ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.49
Committed: Fri Nov 5 23:01:47 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.48: +98 -126 lines
Log Message:
Suppress register on advance; share root queues; misc touchups

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.AtomicReference;
11 import java.util.concurrent.locks.LockSupport;
12
13 /**
14 * A reusable synchronization barrier, similar in functionality to
15 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
16 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
17 * but supporting more flexible usage.
18 *
19 * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 * number of parties <em>registered</em> to synchronize on a phaser
21 * may vary over time. Tasks may be registered at any time (using
22 * methods {@link #register}, {@link #bulkRegister}, or forms of
23 * constructors establishing initial numbers of parties), and
24 * optionally deregistered upon any arrival (using {@link
25 * #arriveAndDeregister}). As is the case with most basic
26 * synchronization constructs, registration and deregistration affect
27 * only internal counts; they do not establish any further internal
28 * bookkeeping, so tasks cannot query whether they are registered.
29 * (However, you can introduce such bookkeeping by subclassing this
30 * class.)
31 *
32 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 * Phaser} may be repeatedly awaited. Method {@link
34 * #arriveAndAwaitAdvance} has effect analogous to {@link
35 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
36 * generation of a {@code Phaser} has an associated phase number. The
37 * phase number starts at zero, and advances when all parties arrive
38 * at the barrier, wrapping around to zero after reaching {@code
39 * Integer.MAX_VALUE}. The use of phase numbers enables independent
40 * control of actions upon arrival at a barrier and upon awaiting
41 * others, via two kinds of methods that may be invoked by any
42 * registered party:
43 *
44 * <ul>
45 *
46 * <li> <b>Arrival.</b> Methods {@link #arrive} and
47 * {@link #arriveAndDeregister} record arrival at a
48 * barrier. These methods do not block, but return an associated
49 * <em>arrival phase number</em>; that is, the phase number of
50 * the barrier to which the arrival applied. When the final
51 * party for a given phase arrives, an optional barrier action
52 * is performed and the phase advances. Barrier actions,
53 * performed by the party triggering a phase advance, are
54 * arranged by overriding method {@link #onAdvance(int, int)},
55 * which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier
57 * action to a {@code CyclicBarrier}.
58 *
59 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 * argument indicating an arrival phase number, and returns when
61 * the barrier advances to (or is already at) a different phase.
62 * Unlike similar constructions using {@code CyclicBarrier},
63 * method {@code awaitAdvance} continues to wait even if the
64 * waiting thread is interrupted. Interruptible and timeout
65 * versions are also available, but exceptions encountered while
66 * tasks wait interruptibly or with timeout do not change the
67 * state of the barrier. If necessary, you can perform any
68 * associated recovery within handlers of those exceptions,
69 * often after invoking {@code forceTermination}. Phasers may
70 * also be used by tasks executing in a {@link ForkJoinPool},
71 * which will ensure sufficient parallelism to execute tasks
72 * when others are blocked waiting for a phase to advance.
73 *
74 * </ul>
75 *
76 * <p> <b>Termination.</b> A {@code Phaser} may enter a
77 * <em>termination</em> state in which all synchronization methods
78 * immediately return without updating phaser state or waiting for
79 * advance, and indicating (via a negative phase value) that execution
80 * is complete. Termination is triggered when an invocation of {@code
81 * onAdvance} returns {@code true}. As illustrated below, when
82 * phasers control actions with a fixed number of iterations, it is
83 * often convenient to override this method to cause termination when
84 * the current phase number reaches a threshold. Method {@link
85 * #forceTermination} is also available to abruptly release waiting
86 * threads and allow them to terminate.
87 *
88 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
89 * in tree structures) to reduce contention. Phasers with large
90 * numbers of parties that would otherwise experience heavy
91 * synchronization contention costs may instead be set up so that
92 * groups of sub-phasers share a common parent. This may greatly
93 * increase throughput even though it incurs greater per-operation
94 * overhead.
95 *
96 * <p><b>Monitoring.</b> While synchronization methods may be invoked
97 * only by registered parties, the current state of a phaser may be
98 * monitored by any caller. At any given moment there are {@link
99 * #getRegisteredParties} parties in total, of which {@link
100 * #getArrivedParties} have arrived at the current phase ({@link
101 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
102 * parties arrive, the phase advances. The values returned by these
103 * methods may reflect transient states and so are not in general
104 * useful for synchronization control. Method {@link #toString}
105 * returns snapshots of these state queries in a form convenient for
106 * informal monitoring.
107 *
108 * <p><b>Sample usages:</b>
109 *
110 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
111 * to control a one-shot action serving a variable number of parties.
112 * The typical idiom is for the method setting this up to first
113 * register, then start the actions, then deregister, as in:
114 *
115 * <pre> {@code
116 * void runTasks(List<Runnable> tasks) {
117 * final Phaser phaser = new Phaser(1); // "1" to register self
118 * // create and start threads
119 * for (Runnable task : tasks) {
120 * phaser.register();
121 * new Thread() {
122 * public void run() {
123 * phaser.arriveAndAwaitAdvance(); // await all creation
124 * task.run();
125 * }
126 * }.start();
127 * }
128 *
129 * // allow threads to start and deregister self
130 * phaser.arriveAndDeregister();
131 * }}</pre>
132 *
133 * <p>One way to cause a set of threads to repeatedly perform actions
134 * for a given number of iterations is to override {@code onAdvance}:
135 *
136 * <pre> {@code
137 * void startTasks(List<Runnable> tasks, final int iterations) {
138 * final Phaser phaser = new Phaser() {
139 * protected boolean onAdvance(int phase, int registeredParties) {
140 * return phase >= iterations || registeredParties == 0;
141 * }
142 * };
143 * phaser.register();
144 * for (final Runnable task : tasks) {
145 * phaser.register();
146 * new Thread() {
147 * public void run() {
148 * do {
149 * task.run();
150 * phaser.arriveAndAwaitAdvance();
151 * } while (!phaser.isTerminated());
152 * }
153 * }.start();
154 * }
155 * phaser.arriveAndDeregister(); // deregister self, don't wait
156 * }}</pre>
157 *
158 * If the main task must later await termination, it
159 * may re-register and then execute a similar loop:
160 * <pre> {@code
161 * // ...
162 * phaser.register();
163 * while (!phaser.isTerminated())
164 * phaser.arriveAndAwaitAdvance();}</pre>
165 *
166 * <p>Related constructions may be used to await particular phase numbers
167 * in contexts where you are sure that the phase will never wrap around
168 * {@code Integer.MAX_VALUE}. For example:
169 *
170 * <pre> {@code
171 * void awaitPhase(Phaser phaser, int phase) {
172 * int p = phaser.register(); // assumes caller not already registered
173 * while (p < phase) {
174 * if (phaser.isTerminated())
175 * // ... deal with unexpected termination
176 * else
177 * p = phaser.arriveAndAwaitAdvance();
178 * }
179 * phaser.arriveAndDeregister();
180 * }}</pre>
181 *
182 *
183 * <p>To create a set of tasks using a tree of phasers,
184 * you could use code of the following form, assuming a
185 * Task class with a constructor accepting a phaser that
186 * it registers with upon construction:
187 *
188 * <pre> {@code
189 * void build(Task[] actions, int lo, int hi, Phaser ph) {
190 * if (hi - lo > TASKS_PER_PHASER) {
191 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
192 * int j = Math.min(i + TASKS_PER_PHASER, hi);
193 * build(actions, i, j, new Phaser(ph));
194 * }
195 * } else {
196 * for (int i = lo; i < hi; ++i)
197 * actions[i] = new Task(ph);
198 * // assumes new Task(ph) performs ph.register()
199 * }
200 * }
201 * // .. initially called, for n tasks via
202 * build(new Task[n], 0, n, new Phaser());}</pre>
203 *
204 * The best value of {@code TASKS_PER_PHASER} depends mainly on
205 * expected barrier synchronization rates. A value as low as four may
206 * be appropriate for extremely small per-barrier task bodies (thus
207 * high rates), or up to hundreds for extremely large ones.
208 *
209 * <p><b>Implementation notes</b>: This implementation restricts the
210 * maximum number of parties to 65535. Attempts to register additional
211 * parties result in {@code IllegalStateException}. However, you can and
212 * should create tiered phasers to accommodate arbitrarily large sets
213 * of participants.
214 *
215 * @since 1.7
216 * @author Doug Lea
217 */
218 public class Phaser {
219 /*
220 * This class implements an extension of X10 "clocks". Thanks to
221 * Vijay Saraswat for the idea, and to Vivek Sarkar for
222 * enhancements to extend functionality.
223 */
224
225 /**
226 * Barrier state representation. Conceptually, a barrier contains
227 * four values:
228 *
229 * * parties -- the number of parties to wait (16 bits)
230 * * unarrived -- the number of parties yet to hit barrier (16 bits)
231 * * phase -- the generation of the barrier (31 bits)
232 * * terminated -- set if barrier is terminated (1 bit)
233 *
234 * However, to efficiently maintain atomicity, these values are
235 * packed into a single (atomic) long. Termination uses the sign
236 * bit of 32 bit representation of phase, so phase is set to -1 on
237 * termination. Good performance relies on keeping state decoding
238 * and encoding simple, and keeping race windows short.
239 *
240 * Note: there are some cheats in arrive() that rely on unarrived
241 * count being lowest 16 bits.
242 */
243 private volatile long state;
244
245 private static final int ushortMask = 0xffff;
246 private static final int phaseMask = 0x7fffffff;
247
248 private static int unarrivedOf(long s) {
249 return (int) (s & ushortMask);
250 }
251
252 private static int partiesOf(long s) {
253 return ((int) s) >>> 16;
254 }
255
256 private static int phaseOf(long s) {
257 return (int) (s >>> 32);
258 }
259
260 private static int arrivedOf(long s) {
261 return partiesOf(s) - unarrivedOf(s);
262 }
263
264 private static long stateFor(int phase, int parties, int unarrived) {
265 return ((((long) phase) << 32) | (((long) parties) << 16) |
266 (long) unarrived);
267 }
268
269 private static long trippedStateFor(int phase, int parties) {
270 long lp = (long) parties;
271 return (((long) phase) << 32) | (lp << 16) | lp;
272 }
273
274 /**
275 * Returns message string for bad bounds exceptions.
276 */
277 private static String badBounds(int parties, int unarrived) {
278 return ("Attempt to set " + unarrived +
279 " unarrived of " + parties + " parties");
280 }
281
282 /**
283 * The parent of this phaser, or null if none
284 */
285 private final Phaser parent;
286
287 /**
288 * The root of phaser tree. Equals this if not in a tree. Used to
289 * support faster state push-down.
290 */
291 private final Phaser root;
292
293 // Wait queues
294
295 /**
296 * Heads of Treiber stacks for waiting threads. To eliminate
297 * contention when releasing some threads while adding others, we
298 * use two of them, alternating across even and odd phases.
299 * Subphasers share queues with root to speed up releases.
300 */
301 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
302 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
303
304 private AtomicReference<QNode> queueFor(int phase) {
305 Phaser r = root;
306 return ((phase & 1) == 0) ? r.evenQ : r.oddQ;
307 }
308
309 /**
310 * Returns current state, first resolving lagged propagation from
311 * root if necessary.
312 */
313 private long getReconciledState() {
314 return (parent == null) ? state : reconcileState();
315 }
316
317 /**
318 * Recursively resolves state.
319 */
320 private long reconcileState() {
321 Phaser par = parent;
322 long s = state;
323 if (par != null) {
324 int phase, rootPhase;
325 while ((phase = phaseOf(s)) >= 0 &&
326 (rootPhase = phaseOf(root.state)) != phase &&
327 (rootPhase < 0 || unarrivedOf(s) == 0)) {
328 long parentState = par.getReconciledState();
329 int parentPhase = phaseOf(parentState);
330 int parties = partiesOf(s);
331 long next = trippedStateFor(parentPhase, parties);
332 if (phaseOf(root.state) == rootPhase &&
333 parentPhase != phase &&
334 state == s && casState(s, next)) {
335 releaseWaiters(phase);
336 if (parties == 0) // exit if the final deregistration
337 break;
338 }
339 s = state;
340 }
341 }
342 return s;
343 }
344
345 /**
346 * Creates a new phaser without any initially registered parties,
347 * initial phase number 0, and no parent. Any thread using this
348 * phaser will need to first register for it.
349 */
350 public Phaser() {
351 this(null);
352 }
353
354 /**
355 * Creates a new phaser with the given number of registered
356 * unarrived parties, initial phase number 0, and no parent.
357 *
358 * @param parties the number of parties required to trip barrier
359 * @throws IllegalArgumentException if parties less than zero
360 * or greater than the maximum number of parties supported
361 */
362 public Phaser(int parties) {
363 this(null, parties);
364 }
365
366 /**
367 * Creates a new phaser with the given parent, without any
368 * initially registered parties. If parent is non-null this phaser
369 * is registered with the parent and its initial phase number is
370 * the same as that of parent phaser.
371 *
372 * @param parent the parent phaser
373 */
374 public Phaser(Phaser parent) {
375 int phase = 0;
376 this.parent = parent;
377 if (parent != null) {
378 this.root = parent.root;
379 phase = parent.register();
380 }
381 else
382 this.root = this;
383 this.state = trippedStateFor(phase, 0);
384 }
385
386 /**
387 * Creates a new phaser with the given parent and number of
388 * registered unarrived parties. If parent is non-null, this phaser
389 * is registered with the parent and its initial phase number is
390 * the same as that of parent phaser.
391 *
392 * @param parent the parent phaser
393 * @param parties the number of parties required to trip barrier
394 * @throws IllegalArgumentException if parties less than zero
395 * or greater than the maximum number of parties supported
396 */
397 public Phaser(Phaser parent, int parties) {
398 if (parties < 0 || parties > ushortMask)
399 throw new IllegalArgumentException("Illegal number of parties");
400 int phase = 0;
401 this.parent = parent;
402 if (parent != null) {
403 this.root = parent.root;
404 phase = parent.register();
405 }
406 else
407 this.root = this;
408 this.state = trippedStateFor(phase, parties);
409 }
410
411 /**
412 * Adds a new unarrived party to this phaser.
413 * If an ongoing invocation of {@link #onAdvance} is in progress,
414 * this method waits until its completion before registering.
415 *
416 * @return the arrival phase number to which this registration applied
417 * @throws IllegalStateException if attempting to register more
418 * than the maximum supported number of parties
419 */
420 public int register() {
421 return doRegister(1);
422 }
423
424 /**
425 * Adds the given number of new unarrived parties to this phaser.
426 * If an ongoing invocation of {@link #onAdvance} is in progress,
427 * this method waits until its completion before registering.
428 *
429 * @param parties the number of additional parties required to trip barrier
430 * @return the arrival phase number to which this registration applied
431 * @throws IllegalStateException if attempting to register more
432 * than the maximum supported number of parties
433 * @throws IllegalArgumentException if {@code parties < 0}
434 */
435 public int bulkRegister(int parties) {
436 if (parties < 0)
437 throw new IllegalArgumentException();
438 if (parties == 0)
439 return getPhase();
440 return doRegister(parties);
441 }
442
443 /**
444 * Shared code for register, bulkRegister
445 */
446 private int doRegister(int registrations) {
447 Phaser par = parent;
448 long s;
449 int phase;
450 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
451 int p = partiesOf(s);
452 int u = unarrivedOf(s);
453 int unarrived = u + registrations;
454 int parties = p + registrations;
455 if (par == null || phase == phaseOf(root.state)) {
456 if (parties > ushortMask || unarrived > ushortMask)
457 throw new IllegalStateException(badBounds(parties,
458 unarrived));
459 else if (p != 0 && u == 0) // back off if advancing
460 Thread.yield(); // not worth actually blocking
461 else if (casState(s, stateFor(phase, parties, unarrived)))
462 break;
463 }
464 }
465 return phase;
466 }
467
468 /**
469 * Arrives at the barrier, but does not wait for others. (You can
470 * in turn wait for others via {@link #awaitAdvance}). It is an
471 * unenforced usage error for an unregistered party to invoke this
472 * method.
473 *
474 * @return the arrival phase number, or a negative value if terminated
475 * @throws IllegalStateException if not terminated and the number
476 * of unarrived parties would become negative
477 */
478 public int arrive() {
479 Phaser par = parent;
480 long s;
481 int phase;
482 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
483 int parties = partiesOf(s);
484 int unarrived = unarrivedOf(s) - 1;
485 if (parties == 0 || unarrived < 0)
486 throw new IllegalStateException(badBounds(parties,
487 unarrived));
488 else if (unarrived > 0) { // Not the last arrival
489 if (casState(s, s - 1)) // s-1 adds one arrival
490 break;
491 }
492 else if (par == null) { // directly trip
493 if (casState(s, trippedStateFor(onAdvance(phase, parties) ? -1 :
494 ((phase + 1) & phaseMask),
495 parties))) {
496 releaseWaiters(phase);
497 break;
498 }
499 }
500 else if (phaseOf(root.state) == phase && casState(s, s - 1)) {
501 par.arrive(); // cascade to parent
502 reconcileState();
503 break;
504 }
505 }
506 return phase;
507 }
508
509 /**
510 * Arrives at the barrier and deregisters from it without waiting
511 * for others. Deregistration reduces the number of parties
512 * required to trip the barrier in future phases. If this phaser
513 * has a parent, and deregistration causes this phaser to have
514 * zero parties, this phaser also arrives at and is deregistered
515 * from its parent. It is an unenforced usage error for an
516 * unregistered party to invoke this method.
517 *
518 * @return the arrival phase number, or a negative value if terminated
519 * @throws IllegalStateException if not terminated and the number
520 * of registered or unarrived parties would become negative
521 */
522 public int arriveAndDeregister() {
523 // similar to arrive, but too different to merge
524 Phaser par = parent;
525 long s;
526 int phase;
527 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
528 int parties = partiesOf(s) - 1;
529 int unarrived = unarrivedOf(s) - 1;
530 if (parties < 0 || unarrived < 0)
531 throw new IllegalStateException(badBounds(parties,
532 unarrived));
533 else if (unarrived > 0) {
534 if (casState(s, stateFor(phase, parties, unarrived)))
535 break;
536 }
537 else if (par == null) {
538 if (casState(s, trippedStateFor(onAdvance(phase, parties)? -1:
539 (phase + 1) & phaseMask,
540 parties))) {
541 releaseWaiters(phase);
542 break;
543 }
544 }
545 else if (phaseOf(root.state) == phase &&
546 casState(s, stateFor(phase, parties, 0))) {
547 if (parties == 0)
548 par.arriveAndDeregister();
549 else
550 par.arrive();
551 reconcileState();
552 break;
553 }
554 }
555 return phase;
556 }
557
558 /**
559 * Arrives at the barrier and awaits others. Equivalent in effect
560 * to {@code awaitAdvance(arrive())}. If you need to await with
561 * interruption or timeout, you can arrange this with an analogous
562 * construction using one of the other forms of the {@code
563 * awaitAdvance} method. If instead you need to deregister upon
564 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
565 * usage error for an unregistered party to invoke this method.
566 *
567 * @return the arrival phase number, or a negative number if terminated
568 * @throws IllegalStateException if not terminated and the number
569 * of unarrived parties would become negative
570 */
571 public int arriveAndAwaitAdvance() {
572 return awaitAdvance(arrive());
573 }
574
575 /**
576 * Awaits the phase of the barrier to advance from the given phase
577 * value, returning immediately if the current phase of the
578 * barrier is not equal to the given phase value or this barrier
579 * is terminated. It is an unenforced usage error for an
580 * unregistered party to invoke this method.
581 *
582 * @param phase an arrival phase number, or negative value if
583 * terminated; this argument is normally the value returned by a
584 * previous call to {@code arrive} or its variants
585 * @return the next arrival phase number, or a negative value
586 * if terminated or argument is negative
587 */
588 public int awaitAdvance(int phase) {
589 if (phase < 0)
590 return phase;
591 int p = getPhase();
592 if (p != phase)
593 return p;
594 return untimedWait(phase);
595 }
596
597 /**
598 * Awaits the phase of the barrier to advance from the given phase
599 * value, throwing {@code InterruptedException} if interrupted
600 * while waiting, or returning immediately if the current phase of
601 * the barrier is not equal to the given phase value or this
602 * barrier is terminated. It is an unenforced usage error for an
603 * unregistered party to invoke this method.
604 *
605 * @param phase an arrival phase number, or negative value if
606 * terminated; this argument is normally the value returned by a
607 * previous call to {@code arrive} or its variants
608 * @return the next arrival phase number, or a negative value
609 * if terminated or argument is negative
610 * @throws InterruptedException if thread interrupted while waiting
611 */
612 public int awaitAdvanceInterruptibly(int phase)
613 throws InterruptedException {
614 if (phase < 0)
615 return phase;
616 int p = getPhase();
617 if (p != phase)
618 return p;
619 return interruptibleWait(phase);
620 }
621
622 /**
623 * Awaits the phase of the barrier to advance from the given phase
624 * value or the given timeout to elapse, throwing {@code
625 * InterruptedException} if interrupted while waiting, or
626 * returning immediately if the current phase of the barrier is
627 * not equal to the given phase value or this barrier is
628 * terminated. It is an unenforced usage error for an
629 * unregistered party to invoke this method.
630 *
631 * @param phase an arrival phase number, or negative value if
632 * terminated; this argument is normally the value returned by a
633 * previous call to {@code arrive} or its variants
634 * @param timeout how long to wait before giving up, in units of
635 * {@code unit}
636 * @param unit a {@code TimeUnit} determining how to interpret the
637 * {@code timeout} parameter
638 * @return the next arrival phase number, or a negative value
639 * if terminated or argument is negative
640 * @throws InterruptedException if thread interrupted while waiting
641 * @throws TimeoutException if timed out while waiting
642 */
643 public int awaitAdvanceInterruptibly(int phase,
644 long timeout, TimeUnit unit)
645 throws InterruptedException, TimeoutException {
646 long nanos = unit.toNanos(timeout);
647 if (phase < 0)
648 return phase;
649 int p = getPhase();
650 if (p != phase)
651 return p;
652 return timedWait(phase, nanos);
653 }
654
655 /**
656 * Forces this barrier to enter termination state. Counts of
657 * arrived and registered parties are unaffected. If this phaser
658 * has a parent, it too is terminated. This method may be useful
659 * for coordinating recovery after one or more tasks encounter
660 * unexpected exceptions.
661 */
662 public void forceTermination() {
663 Phaser r = root; // force at root then reconcile
664 long s;
665 while (phaseOf(s = r.state) >= 0)
666 r.casState(s, stateFor(-1, partiesOf(s), unarrivedOf(s)));
667 reconcileState();
668 releaseWaiters(0); // ensure wakeups on both queues
669 releaseWaiters(1);
670 }
671
672 /**
673 * Returns the current phase number. The maximum phase number is
674 * {@code Integer.MAX_VALUE}, after which it restarts at
675 * zero. Upon termination, the phase number is negative.
676 *
677 * @return the phase number, or a negative value if terminated
678 */
679 public final int getPhase() {
680 return phaseOf(getReconciledState());
681 }
682
683 /**
684 * Returns the number of parties registered at this barrier.
685 *
686 * @return the number of parties
687 */
688 public int getRegisteredParties() {
689 return partiesOf(getReconciledState());
690 }
691
692 /**
693 * Returns the number of registered parties that have arrived at
694 * the current phase of this barrier.
695 *
696 * @return the number of arrived parties
697 */
698 public int getArrivedParties() {
699 return arrivedOf(getReconciledState());
700 }
701
702 /**
703 * Returns the number of registered parties that have not yet
704 * arrived at the current phase of this barrier.
705 *
706 * @return the number of unarrived parties
707 */
708 public int getUnarrivedParties() {
709 return unarrivedOf(getReconciledState());
710 }
711
712 /**
713 * Returns the parent of this phaser, or {@code null} if none.
714 *
715 * @return the parent of this phaser, or {@code null} if none
716 */
717 public Phaser getParent() {
718 return parent;
719 }
720
721 /**
722 * Returns the root ancestor of this phaser, which is the same as
723 * this phaser if it has no parent.
724 *
725 * @return the root ancestor of this phaser
726 */
727 public Phaser getRoot() {
728 return root;
729 }
730
731 /**
732 * Returns {@code true} if this barrier has been terminated.
733 *
734 * @return {@code true} if this barrier has been terminated
735 */
736 public boolean isTerminated() {
737 return getPhase() < 0;
738 }
739
740 /**
741 * Overridable method to perform an action upon impending phase
742 * advance, and to control termination. This method is invoked
743 * upon arrival of the party tripping the barrier (when all other
744 * waiting parties are dormant). If this method returns {@code
745 * true}, then, rather than advance the phase number, this barrier
746 * will be set to a final termination state, and subsequent calls
747 * to {@link #isTerminated} will return true. Any (unchecked)
748 * Exception or Error thrown by an invocation of this method is
749 * propagated to the party attempting to trip the barrier, in
750 * which case no advance occurs.
751 *
752 * <p>The arguments to this method provide the state of the phaser
753 * prevailing for the current transition. (When called from within
754 * an implementation of {@code onAdvance} the values returned by
755 * methods such as {@code getPhase} may or may not reliably
756 * indicate the state to which this transition applies.)
757 *
758 * <p>The default version returns {@code true} when the number of
759 * registered parties is zero. Normally, overrides that arrange
760 * termination for other reasons should also preserve this
761 * property.
762 *
763 * @param phase the phase number on entering the barrier
764 * @param registeredParties the current number of registered parties
765 * @return {@code true} if this barrier should terminate
766 */
767 protected boolean onAdvance(int phase, int registeredParties) {
768 return registeredParties <= 0;
769 }
770
771 /**
772 * Returns a string identifying this phaser, as well as its
773 * state. The state, in brackets, includes the String {@code
774 * "phase = "} followed by the phase number, {@code "parties = "}
775 * followed by the number of registered parties, and {@code
776 * "arrived = "} followed by the number of arrived parties.
777 *
778 * @return a string identifying this barrier, as well as its state
779 */
780 public String toString() {
781 long s = getReconciledState();
782 return super.toString() +
783 "[phase = " + phaseOf(s) +
784 " parties = " + partiesOf(s) +
785 " arrived = " + arrivedOf(s) + "]";
786 }
787
788 // methods for waiting
789
790 /**
791 * Wait nodes for Treiber stack representing wait queue
792 */
793 static final class QNode implements ForkJoinPool.ManagedBlocker {
794 final Phaser phaser;
795 final int phase;
796 final long startTime;
797 final long nanos;
798 final boolean timed;
799 final boolean interruptible;
800 volatile boolean wasInterrupted = false;
801 volatile Thread thread; // nulled to cancel wait
802 QNode next;
803
804 QNode(Phaser phaser, int phase, boolean interruptible,
805 boolean timed, long startTime, long nanos) {
806 this.phaser = phaser;
807 this.phase = phase;
808 this.timed = timed;
809 this.interruptible = interruptible;
810 this.startTime = startTime;
811 this.nanos = nanos;
812 thread = Thread.currentThread();
813 }
814
815 public boolean isReleasable() {
816 return (thread == null ||
817 phaser.getPhase() != phase ||
818 (interruptible && wasInterrupted) ||
819 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
820 }
821
822 public boolean block() {
823 if (Thread.interrupted()) {
824 wasInterrupted = true;
825 if (interruptible)
826 return true;
827 }
828 if (!timed)
829 LockSupport.park(this);
830 else {
831 long waitTime = nanos - (System.nanoTime() - startTime);
832 if (waitTime <= 0)
833 return true;
834 LockSupport.parkNanos(this, waitTime);
835 }
836 return isReleasable();
837 }
838
839 void signal() {
840 Thread t = thread;
841 if (t != null) {
842 thread = null;
843 LockSupport.unpark(t);
844 }
845 }
846
847 boolean doWait() {
848 if (thread != null) {
849 try {
850 ForkJoinPool.managedBlock(this);
851 } catch (InterruptedException ie) {
852 wasInterrupted = true; // can't currently happen
853 }
854 }
855 return wasInterrupted;
856 }
857 }
858
859 /**
860 * Removes and signals waiting threads from wait queue.
861 */
862 private void releaseWaiters(int phase) {
863 AtomicReference<QNode> head = queueFor(phase);
864 QNode q;
865 while ((q = head.get()) != null) {
866 if (head.compareAndSet(q, q.next))
867 q.signal();
868 }
869 }
870
871 /**
872 * Tries to enqueue given node in the appropriate wait queue.
873 *
874 * @return true if successful
875 */
876 private boolean tryEnqueue(QNode node) {
877 AtomicReference<QNode> head = queueFor(node.phase);
878 return head.compareAndSet(node.next = head.get(), node);
879 }
880
881 /**
882 * Enqueues node and waits unless aborted or signalled.
883 *
884 * @return current phase
885 */
886 private int untimedWait(int phase) {
887 QNode node = null;
888 boolean queued = false;
889 boolean interrupted = false;
890 int p;
891 while ((p = getPhase()) == phase) {
892 if (Thread.interrupted())
893 interrupted = true;
894 else if (node == null)
895 node = new QNode(this, phase, false, false, 0, 0);
896 else if (!queued)
897 queued = tryEnqueue(node);
898 else if (node.doWait())
899 interrupted = true;
900 }
901 if (node != null)
902 node.thread = null;
903 releaseWaiters(phase);
904 if (interrupted)
905 Thread.currentThread().interrupt();
906 return p;
907 }
908
909 /**
910 * Interruptible version
911 * @return current phase
912 */
913 private int interruptibleWait(int phase) throws InterruptedException {
914 QNode node = null;
915 boolean queued = false;
916 boolean interrupted = false;
917 int p;
918 while ((p = getPhase()) == phase && !interrupted) {
919 if (Thread.interrupted())
920 interrupted = true;
921 else if (node == null)
922 node = new QNode(this, phase, true, false, 0, 0);
923 else if (!queued)
924 queued = tryEnqueue(node);
925 else if (node.doWait())
926 interrupted = true;
927 }
928 if (node != null)
929 node.thread = null;
930 if (p != phase || (p = getPhase()) != phase)
931 releaseWaiters(phase);
932 if (interrupted)
933 throw new InterruptedException();
934 return p;
935 }
936
937 /**
938 * Timeout version.
939 * @return current phase
940 */
941 private int timedWait(int phase, long nanos)
942 throws InterruptedException, TimeoutException {
943 long startTime = System.nanoTime();
944 QNode node = null;
945 boolean queued = false;
946 boolean interrupted = false;
947 int p;
948 while ((p = getPhase()) == phase && !interrupted) {
949 if (Thread.interrupted())
950 interrupted = true;
951 else if (nanos - (System.nanoTime() - startTime) <= 0)
952 break;
953 else if (node == null)
954 node = new QNode(this, phase, true, true, startTime, nanos);
955 else if (!queued)
956 queued = tryEnqueue(node);
957 else if (node.doWait())
958 interrupted = true;
959 }
960 if (node != null)
961 node.thread = null;
962 if (p != phase || (p = getPhase()) != phase)
963 releaseWaiters(phase);
964 if (interrupted)
965 throw new InterruptedException();
966 if (p == phase)
967 throw new TimeoutException();
968 return p;
969 }
970
971 // Unsafe mechanics
972
973 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
974 private static final long stateOffset =
975 objectFieldOffset("state", Phaser.class);
976
977 private final boolean casState(long cmp, long val) {
978 return UNSAFE.compareAndSwapLong(this, stateOffset, cmp, val);
979 }
980
981 private static long objectFieldOffset(String field, Class<?> klazz) {
982 try {
983 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
984 } catch (NoSuchFieldException e) {
985 // Convert Exception to corresponding Error
986 NoSuchFieldError error = new NoSuchFieldError(field);
987 error.initCause(e);
988 throw error;
989 }
990 }
991
992 /**
993 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
994 * Replace with a simple call to Unsafe.getUnsafe when integrating
995 * into a jdk.
996 *
997 * @return a sun.misc.Unsafe
998 */
999 private static sun.misc.Unsafe getUnsafe() {
1000 try {
1001 return sun.misc.Unsafe.getUnsafe();
1002 } catch (SecurityException se) {
1003 try {
1004 return java.security.AccessController.doPrivileged
1005 (new java.security
1006 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1007 public sun.misc.Unsafe run() throws Exception {
1008 java.lang.reflect.Field f = sun.misc
1009 .Unsafe.class.getDeclaredField("theUnsafe");
1010 f.setAccessible(true);
1011 return (sun.misc.Unsafe) f.get(null);
1012 }});
1013 } catch (java.security.PrivilegedActionException e) {
1014 throw new RuntimeException("Could not initialize intrinsics",
1015 e.getCause());
1016 }
1017 }
1018 }
1019 }