parent. It is an unenforced usage error for an
511 * unregistered party to invoke this method.
512 *
513 * @return the arrival phase number, or a negative value if terminated
514 * @throws IllegalStateException if not terminated and the number
515 * of registered or unarrived parties would become negative
516 */
517 public int arriveAndDeregister() {
518 // similar code to arrive, but too different to merge
519 Phaser par = parent;
520 int phase;
521 for (;;) {
522 long s = state;
523 phase = phaseOf(s);
524 if (phase < 0)
525 break;
526 int parties = partiesOf(s) - 1;
527 int unarrived = unarrivedOf(s) - 1;
528 if (parties >= 0) {
529 if (unarrived > 0 || (unarrived == 0 && par != null)) {
530 if (casState
531 (s,
532 stateFor(phase, parties, unarrived))) {
533 if (unarrived == 0) {
534 par.arriveAndDeregister();
535 reconcileState();
536 }
537 break;
538 }
539 continue;
540 }
541 if (unarrived == 0) {
542 if (casState
543 (s,
544 trippedStateFor(onAdvance(phase, parties) ? -1 :
545 ((phase + 1) & phaseMask), parties))) {
546 releaseWaiters(phase);
547 break;
548 }
549 continue;
550 }
551 if (par != null && phase != phaseOf(root.state)) {
552 reconcileState();
553 continue;
554 }
555 }
556 throw new IllegalStateException(badBounds(parties, unarrived));
557 }
558 return phase;
559 }
560
561 /**
562 * Arrives at the barrier and awaits others. Equivalent in effect
563 * to {@code awaitAdvance(arrive())}. If you need to await with
564 * interruption or timeout, you can arrange this with an analogous
565 * construction using one of the other forms of the {@code
566 * awaitAdvance} method. If instead you need to deregister upon
567 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
568 * usage error for an unregistered party to invoke this method.
569 *
570 * @return the arrival phase number, or a negative number if terminated
571 * @throws IllegalStateException if not terminated and the number
572 * of unarrived parties would become negative
573 */
574 public int arriveAndAwaitAdvance() {
575 return awaitAdvance(arrive());
576 }
577
578 /**
579 * Awaits the phase of the barrier to advance from the given phase
580 * value, returning immediately if the current phase of the
581 * barrier is not equal to the given phase value or this barrier
582 * is terminated. It is an unenforced usage error for an
583 * unregistered party to invoke this method.
584 *
585 * @param phase an arrival phase number, or negative value if
586 * terminated; this argument is normally the value returned by a
587 * previous call to {@code arrive} or its variants
588 * @return the next arrival phase number, or a negative value
589 * if terminated or argument is negative
590 */
591 public int awaitAdvance(int phase) {
592 if (phase < 0)
593 return phase;
594 long s = getReconciledState();
595 int p = phaseOf(s);
596 if (p != phase)
597 return p;
598 if (unarrivedOf(s) == 0 && parent != null)
599 parent.awaitAdvance(phase);
600 // Fall here even if parent waited, to reconcile and help release
601 return untimedWait(phase);
602 }
603
604 /**
605 * Awaits the phase of the barrier to advance from the given phase
606 * value, throwing {@code InterruptedException} if interrupted
607 * while waiting, or returning immediately if the current phase of
608 * the barrier is not equal to the given phase value or this
609 * barrier is terminated. It is an unenforced usage error for an
610 * unregistered party to invoke this method.
611 *
612 * @param phase an arrival phase number, or negative value if
613 * terminated; this argument is normally the value returned by a
614 * previous call to {@code arrive} or its variants
615 * @return the next arrival phase number, or a negative value
616 * if terminated or argument is negative
617 * @throws InterruptedException if thread interrupted while waiting
618 */
619 public int awaitAdvanceInterruptibly(int phase)
620 throws InterruptedException {
621 if (phase < 0)
622 return phase;
623 long s = getReconciledState();
624 int p = phaseOf(s);
625 if (p != phase)
626 return p;
627 if (unarrivedOf(s) == 0 && parent != null)
628 parent.awaitAdvanceInterruptibly(phase);
629 return interruptibleWait(phase);
630 }
631
632 /**
633 * Awaits the phase of the barrier to advance from the given phase
634 * value or the given timeout to elapse, throwing {@code
635 * InterruptedException} if interrupted while waiting, or
636 * returning immediately if the current phase of the barrier is
637 * not equal to the given phase value or this barrier is
638 * terminated. It is an unenforced usage error for an
639 * unregistered party to invoke this method.
640 *
641 * @param phase an arrival phase number, or negative value if
642 * terminated; this argument is normally the value returned by a
643 * previous call to {@code arrive} or its variants
644 * @param timeout how long to wait before giving up, in units of
645 * {@code unit}
646 * @param unit a {@code TimeUnit} determining how to interpret the
647 * {@code timeout} parameter
648 * @return the next arrival phase number, or a negative value
649 * if terminated or argument is negative
650 * @throws InterruptedException if thread interrupted while waiting
651 * @throws TimeoutException if timed out while waiting
652 */
653 public int awaitAdvanceInterruptibly(int phase,
654 long timeout, TimeUnit unit)
655 throws InterruptedException, TimeoutException {
656 if (phase < 0)
657 return phase;
658 long s = getReconciledState();
659 int p = phaseOf(s);
660 if (p != phase)
661 return p;
662 if (unarrivedOf(s) == 0 && parent != null)
663 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
664 return timedWait(phase, unit.toNanos(timeout));
665 }
666
667 /**
668 * Forces this barrier to enter termination state. Counts of
669 * arrived and registered parties are unaffected. If this phaser
670 * has a parent, it too is terminated. This method may be useful
671 * for coordinating recovery after one or more tasks encounter
672 * unexpected exceptions.
673 */
674 public void forceTermination() {
675 for (;;) {
676 long s = getReconciledState();
677 int phase = phaseOf(s);
678 int parties = partiesOf(s);
679 int unarrived = unarrivedOf(s);
680 if (phase < 0 ||
681 casState(s, stateFor(-1, parties, unarrived))) {
682 releaseWaiters(0);
683 releaseWaiters(1);
684 if (parent != null)
685 parent.forceTermination();
686 return;
687 }
688 }
689 }
690
691 /**
692 * Returns the current phase number. The maximum phase number is
693 * {@code Integer.MAX_VALUE}, after which it restarts at
694 * zero. Upon termination, the phase number is negative.
695 *
696 * @return the phase number, or a negative value if terminated
697 */
698 public final int getPhase() {
699 return phaseOf(getReconciledState());
700 }
701
702 /**
703 * Returns the number of parties registered at this barrier.
704 *
705 * @return the number of parties
706 */
707 public int getRegisteredParties() {
708 return partiesOf(state);
709 }
710
711 /**
712 * Returns the number of registered parties that have arrived at
713 * the current phase of this barrier.
714 *
715 * @return the number of arrived parties
716 */
717 public int getArrivedParties() {
718 return arrivedOf(state);
719 }
720
721 /**
722 * Returns the number of registered parties that have not yet
723 * arrived at the current phase of this barrier.
724 *
725 * @return the number of unarrived parties
726 */
727 public int getUnarrivedParties() {
728 return unarrivedOf(state);
729 }
730
731 /**
732 * Returns the parent of this phaser, or {@code null} if none.
733 *
734 * @return the parent of this phaser, or {@code null} if none
735 */
736 public Phaser getParent() {
737 return parent;
738 }
739
740 /**
741 * Returns the root ancestor of this phaser, which is the same as
742 * this phaser if it has no parent.
743 *
744 * @return the root ancestor of this phaser
745 */
746 public Phaser getRoot() {
747 return root;
748 }
749
750 /**
751 * Returns {@code true} if this barrier has been terminated.
752 *
753 * @return {@code true} if this barrier has been terminated
754 */
755 public boolean isTerminated() {
756 return getPhase() < 0;
757 }
758
759 /**
760 * Overridable method to perform an action upon impending phase
761 * advance, and to control termination. This method is invoked
762 * upon arrival of the party tripping the barrier (when all other
763 * waiting parties are dormant). If this method returns {@code
764 * true}, then, rather than advance the phase number, this barrier
765 * will be set to a final termination state, and subsequent calls
766 * to {@link #isTerminated} will return true. Any (unchecked)
767 * Exception or Error thrown by an invocation of this method is
768 * propagated to the party attempting to trip the barrier, in
769 * which case no advance occurs.
770 *
771 * <p>The arguments to this method provide the state of the phaser
772 * prevailing for the current transition. (When called from within
773 * an implementation of {@code onAdvance} the values returned by
774 * methods such as {@code getPhase} may or may not reliably
775 * indicate the state to which this transition applies.)
776 *
777 * <p>The default version returns {@code true} when the number of
778 * registered parties is zero. Normally, overrides that arrange
779 * termination for other reasons should also preserve this
780 * property.
781 *
782 * <p>You may override this method to perform an action with side
783 * effects visible to participating tasks, but it is only sensible
784 * to do so in designs where all parties register before any
785 * arrive, and all {@link #awaitAdvance} at each phase.
786 * Otherwise, you cannot ensure lack of interference from other
787 * parties during the invocation of this method. Additionally,
788 * method {@code onAdvance} may be invoked more than once per
789 * transition if registrations are intermixed with arrivals.
790 *
791 * @param phase the phase number on entering the barrier
792 * @param registeredParties the current number of registered parties
793 * @return {@code true} if this barrier should terminate
794 */
795 protected boolean onAdvance(int phase, int registeredParties) {
796 return registeredParties <= 0;
797 }
798
799 /**
800 * Returns a string identifying this phaser, as well as its
801 * state. The state, in brackets, includes the String {@code
802 * "phase = "} followed by the phase number, {@code "parties = "}
803 * followed by the number of registered parties, and {@code
804 * "arrived = "} followed by the number of arrived parties.
805 *
806 * @return a string identifying this barrier, as well as its state
807 */
808 public String toString() {
809 long s = getReconciledState();
810 return super.toString() +
811 "[phase = " + phaseOf(s) +
812 " parties = " + partiesOf(s) +
813 " arrived = " + arrivedOf(s) + "]";
814 }
815
816 // methods for waiting
817
818 /**
819 * Wait nodes for Treiber stack representing wait queue
820 */
821 static final class QNode implements ForkJoinPool.ManagedBlocker {
822 final Phaser phaser;
823 final int phase;
824 final long startTime;
825 final long nanos;
826 final boolean timed;
827 final boolean interruptible;
828 volatile boolean wasInterrupted = false;
829 volatile Thread thread; // nulled to cancel wait
830 QNode next;
831
832 QNode(Phaser phaser, int phase, boolean interruptible,
833 boolean timed, long startTime, long nanos) {
834 this.phaser = phaser;
835 this.phase = phase;
836 this.timed = timed;
837 this.interruptible = interruptible;
838 this.startTime = startTime;
839 this.nanos = nanos;
840 thread = Thread.currentThread();
841 }
842
843 public boolean isReleasable() {
844 return (thread == null ||
845 phaser.getPhase() != phase ||
846 (interruptible && wasInterrupted) ||
847 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
848 }
849
850 public boolean block() {
851 if (Thread.interrupted()) {
852 wasInterrupted = true;
853 if (interruptible)
854 return true;
855 }
856 if (!timed)
857 LockSupport.park(this);
858 else {
859 long waitTime = nanos - (System.nanoTime() - startTime);
860 if (waitTime <= 0)
861 return true;
862 LockSupport.parkNanos(this, waitTime);
863 }
864 return isReleasable();
865 }
866
867 void signal() {
868 Thread t = thread;
869 if (t != null) {
870 thread = null;
871 LockSupport.unpark(t);
872 }
873 }
874
875 boolean doWait() {
876 if (thread != null) {
877 try {
878 ForkJoinPool.managedBlock(this);
879 } catch (InterruptedException ie) {
880 wasInterrupted = true; // can't currently happen
881 }
882 }
883 return wasInterrupted;
884 }
885 }
886
887 /**
888 * Removes and signals waiting threads from wait queue.
889 */
890 private void releaseWaiters(int phase) {
891 AtomicReference<QNode> head = queueFor(phase);
892 QNode q;
893 while ((q = head.get()) != null) {
894 if (head.compareAndSet(q, q.next))
895 q.signal();
896 }
897 }
898
899 /**
900 * Tries to enqueue given node in the appropriate wait queue.
901 *
902 * @return true if successful
903 */
904 private boolean tryEnqueue(QNode node) {
905 AtomicReference<QNode> head = queueFor(node.phase);
906 return head.compareAndSet(node.next = head.get(), node);
907 }
908
909 /**
910 * Enqueues node and waits unless aborted or signalled.
911 *
912 * @return current phase
913 */
914 private int untimedWait(int phase) {
915 QNode node = null;
916 boolean queued = false;
917 boolean interrupted = false;
918 int p;
919 while ((p = getPhase()) == phase) {
920 if (Thread.interrupted())
921 interrupted = true;
922 else if (node == null)
923 node = new QNode(this, phase, false, false, 0, 0);
924 else if (!queued)
925 queued = tryEnqueue(node);
926 else if (node.doWait())
927 interrupted = true;
928 }
929 if (node != null)
930 node.thread = null;
931 releaseWaiters(phase);
932 if (interrupted)
933 Thread.currentThread().interrupt();
934 return p;
935 }
936
937 /**
938 * Interruptible version
939 * @return current phase
940 */
941 private int interruptibleWait(int phase) throws InterruptedException {
942 QNode node = null;
943 boolean queued = false;
944 boolean interrupted = false;
945 int p;
946 while ((p = getPhase()) == phase && !interrupted) {
947 if (Thread.interrupted())
948 interrupted = true;
949 else if (node == null)
950 node = new QNode(this, phase, true, false, 0, 0);
951 else if (!queued)
952 queued = tryEnqueue(node);
953 else if (node.doWait())
954 interrupted = true;
955 }
956 if (node != null)
957 node.thread = null;
958 if (p != phase || (p = getPhase()) != phase)
959 releaseWaiters(phase);
960 if (interrupted)
961 throw new InterruptedException();
962 return p;
963 }
964
965 /**
966 * Timeout version.
967 * @return current phase
968 */
969 private int timedWait(int phase, long nanos)
970 throws InterruptedException, TimeoutException {
971 long startTime = System.nanoTime();
972 QNode node = null;
973 boolean queued = false;
974 boolean interrupted = false;
975 int p;
976 while ((p = getPhase()) == phase && !interrupted) {
977 if (Thread.interrupted())
978 interrupted = true;
979 else if (nanos - (System.nanoTime() - startTime) <= 0)
980 break;
981 else if (node == null)
982 node = new QNode(this, phase, true, true, startTime, nanos);
983 else if (!queued)
984 queued = tryEnqueue(node);
985 else if (node.doWait())
986 interrupted = true;
987 }
988 if (node != null)
989 node.thread = null;
990 if (p != phase || (p = getPhase()) != phase)
991 releaseWaiters(phase);
992 if (interrupted)
993 throw new InterruptedException();
994 if (p == phase)
995 throw new TimeoutException();
996 return p;
997 }
998
999 // Unsafe mechanics
1000
1001 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1002 private static final long stateOffset =
1003 objectFieldOffset("state", Phaser.class);
1004
1005 private final boolean casState(long cmp, long val) {
1006 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
1007 }
1008
1009 private static long objectFieldOffset(String field, Class<?> klazz) {
1010 try {
1011 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1012 } catch (NoSuchFieldException e) {
1013 // Convert Exception to corresponding Error
1014 NoSuchFieldError error = new NoSuchFieldError(field);
1015 error.initCause(e);
1016 throw error;
1017 }
1018 }
1019
1020 /**
1021 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1022 * Replace with a simple call to Unsafe.getUnsafe when integrating
1023 * into a jdk.
1024 *
1025 * @return a sun.misc.Unsafe
1026 */
1027 private static sun.misc.Unsafe getUnsafe() {
1028 try {
1029 return sun.misc.Unsafe.getUnsafe();
1030 } catch (SecurityException se) {
1031 try {
1032 return java.security.AccessController.doPrivileged
1033 (new java.security
1034 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1035 public sun.misc.Unsafe run() throws Exception {
1036 java.lang.reflect.Field f = sun.misc
1037 .Unsafe.class.getDeclaredField("theUnsafe");
1038 f.setAccessible(true);
1039 return (sun.misc.Unsafe) f.get(null);
1040 }});
1041 } catch (java.security.PrivilegedActionException e) {
1042 throw new RuntimeException("Could not initialize intrinsics",
1043 e.getCause());
1044 }
1045 }
1046 }
1047 }