ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.50
Committed: Sat Nov 6 16:12:10 2010 UTC (13 years, 6 months ago) by dl
Branch: MAIN
Changes since 1.49: +95 -77 lines
Log Message:
Performance (and other) improvements

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.AtomicReference;
11 import java.util.concurrent.locks.LockSupport;
12
13 /**
14 * A reusable synchronization barrier, similar in functionality to
15 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
16 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
17 * but supporting more flexible usage.
18 *
19 * <p> <b>Registration.</b> Unlike the case for other barriers, the
20 * number of parties <em>registered</em> to synchronize on a phaser
21 * may vary over time. Tasks may be registered at any time (using
22 * methods {@link #register}, {@link #bulkRegister}, or forms of
23 * constructors establishing initial numbers of parties), and
24 * optionally deregistered upon any arrival (using {@link
25 * #arriveAndDeregister}). As is the case with most basic
26 * synchronization constructs, registration and deregistration affect
27 * only internal counts; they do not establish any further internal
28 * bookkeeping, so tasks cannot query whether they are registered.
29 * (However, you can introduce such bookkeeping by subclassing this
30 * class.)
31 *
32 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
33 * Phaser} may be repeatedly awaited. Method {@link
34 * #arriveAndAwaitAdvance} has effect analogous to {@link
35 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
36 * generation of a {@code Phaser} has an associated phase number. The
37 * phase number starts at zero, and advances when all parties arrive
38 * at the barrier, wrapping around to zero after reaching {@code
39 * Integer.MAX_VALUE}. The use of phase numbers enables independent
40 * control of actions upon arrival at a barrier and upon awaiting
41 * others, via two kinds of methods that may be invoked by any
42 * registered party:
43 *
44 * <ul>
45 *
46 * <li> <b>Arrival.</b> Methods {@link #arrive} and
47 * {@link #arriveAndDeregister} record arrival at a
48 * barrier. These methods do not block, but return an associated
49 * <em>arrival phase number</em>; that is, the phase number of
50 * the barrier to which the arrival applied. When the final
51 * party for a given phase arrives, an optional barrier action
52 * is performed and the phase advances. Barrier actions,
53 * performed by the party triggering a phase advance, are
54 * arranged by overriding method {@link #onAdvance(int, int)},
55 * which also controls termination. Overriding this method is
56 * similar to, but more flexible than, providing a barrier
57 * action to a {@code CyclicBarrier}.
58 *
59 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
60 * argument indicating an arrival phase number, and returns when
61 * the barrier advances to (or is already at) a different phase.
62 * Unlike similar constructions using {@code CyclicBarrier},
63 * method {@code awaitAdvance} continues to wait even if the
64 * waiting thread is interrupted. Interruptible and timeout
65 * versions are also available, but exceptions encountered while
66 * tasks wait interruptibly or with timeout do not change the
67 * state of the barrier. If necessary, you can perform any
68 * associated recovery within handlers of those exceptions,
69 * often after invoking {@code forceTermination}. Phasers may
70 * also be used by tasks executing in a {@link ForkJoinPool},
71 * which will ensure sufficient parallelism to execute tasks
72 * when others are blocked waiting for a phase to advance.
73 *
74 * </ul>
75 *
76 * <p> <b>Termination.</b> A {@code Phaser} may enter a
77 * <em>termination</em> state in which all synchronization methods
78 * immediately return without updating phaser state or waiting for
79 * advance, and indicating (via a negative phase value) that execution
80 * is complete. Termination is triggered when an invocation of {@code
81 * onAdvance} returns {@code true}. As illustrated below, when
82 * phasers control actions with a fixed number of iterations, it is
83 * often convenient to override this method to cause termination when
84 * the current phase number reaches a threshold. Method {@link
85 * #forceTermination} is also available to abruptly release waiting
86 * threads and allow them to terminate.
87 *
88 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
89 * in tree structures) to reduce contention. Phasers with large
90 * numbers of parties that would otherwise experience heavy
91 * synchronization contention costs may instead be set up so that
92 * groups of sub-phasers share a common parent. This may greatly
93 * increase throughput even though it incurs greater per-operation
94 * overhead.
95 *
96 * <p><b>Monitoring.</b> While synchronization methods may be invoked
97 * only by registered parties, the current state of a phaser may be
98 * monitored by any caller. At any given moment there are {@link
99 * #getRegisteredParties} parties in total, of which {@link
100 * #getArrivedParties} have arrived at the current phase ({@link
101 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
102 * parties arrive, the phase advances. The values returned by these
103 * methods may reflect transient states and so are not in general
104 * useful for synchronization control. Method {@link #toString}
105 * returns snapshots of these state queries in a form convenient for
106 * informal monitoring.
107 *
108 * <p><b>Sample usages:</b>
109 *
110 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
111 * to control a one-shot action serving a variable number of parties.
112 * The typical idiom is for the method setting this up to first
113 * register, then start the actions, then deregister, as in:
114 *
115 * <pre> {@code
116 * void runTasks(List<Runnable> tasks) {
117 * final Phaser phaser = new Phaser(1); // "1" to register self
118 * // create and start threads
119 * for (Runnable task : tasks) {
120 * phaser.register();
121 * new Thread() {
122 * public void run() {
123 * phaser.arriveAndAwaitAdvance(); // await all creation
124 * task.run();
125 * }
126 * }.start();
127 * }
128 *
129 * // allow threads to start and deregister self
130 * phaser.arriveAndDeregister();
131 * }}</pre>
132 *
133 * <p>One way to cause a set of threads to repeatedly perform actions
134 * for a given number of iterations is to override {@code onAdvance}:
135 *
136 * <pre> {@code
137 * void startTasks(List<Runnable> tasks, final int iterations) {
138 * final Phaser phaser = new Phaser() {
139 * protected boolean onAdvance(int phase, int registeredParties) {
140 * return phase >= iterations || registeredParties == 0;
141 * }
142 * };
143 * phaser.register();
144 * for (final Runnable task : tasks) {
145 * phaser.register();
146 * new Thread() {
147 * public void run() {
148 * do {
149 * task.run();
150 * phaser.arriveAndAwaitAdvance();
151 * } while (!phaser.isTerminated());
152 * }
153 * }.start();
154 * }
155 * phaser.arriveAndDeregister(); // deregister self, don't wait
156 * }}</pre>
157 *
158 * If the main task must later await termination, it
159 * may re-register and then execute a similar loop:
160 * <pre> {@code
161 * // ...
162 * phaser.register();
163 * while (!phaser.isTerminated())
164 * phaser.arriveAndAwaitAdvance();}</pre>
165 *
166 * <p>Related constructions may be used to await particular phase numbers
167 * in contexts where you are sure that the phase will never wrap around
168 * {@code Integer.MAX_VALUE}. For example:
169 *
170 * <pre> {@code
171 * void awaitPhase(Phaser phaser, int phase) {
172 * int p = phaser.register(); // assumes caller not already registered
173 * while (p < phase) {
174 * if (phaser.isTerminated())
175 * // ... deal with unexpected termination
176 * else
177 * p = phaser.arriveAndAwaitAdvance();
178 * }
179 * phaser.arriveAndDeregister();
180 * }}</pre>
181 *
182 *
183 * <p>To create a set of tasks using a tree of phasers,
184 * you could use code of the following form, assuming a
185 * Task class with a constructor accepting a phaser that
186 * it registers with upon construction:
187 *
188 * <pre> {@code
189 * void build(Task[] actions, int lo, int hi, Phaser ph) {
190 * if (hi - lo > TASKS_PER_PHASER) {
191 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
192 * int j = Math.min(i + TASKS_PER_PHASER, hi);
193 * build(actions, i, j, new Phaser(ph));
194 * }
195 * } else {
196 * for (int i = lo; i < hi; ++i)
197 * actions[i] = new Task(ph);
198 * // assumes new Task(ph) performs ph.register()
199 * }
200 * }
201 * // .. initially called, for n tasks via
202 * build(new Task[n], 0, n, new Phaser());}</pre>
203 *
204 * The best value of {@code TASKS_PER_PHASER} depends mainly on
205 * expected barrier synchronization rates. A value as low as four may
206 * be appropriate for extremely small per-barrier task bodies (thus
207 * high rates), or up to hundreds for extremely large ones.
208 *
209 * <p><b>Implementation notes</b>: This implementation restricts the
210 * maximum number of parties to 65535. Attempts to register additional
211 * parties result in {@code IllegalStateException}. However, you can and
212 * should create tiered phasers to accommodate arbitrarily large sets
213 * of participants.
214 *
215 * @since 1.7
216 * @author Doug Lea
217 */
218 public class Phaser {
219 /*
220 * This class implements an extension of X10 "clocks". Thanks to
221 * Vijay Saraswat for the idea, and to Vivek Sarkar for
222 * enhancements to extend functionality.
223 */
224
225 /**
226 * Barrier state representation. Conceptually, a barrier contains
227 * four values:
228 *
229 * * parties -- the number of parties to wait (16 bits)
230 * * unarrived -- the number of parties yet to hit barrier (16 bits)
231 * * phase -- the generation of the barrier (31 bits)
232 * * terminated -- set if barrier is terminated (1 bit)
233 *
234 * However, to efficiently maintain atomicity, these values are
235 * packed into a single (atomic) long. Termination uses the sign
236 * bit of 32 bit representation of phase, so phase is set to -1 on
237 * termination. Good performance relies on keeping state decoding
238 * and encoding simple, and keeping race windows short.
239 *
240 * Note: there are some cheats in arrive() that rely on unarrived
241 * count being lowest 16 bits.
242 */
243 private volatile long state;
244
245 private static final int ushortMask = 0xffff;
246 private static final int phaseMask = 0x7fffffff;
247
248 private static int unarrivedOf(long s) {
249 return (int) (s & ushortMask);
250 }
251
252 private static int partiesOf(long s) {
253 return ((int) s) >>> 16;
254 }
255
256 private static int phaseOf(long s) {
257 return (int) (s >>> 32);
258 }
259
260 private static int arrivedOf(long s) {
261 return partiesOf(s) - unarrivedOf(s);
262 }
263
264 private static long stateFor(int phase, int parties, int unarrived) {
265 return ((((long) phase) << 32) | (((long) parties) << 16) |
266 (long) unarrived);
267 }
268
269 private static long trippedStateFor(int phase, int parties) {
270 long lp = (long) parties;
271 return (((long) phase) << 32) | (lp << 16) | lp;
272 }
273
274 /**
275 * Returns message string for bad bounds exceptions.
276 */
277 private static String badBounds(int parties, int unarrived) {
278 return ("Attempt to set " + unarrived +
279 " unarrived of " + parties + " parties");
280 }
281
282 /**
283 * The parent of this phaser, or null if none
284 */
285 private final Phaser parent;
286
287 /**
288 * The root of phaser tree. Equals this if not in a tree. Used to
289 * support faster state push-down.
290 */
291 private final Phaser root;
292
293 // Wait queues
294
295 /**
296 * Heads of Treiber stacks for waiting threads. To eliminate
297 * contention when releasing some threads while adding others, we
298 * use two of them, alternating across even and odd phases.
299 * Subphasers share queues with root to speed up releases.
300 */
301 private final AtomicReference<QNode> evenQ;
302 private final AtomicReference<QNode> oddQ;
303
304 private AtomicReference<QNode> queueFor(int phase) {
305 return ((phase & 1) == 0) ? evenQ : oddQ;
306 }
307
308 /**
309 * Returns current state, first resolving lagged propagation from
310 * root if necessary.
311 */
312 private long getReconciledState() {
313 return (parent == null) ? state : reconcileState();
314 }
315
316 /**
317 * Recursively resolves state.
318 */
319 private long reconcileState() {
320 Phaser par = parent;
321 long s = state;
322 if (par != null) {
323 int phase, rootPhase;
324 while ((phase = phaseOf(s)) >= 0 &&
325 (rootPhase = phaseOf(root.state)) != phase &&
326 (rootPhase < 0 || unarrivedOf(s) == 0)) {
327 int parentPhase = phaseOf(par.getReconciledState());
328 if (parentPhase != phase) {
329 long next = trippedStateFor(parentPhase, partiesOf(s));
330 if (state == s)
331 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
332 }
333 s = state;
334 }
335 }
336 return s;
337 }
338
339 /**
340 * Creates a new phaser without any initially registered parties,
341 * initial phase number 0, and no parent. Any thread using this
342 * phaser will need to first register for it.
343 */
344 public Phaser() {
345 this(null, 0);
346 }
347
348 /**
349 * Creates a new phaser with the given number of registered
350 * unarrived parties, initial phase number 0, and no parent.
351 *
352 * @param parties the number of parties required to trip barrier
353 * @throws IllegalArgumentException if parties less than zero
354 * or greater than the maximum number of parties supported
355 */
356 public Phaser(int parties) {
357 this(null, parties);
358 }
359
360 /**
361 * Creates a new phaser with the given parent, without any
362 * initially registered parties. If parent is non-null this phaser
363 * is registered with the parent and its initial phase number is
364 * the same as that of parent phaser.
365 *
366 * @param parent the parent phaser
367 */
368 public Phaser(Phaser parent) {
369 this(parent, 0);
370 }
371
372 /**
373 * Creates a new phaser with the given parent and number of
374 * registered unarrived parties. If parent is non-null, this phaser
375 * is registered with the parent and its initial phase number is
376 * the same as that of parent phaser.
377 *
378 * @param parent the parent phaser
379 * @param parties the number of parties required to trip barrier
380 * @throws IllegalArgumentException if parties less than zero
381 * or greater than the maximum number of parties supported
382 */
383 public Phaser(Phaser parent, int parties) {
384 if (parties < 0 || parties > ushortMask)
385 throw new IllegalArgumentException("Illegal number of parties");
386 int phase;
387 this.parent = parent;
388 if (parent != null) {
389 Phaser r = parent.root;
390 this.root = r;
391 this.evenQ = r.evenQ;
392 this.oddQ = r.oddQ;
393 phase = parent.register();
394 }
395 else {
396 this.root = this;
397 this.evenQ = new AtomicReference<QNode>();
398 this.oddQ = new AtomicReference<QNode>();
399 phase = 0;
400 }
401 this.state = trippedStateFor(phase, parties);
402 }
403
404 /**
405 * Adds a new unarrived party to this phaser.
406 * If an ongoing invocation of {@link #onAdvance} is in progress,
407 * this method may wait until its completion before registering.
408 *
409 * @return the arrival phase number to which this registration applied
410 * @throws IllegalStateException if attempting to register more
411 * than the maximum supported number of parties
412 */
413 public int register() {
414 return doRegister(1);
415 }
416
417 /**
418 * Adds the given number of new unarrived parties to this phaser.
419 * If an ongoing invocation of {@link #onAdvance} is in progress,
420 * this method may wait until its completion before registering.
421 *
422 * @param parties the number of additional parties required to trip barrier
423 * @return the arrival phase number to which this registration applied
424 * @throws IllegalStateException if attempting to register more
425 * than the maximum supported number of parties
426 * @throws IllegalArgumentException if {@code parties < 0}
427 */
428 public int bulkRegister(int parties) {
429 if (parties < 0)
430 throw new IllegalArgumentException();
431 if (parties == 0)
432 return getPhase();
433 return doRegister(parties);
434 }
435
436 /**
437 * Shared code for register, bulkRegister
438 */
439 private int doRegister(int registrations) {
440 Phaser par = parent;
441 long s;
442 int phase;
443 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
444 int p = partiesOf(s);
445 int u = unarrivedOf(s);
446 int unarrived = u + registrations;
447 int parties = p + registrations;
448 if (u == 0 && p != 0) // if tripped, wait for advance
449 untimedWait(phase);
450 else if (parties > ushortMask)
451 throw new IllegalStateException(badBounds(parties, unarrived));
452 else if (par == null || phaseOf(root.state) == phase) {
453 long next = stateFor(phase, parties, unarrived);
454 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
455 break;
456 }
457 }
458 return phase;
459 }
460
461 /**
462 * Arrives at the barrier, but does not wait for others. (You can
463 * in turn wait for others via {@link #awaitAdvance}). It is an
464 * unenforced usage error for an unregistered party to invoke this
465 * method.
466 *
467 * @return the arrival phase number, or a negative value if terminated
468 * @throws IllegalStateException if not terminated and the number
469 * of unarrived parties would become negative
470 */
471 public int arrive() {
472 Phaser par = parent;
473 long s;
474 int phase;
475 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
476 int parties = partiesOf(s);
477 int unarrived = unarrivedOf(s) - 1;
478 if (unarrived > 0) { // Not the last arrival
479 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1))
480 break; // s-1 adds one arrival
481 }
482 else if (unarrived < 0)
483 throw new IllegalStateException(badBounds(parties, unarrived));
484 else if (par == null) { // directly trip
485 long next = trippedStateFor(onAdvance(phase, parties) ? -1 :
486 ((phase + 1) & phaseMask),
487 parties);
488 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
489 releaseWaiters(phase);
490 break;
491 }
492 }
493 else if (phaseOf(root.state) == phase &&
494 UNSAFE.compareAndSwapLong(this, stateOffset, s, s - 1)) {
495 par.arrive(); // cascade to parent
496 reconcileState();
497 break;
498 }
499 }
500 return phase;
501 }
502
503 /**
504 * Arrives at the barrier and deregisters from it without waiting
505 * for others. Deregistration reduces the number of parties
506 * required to trip the barrier in future phases. If this phaser
507 * has a parent, and deregistration causes this phaser to have
508 * zero parties, this phaser also arrives at and is deregistered
509 * from its parent. It is an unenforced usage error for an
510 * unregistered party to invoke this method.
511 *
512 * @return the arrival phase number, or a negative value if terminated
513 * @throws IllegalStateException if not terminated and the number
514 * of registered or unarrived parties would become negative
515 */
516 public int arriveAndDeregister() {
517 // similar to arrive, but too different to merge
518 Phaser par = parent;
519 long s;
520 int phase;
521 while ((phase = phaseOf(s = par==null? state:reconcileState())) >= 0) {
522 int parties = partiesOf(s) - 1;
523 int unarrived = unarrivedOf(s) - 1;
524 if (unarrived > 0) {
525 long next = stateFor(phase, parties, unarrived);
526 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
527 break;
528 }
529 else if (unarrived < 0)
530 throw new IllegalStateException(badBounds(parties, unarrived));
531 else if (par == null) {
532 long next = trippedStateFor(onAdvance(phase, parties)? -1:
533 (phase + 1) & phaseMask,
534 parties);
535 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
536 releaseWaiters(phase);
537 break;
538 }
539 }
540 else if (phaseOf(root.state) == phase) {
541 long next = stateFor(phase, parties, 0);
542 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next)) {
543 if (parties == 0)
544 par.arriveAndDeregister();
545 else
546 par.arrive();
547 reconcileState();
548 break;
549 }
550 }
551 }
552 return phase;
553 }
554
555 /**
556 * Arrives at the barrier and awaits others. Equivalent in effect
557 * to {@code awaitAdvance(arrive())}. If you need to await with
558 * interruption or timeout, you can arrange this with an analogous
559 * construction using one of the other forms of the {@code
560 * awaitAdvance} method. If instead you need to deregister upon
561 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
562 * usage error for an unregistered party to invoke this method.
563 *
564 * @return the arrival phase number, or a negative number if terminated
565 * @throws IllegalStateException if not terminated and the number
566 * of unarrived parties would become negative
567 */
568 public int arriveAndAwaitAdvance() {
569 return awaitAdvance(arrive());
570 }
571
572 /**
573 * Awaits the phase of the barrier to advance from the given phase
574 * value, returning immediately if the current phase of the
575 * barrier is not equal to the given phase value or this barrier
576 * is terminated.
577 *
578 * @param phase an arrival phase number, or negative value if
579 * terminated; this argument is normally the value returned by a
580 * previous call to {@code arrive} or its variants
581 * @return the next arrival phase number, or a negative value
582 * if terminated or argument is negative
583 */
584 public int awaitAdvance(int phase) {
585 if (phase < 0)
586 return phase;
587 int p = getPhase();
588 if (p != phase)
589 return p;
590 return untimedWait(phase);
591 }
592
593 /**
594 * Awaits the phase of the barrier to advance from the given phase
595 * value, throwing {@code InterruptedException} if interrupted
596 * while waiting, or returning immediately if the current phase of
597 * the barrier is not equal to the given phase value or this
598 * barrier is terminated.
599 *
600 * @param phase an arrival phase number, or negative value if
601 * terminated; this argument is normally the value returned by a
602 * previous call to {@code arrive} or its variants
603 * @return the next arrival phase number, or a negative value
604 * if terminated or argument is negative
605 * @throws InterruptedException if thread interrupted while waiting
606 */
607 public int awaitAdvanceInterruptibly(int phase)
608 throws InterruptedException {
609 if (phase < 0)
610 return phase;
611 int p = getPhase();
612 if (p != phase)
613 return p;
614 return interruptibleWait(phase);
615 }
616
617 /**
618 * Awaits the phase of the barrier to advance from the given phase
619 * value or the given timeout to elapse, throwing {@code
620 * InterruptedException} if interrupted while waiting, or
621 * returning immediately if the current phase of the barrier is
622 * not equal to the given phase value or this barrier is
623 * terminated.
624 *
625 * @param phase an arrival phase number, or negative value if
626 * terminated; this argument is normally the value returned by a
627 * previous call to {@code arrive} or its variants
628 * @param timeout how long to wait before giving up, in units of
629 * {@code unit}
630 * @param unit a {@code TimeUnit} determining how to interpret the
631 * {@code timeout} parameter
632 * @return the next arrival phase number, or a negative value
633 * if terminated or argument is negative
634 * @throws InterruptedException if thread interrupted while waiting
635 * @throws TimeoutException if timed out while waiting
636 */
637 public int awaitAdvanceInterruptibly(int phase,
638 long timeout, TimeUnit unit)
639 throws InterruptedException, TimeoutException {
640 long nanos = unit.toNanos(timeout);
641 if (phase < 0)
642 return phase;
643 int p = getPhase();
644 if (p != phase)
645 return p;
646 return timedWait(phase, nanos);
647 }
648
649 /**
650 * Forces this barrier to enter termination state. Counts of
651 * arrived and registered parties are unaffected. If this phaser
652 * has a parent, it too is terminated. This method may be useful
653 * for coordinating recovery after one or more tasks encounter
654 * unexpected exceptions.
655 */
656 public void forceTermination() {
657 Phaser r = root; // force at root then reconcile
658 long s;
659 while (phaseOf(s = r.state) >= 0)
660 UNSAFE.compareAndSwapLong(r, stateOffset, s,
661 stateFor(-1, partiesOf(s),
662 unarrivedOf(s)));
663 reconcileState();
664 releaseWaiters(0); // ensure wakeups on both queues
665 releaseWaiters(1);
666 }
667
668 /**
669 * Returns the current phase number. The maximum phase number is
670 * {@code Integer.MAX_VALUE}, after which it restarts at
671 * zero. Upon termination, the phase number is negative.
672 *
673 * @return the phase number, or a negative value if terminated
674 */
675 public final int getPhase() {
676 return phaseOf(getReconciledState());
677 }
678
679 /**
680 * Returns the number of parties registered at this barrier.
681 *
682 * @return the number of parties
683 */
684 public int getRegisteredParties() {
685 return partiesOf(getReconciledState());
686 }
687
688 /**
689 * Returns the number of registered parties that have arrived at
690 * the current phase of this barrier.
691 *
692 * @return the number of arrived parties
693 */
694 public int getArrivedParties() {
695 return arrivedOf(getReconciledState());
696 }
697
698 /**
699 * Returns the number of registered parties that have not yet
700 * arrived at the current phase of this barrier.
701 *
702 * @return the number of unarrived parties
703 */
704 public int getUnarrivedParties() {
705 return unarrivedOf(getReconciledState());
706 }
707
708 /**
709 * Returns the parent of this phaser, or {@code null} if none.
710 *
711 * @return the parent of this phaser, or {@code null} if none
712 */
713 public Phaser getParent() {
714 return parent;
715 }
716
717 /**
718 * Returns the root ancestor of this phaser, which is the same as
719 * this phaser if it has no parent.
720 *
721 * @return the root ancestor of this phaser
722 */
723 public Phaser getRoot() {
724 return root;
725 }
726
727 /**
728 * Returns {@code true} if this barrier has been terminated.
729 *
730 * @return {@code true} if this barrier has been terminated
731 */
732 public boolean isTerminated() {
733 return getPhase() < 0;
734 }
735
736 /**
737 * Overridable method to perform an action upon impending phase
738 * advance, and to control termination. This method is invoked
739 * upon arrival of the party tripping the barrier (when all other
740 * waiting parties are dormant). If this method returns {@code
741 * true}, then, rather than advance the phase number, this barrier
742 * will be set to a final termination state, and subsequent calls
743 * to {@link #isTerminated} will return true. Any (unchecked)
744 * Exception or Error thrown by an invocation of this method is
745 * propagated to the party attempting to trip the barrier, in
746 * which case no advance occurs.
747 *
748 * <p>The arguments to this method provide the state of the phaser
749 * prevailing for the current transition. The results and effects
750 * of invoking phase-related methods (including {@code getPhase}
751 * as well as arrival, registration, and waiting methods) from
752 * within {@code onAdvance} are unspecified and should not be
753 * relied on. Similarly, while it is possible to override this
754 * method to produce side-effects visible to participating tasks,
755 * it is in general safe to do so only in designs in which all
756 * parties register before any arrive, and all {@link
757 * #awaitAdvance} at each phase.
758 *
759 * <p>The default version returns {@code true} when the number of
760 * registered parties is zero. Normally, overrides that arrange
761 * termination for other reasons should also preserve this
762 * property.
763 *
764 * @param phase the phase number on entering the barrier
765 * @param registeredParties the current number of registered parties
766 * @return {@code true} if this barrier should terminate
767 */
768 protected boolean onAdvance(int phase, int registeredParties) {
769 return registeredParties <= 0;
770 }
771
772 /**
773 * Returns a string identifying this phaser, as well as its
774 * state. The state, in brackets, includes the String {@code
775 * "phase = "} followed by the phase number, {@code "parties = "}
776 * followed by the number of registered parties, and {@code
777 * "arrived = "} followed by the number of arrived parties.
778 *
779 * @return a string identifying this barrier, as well as its state
780 */
781 public String toString() {
782 long s = getReconciledState();
783 return super.toString() +
784 "[phase = " + phaseOf(s) +
785 " parties = " + partiesOf(s) +
786 " arrived = " + arrivedOf(s) + "]";
787 }
788
789 // methods for waiting
790
791 /**
792 * Wait nodes for Treiber stack representing wait queue
793 */
794 static final class QNode implements ForkJoinPool.ManagedBlocker {
795 final Phaser phaser;
796 final int phase;
797 final long startTime;
798 final long nanos;
799 final boolean timed;
800 final boolean interruptible;
801 volatile boolean wasInterrupted = false;
802 volatile Thread thread; // nulled to cancel wait
803 QNode next;
804
805 QNode(Phaser phaser, int phase, boolean interruptible,
806 boolean timed, long startTime, long nanos) {
807 this.phaser = phaser;
808 this.phase = phase;
809 this.timed = timed;
810 this.interruptible = interruptible;
811 this.startTime = startTime;
812 this.nanos = nanos;
813 thread = Thread.currentThread();
814 }
815
816 public boolean isReleasable() {
817 return (thread == null ||
818 phaser.getPhase() != phase ||
819 (interruptible && wasInterrupted) ||
820 (timed && (nanos - (System.nanoTime() - startTime)) <= 0));
821 }
822
823 public boolean block() {
824 if (Thread.interrupted()) {
825 wasInterrupted = true;
826 if (interruptible)
827 return true;
828 }
829 if (!timed)
830 LockSupport.park(this);
831 else {
832 long waitTime = nanos - (System.nanoTime() - startTime);
833 if (waitTime <= 0)
834 return true;
835 LockSupport.parkNanos(this, waitTime);
836 }
837 return isReleasable();
838 }
839
840 void signal() {
841 Thread t = thread;
842 if (t != null) {
843 thread = null;
844 LockSupport.unpark(t);
845 }
846 }
847
848 boolean doWait() {
849 if (thread != null) {
850 try {
851 ForkJoinPool.managedBlock(this);
852 } catch (InterruptedException ie) {
853 wasInterrupted = true; // can't currently happen
854 }
855 }
856 return wasInterrupted;
857 }
858 }
859
860 /**
861 * Removes and signals waiting threads from wait queue.
862 */
863 private void releaseWaiters(int phase) {
864 AtomicReference<QNode> head = queueFor(phase);
865 QNode q;
866 while ((q = head.get()) != null) {
867 if (head.compareAndSet(q, q.next))
868 q.signal();
869 }
870 }
871
872 /**
873 * Tries to enqueue given node in the appropriate wait queue.
874 *
875 * @return true if successful
876 */
877 private boolean tryEnqueue(QNode node) {
878 AtomicReference<QNode> head = queueFor(node.phase);
879 return head.compareAndSet(node.next = head.get(), node);
880 }
881
882 /**
883 * The number of times to spin before blocking waiting for advance.
884 */
885 static final int MAX_SPINS =
886 Runtime.getRuntime().availableProcessors() == 1 ? 0 : 1 << 8;
887
888 /**
889 * Enqueues node and waits unless aborted or signalled.
890 *
891 * @return current phase
892 */
893 private int untimedWait(int phase) {
894 QNode node = null;
895 boolean queued = false;
896 boolean interrupted = false;
897 int spins = MAX_SPINS;
898 int p;
899 while ((p = getPhase()) == phase) {
900 if (Thread.interrupted())
901 interrupted = true;
902 else if (spins > 0) {
903 if (--spins == 0)
904 Thread.yield();
905 }
906 else if (node == null)
907 node = new QNode(this, phase, false, false, 0, 0);
908 else if (!queued)
909 queued = tryEnqueue(node);
910 else if (node.doWait())
911 interrupted = true;
912 }
913 if (node != null)
914 node.thread = null;
915 releaseWaiters(phase);
916 if (interrupted)
917 Thread.currentThread().interrupt();
918 return p;
919 }
920
921 /**
922 * Interruptible version
923 * @return current phase
924 */
925 private int interruptibleWait(int phase) throws InterruptedException {
926 QNode node = null;
927 boolean queued = false;
928 boolean interrupted = false;
929 int spins = MAX_SPINS;
930 int p;
931 while ((p = getPhase()) == phase && !interrupted) {
932 if (Thread.interrupted())
933 interrupted = true;
934 else if (spins > 0) {
935 if (--spins == 0)
936 Thread.yield();
937 }
938 else if (node == null)
939 node = new QNode(this, phase, true, false, 0, 0);
940 else if (!queued)
941 queued = tryEnqueue(node);
942 else if (node.doWait())
943 interrupted = true;
944 }
945 if (node != null)
946 node.thread = null;
947 if (p != phase || (p = getPhase()) != phase)
948 releaseWaiters(phase);
949 if (interrupted)
950 throw new InterruptedException();
951 return p;
952 }
953
954 /**
955 * Timeout version.
956 * @return current phase
957 */
958 private int timedWait(int phase, long nanos)
959 throws InterruptedException, TimeoutException {
960 long startTime = System.nanoTime();
961 QNode node = null;
962 boolean queued = false;
963 boolean interrupted = false;
964 int spins = MAX_SPINS;
965 int p;
966 while ((p = getPhase()) == phase && !interrupted) {
967 if (Thread.interrupted())
968 interrupted = true;
969 else if (nanos - (System.nanoTime() - startTime) <= 0)
970 break;
971 else if (spins > 0) {
972 if (--spins == 0)
973 Thread.yield();
974 }
975 else if (node == null)
976 node = new QNode(this, phase, true, true, startTime, nanos);
977 else if (!queued)
978 queued = tryEnqueue(node);
979 else if (node.doWait())
980 interrupted = true;
981 }
982 if (node != null)
983 node.thread = null;
984 if (p != phase || (p = getPhase()) != phase)
985 releaseWaiters(phase);
986 if (interrupted)
987 throw new InterruptedException();
988 if (p == phase)
989 throw new TimeoutException();
990 return p;
991 }
992
993 // Unsafe mechanics
994
995 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
996 private static final long stateOffset =
997 objectFieldOffset("state", Phaser.class);
998
999 private static long objectFieldOffset(String field, Class<?> klazz) {
1000 try {
1001 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1002 } catch (NoSuchFieldException e) {
1003 // Convert Exception to corresponding Error
1004 NoSuchFieldError error = new NoSuchFieldError(field);
1005 error.initCause(e);
1006 throw error;
1007 }
1008 }
1009
1010 /**
1011 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1012 * Replace with a simple call to Unsafe.getUnsafe when integrating
1013 * into a jdk.
1014 *
1015 * @return a sun.misc.Unsafe
1016 */
1017 private static sun.misc.Unsafe getUnsafe() {
1018 try {
1019 return sun.misc.Unsafe.getUnsafe();
1020 } catch (SecurityException se) {
1021 try {
1022 return java.security.AccessController.doPrivileged
1023 (new java.security
1024 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1025 public sun.misc.Unsafe run() throws Exception {
1026 java.lang.reflect.Field f = sun.misc
1027 .Unsafe.class.getDeclaredField("theUnsafe");
1028 f.setAccessible(true);
1029 return (sun.misc.Unsafe) f.get(null);
1030 }});
1031 } catch (java.security.PrivilegedActionException e) {
1032 throw new RuntimeException("Could not initialize intrinsics",
1033 e.getCause());
1034 }
1035 }
1036 }
1037 }