ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.53
Committed: Sat Nov 13 05:59:25 2010 UTC (13 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.52: +1 -1 lines
Log Message:
s/nonnull/non-null/

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_COUNT = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final long UNARRIVED_MASK = 0xffffL;
248 private static final long PARTIES_MASK = 0xffff0000L;
249 private static final long ONE_ARRIVAL = 1L;
250 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252
253 // The following unpacking methods are usually manually inlined
254
255 private static int unarrivedOf(long s) {
256 return (int) (s & UNARRIVED_MASK);
257 }
258
259 private static int partiesOf(long s) {
260 return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> PHASE_SHIFT);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 /**
272 * The parent of this phaser, or null if none
273 */
274 private final Phaser parent;
275
276 /**
277 * The root of phaser tree. Equals this if not in a tree. Used to
278 * support faster state push-down.
279 */
280 private final Phaser root;
281
282 /**
283 * Heads of Treiber stacks for waiting threads. To eliminate
284 * contention when releasing some threads while adding others, we
285 * use two of them, alternating across even and odd phases.
286 * Subphasers share queues with root to speed up releases.
287 */
288 private final AtomicReference<QNode> evenQ;
289 private final AtomicReference<QNode> oddQ;
290
291 private AtomicReference<QNode> queueFor(int phase) {
292 return ((phase & 1) == 0) ? evenQ : oddQ;
293 }
294
295 /**
296 * Main implementation for methods arrive and arriveAndDeregister.
297 * Manually tuned to speed up and minimize race windows for the
298 * common case of just decrementing unarrived field.
299 *
300 * @param adj - adjustment to apply to state -- either
301 * ONE_ARRIVAL (for arrive) or
302 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 */
304 private int doArrive(long adj) {
305 long s;
306 int phase, unarrived;
307 while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
308 if ((unarrived = (int)(s & UNARRIVED_MASK)) != 0) {
309 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)) {
310 if (unarrived == 1) {
311 Phaser par;
312 long p = s & PARTIES_MASK; // unshifted parties field
313 long lu = p >>> PARTIES_SHIFT;
314 int u = (int)lu;
315 int nextPhase = (phase + 1) & MAX_PHASE;
316 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
317 if ((par = parent) == null) {
318 UNSAFE.compareAndSwapLong
319 (this, stateOffset, s, onAdvance(phase, u)?
320 next | TERMINATION_PHASE : next);
321 releaseWaiters(phase);
322 }
323 else {
324 par.doArrive(u == 0?
325 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
326 if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
327 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
328 !UNSAFE.compareAndSwapLong(this, stateOffset,
329 s, next)))
330 reconcileState();
331 }
332 }
333 break;
334 }
335 }
336 else if (state == s && reconcileState() == s) // recheck
337 throw new IllegalStateException(badArrive());
338 }
339 return phase;
340 }
341
342 /**
343 * Returns message string for bounds exceptions on arrival.
344 * Declared out of-line from doArrive to reduce string op bulk.
345 */
346 private String badArrive() {
347 return ("Attempted arrival of unregistered party for " +
348 this.toString());
349 }
350
351 /**
352 * Implementation of register, bulkRegister
353 *
354 * @param registrations number to add to both parties and unarrived fields
355 */
356 private int doRegister(int registrations) {
357 long adj = (long)registrations; // adjustment to state
358 adj |= adj << PARTIES_SHIFT;
359 Phaser par = parent;
360 long s;
361 int phase;
362 while ((phase = (int)((s = (par == null? state : reconcileState()))
363 >>> PHASE_SHIFT)) >= 0) {
364 int parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT;
365 if (parties != 0 && (s & UNARRIVED_MASK) == 0)
366 internalAwaitAdvance(phase, null); // wait for onAdvance
367 else if (parties + registrations > MAX_COUNT)
368 throw new IllegalStateException(badRegister());
369 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
370 break;
371 }
372 return phase;
373 }
374
375 /**
376 * Returns message string for bounds exceptions on registration
377 */
378 private String badRegister() {
379 return ("Attempt to register more than " + MAX_COUNT + " parties for "+
380 this.toString());
381 }
382
383 /**
384 * Recursively resolves lagged phase propagation from root if
385 * necessary.
386 */
387 private long reconcileState() {
388 Phaser par = parent;
389 if (par == null)
390 return state;
391 Phaser rt = root;
392 long s;
393 int phase, rPhase;
394 while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0 &&
395 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
396 if (rPhase < 0 || (s & UNARRIVED_MASK) == 0) {
397 long ps = par.parent == null? par.state : par.reconcileState();
398 int pPhase = (int)(ps >>> PHASE_SHIFT);
399 if (pPhase < 0 || pPhase == ((phase + 1) & MAX_PHASE)) {
400 if (state != s)
401 continue;
402 long p = s & PARTIES_MASK;
403 long next = ((((long) pPhase) << PHASE_SHIFT) |
404 (p >>> PARTIES_SHIFT) | p);
405 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
406 return next;
407 }
408 }
409 if (state == s)
410 releaseWaiters(phase); // help release others
411 }
412 return s;
413 }
414
415 /**
416 * Creates a new phaser without any initially registered parties,
417 * initial phase number 0, and no parent. Any thread using this
418 * phaser will need to first register for it.
419 */
420 public Phaser() {
421 this(null, 0);
422 }
423
424 /**
425 * Creates a new phaser with the given number of registered
426 * unarrived parties, initial phase number 0, and no parent.
427 *
428 * @param parties the number of parties required to trip barrier
429 * @throws IllegalArgumentException if parties less than zero
430 * or greater than the maximum number of parties supported
431 */
432 public Phaser(int parties) {
433 this(null, parties);
434 }
435
436 /**
437 * Creates a new phaser with the given parent, without any
438 * initially registered parties. If parent is non-null this phaser
439 * is registered with the parent and its initial phase number is
440 * the same as that of parent phaser.
441 *
442 * @param parent the parent phaser
443 */
444 public Phaser(Phaser parent) {
445 this(parent, 0);
446 }
447
448 /**
449 * Creates a new phaser with the given parent and number of
450 * registered unarrived parties. If parent is non-null, this phaser
451 * is registered with the parent and its initial phase number is
452 * the same as that of parent phaser.
453 *
454 * @param parent the parent phaser
455 * @param parties the number of parties required to trip barrier
456 * @throws IllegalArgumentException if parties less than zero
457 * or greater than the maximum number of parties supported
458 */
459 public Phaser(Phaser parent, int parties) {
460 if (parties < 0 || parties > MAX_COUNT)
461 throw new IllegalArgumentException("Illegal number of parties");
462 int phase;
463 this.parent = parent;
464 if (parent != null) {
465 Phaser r = parent.root;
466 this.root = r;
467 this.evenQ = r.evenQ;
468 this.oddQ = r.oddQ;
469 phase = parent.register();
470 }
471 else {
472 this.root = this;
473 this.evenQ = new AtomicReference<QNode>();
474 this.oddQ = new AtomicReference<QNode>();
475 phase = 0;
476 }
477 long p = (long)parties;
478 this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479 }
480
481 /**
482 * Adds a new unarrived party to this phaser.
483 * If an ongoing invocation of {@link #onAdvance} is in progress,
484 * this method may wait until its completion before registering.
485 *
486 * @return the arrival phase number to which this registration applied
487 * @throws IllegalStateException if attempting to register more
488 * than the maximum supported number of parties
489 */
490 public int register() {
491 return doRegister(1);
492 }
493
494 /**
495 * Adds the given number of new unarrived parties to this phaser.
496 * If an ongoing invocation of {@link #onAdvance} is in progress,
497 * this method may wait until its completion before registering.
498 *
499 * @param parties the number of additional parties required to trip barrier
500 * @return the arrival phase number to which this registration applied
501 * @throws IllegalStateException if attempting to register more
502 * than the maximum supported number of parties
503 * @throws IllegalArgumentException if {@code parties < 0}
504 */
505 public int bulkRegister(int parties) {
506 if (parties < 0)
507 throw new IllegalArgumentException();
508 if (parties > MAX_COUNT)
509 throw new IllegalStateException(badRegister());
510 if (parties == 0)
511 return getPhase();
512 return doRegister(parties);
513 }
514
515 /**
516 * Arrives at the barrier, but does not wait for others. (You can
517 * in turn wait for others via {@link #awaitAdvance}). It is an
518 * unenforced usage error for an unregistered party to invoke this
519 * method.
520 *
521 * @return the arrival phase number, or a negative value if terminated
522 * @throws IllegalStateException if not terminated and the number
523 * of unarrived parties would become negative
524 */
525 public int arrive() {
526 return doArrive(ONE_ARRIVAL);
527 }
528
529 /**
530 * Arrives at the barrier and deregisters from it without waiting
531 * for others. Deregistration reduces the number of parties
532 * required to trip the barrier in future phases. If this phaser
533 * has a parent, and deregistration causes this phaser to have
534 * zero parties, this phaser also arrives at and is deregistered
535 * from its parent. It is an unenforced usage error for an
536 * unregistered party to invoke this method.
537 *
538 * @return the arrival phase number, or a negative value if terminated
539 * @throws IllegalStateException if not terminated and the number
540 * of registered or unarrived parties would become negative
541 */
542 public int arriveAndDeregister() {
543 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 }
545
546 /**
547 * Arrives at the barrier and awaits others. Equivalent in effect
548 * to {@code awaitAdvance(arrive())}. If you need to await with
549 * interruption or timeout, you can arrange this with an analogous
550 * construction using one of the other forms of the {@code
551 * awaitAdvance} method. If instead you need to deregister upon
552 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 * usage error for an unregistered party to invoke this method.
554 *
555 * @return the arrival phase number, or a negative number if terminated
556 * @throws IllegalStateException if not terminated and the number
557 * of unarrived parties would become negative
558 */
559 public int arriveAndAwaitAdvance() {
560 return awaitAdvance(arrive());
561 }
562
563 /**
564 * Awaits the phase of the barrier to advance from the given phase
565 * value, returning immediately if the current phase of the
566 * barrier is not equal to the given phase value or this barrier
567 * is terminated.
568 *
569 * @param phase an arrival phase number, or negative value if
570 * terminated; this argument is normally the value returned by a
571 * previous call to {@code arrive} or its variants
572 * @return the next arrival phase number, or a negative value
573 * if terminated or argument is negative
574 */
575 public int awaitAdvance(int phase) {
576 if (phase < 0)
577 return phase;
578 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579 if (p != phase)
580 return p;
581 return internalAwaitAdvance(phase, null);
582 }
583
584 /**
585 * Awaits the phase of the barrier to advance from the given phase
586 * value, throwing {@code InterruptedException} if interrupted
587 * while waiting, or returning immediately if the current phase of
588 * the barrier is not equal to the given phase value or this
589 * barrier is terminated.
590 *
591 * @param phase an arrival phase number, or negative value if
592 * terminated; this argument is normally the value returned by a
593 * previous call to {@code arrive} or its variants
594 * @return the next arrival phase number, or a negative value
595 * if terminated or argument is negative
596 * @throws InterruptedException if thread interrupted while waiting
597 */
598 public int awaitAdvanceInterruptibly(int phase)
599 throws InterruptedException {
600 if (phase < 0)
601 return phase;
602 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603 if (p != phase)
604 return p;
605 QNode node = new QNode(this, phase, true, false, 0L);
606 p = internalAwaitAdvance(phase, node);
607 if (node.wasInterrupted)
608 throw new InterruptedException();
609 else
610 return p;
611 }
612
613 /**
614 * Awaits the phase of the barrier to advance from the given phase
615 * value or the given timeout to elapse, throwing {@code
616 * InterruptedException} if interrupted while waiting, or
617 * returning immediately if the current phase of the barrier is
618 * not equal to the given phase value or this barrier is
619 * terminated.
620 *
621 * @param phase an arrival phase number, or negative value if
622 * terminated; this argument is normally the value returned by a
623 * previous call to {@code arrive} or its variants
624 * @param timeout how long to wait before giving up, in units of
625 * {@code unit}
626 * @param unit a {@code TimeUnit} determining how to interpret the
627 * {@code timeout} parameter
628 * @return the next arrival phase number, or a negative value
629 * if terminated or argument is negative
630 * @throws InterruptedException if thread interrupted while waiting
631 * @throws TimeoutException if timed out while waiting
632 */
633 public int awaitAdvanceInterruptibly(int phase,
634 long timeout, TimeUnit unit)
635 throws InterruptedException, TimeoutException {
636 long nanos = unit.toNanos(timeout);
637 if (phase < 0)
638 return phase;
639 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640 if (p != phase)
641 return p;
642 QNode node = new QNode(this, phase, true, true, nanos);
643 p = internalAwaitAdvance(phase, node);
644 if (node.wasInterrupted)
645 throw new InterruptedException();
646 else if (p == phase)
647 throw new TimeoutException();
648 else
649 return p;
650 }
651
652 /**
653 * Forces this barrier to enter termination state. Counts of
654 * arrived and registered parties are unaffected. If this phaser
655 * has a parent, it too is terminated. This method may be useful
656 * for coordinating recovery after one or more tasks encounter
657 * unexpected exceptions.
658 */
659 public void forceTermination() {
660 Phaser r = root; // force at root then reconcile
661 long s;
662 while ((s = r.state) >= 0)
663 UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 reconcileState();
665 releaseWaiters(0); // signal all threads
666 releaseWaiters(1);
667 }
668
669 /**
670 * Returns the current phase number. The maximum phase number is
671 * {@code Integer.MAX_VALUE}, after which it restarts at
672 * zero. Upon termination, the phase number is negative.
673 *
674 * @return the phase number, or a negative value if terminated
675 */
676 public final int getPhase() {
677 return (int)((parent == null? state : reconcileState()) >>> PHASE_SHIFT);
678 }
679
680 /**
681 * Returns the number of parties registered at this barrier.
682 *
683 * @return the number of parties
684 */
685 public int getRegisteredParties() {
686 return partiesOf(parent == null? state : reconcileState());
687 }
688
689 /**
690 * Returns the number of registered parties that have arrived at
691 * the current phase of this barrier.
692 *
693 * @return the number of arrived parties
694 */
695 public int getArrivedParties() {
696 return arrivedOf(parent == null? state : reconcileState());
697 }
698
699 /**
700 * Returns the number of registered parties that have not yet
701 * arrived at the current phase of this barrier.
702 *
703 * @return the number of unarrived parties
704 */
705 public int getUnarrivedParties() {
706 return unarrivedOf(parent == null? state : reconcileState());
707 }
708
709 /**
710 * Returns the parent of this phaser, or {@code null} if none.
711 *
712 * @return the parent of this phaser, or {@code null} if none
713 */
714 public Phaser getParent() {
715 return parent;
716 }
717
718 /**
719 * Returns the root ancestor of this phaser, which is the same as
720 * this phaser if it has no parent.
721 *
722 * @return the root ancestor of this phaser
723 */
724 public Phaser getRoot() {
725 return root;
726 }
727
728 /**
729 * Returns {@code true} if this barrier has been terminated.
730 *
731 * @return {@code true} if this barrier has been terminated
732 */
733 public boolean isTerminated() {
734 return (parent == null? state : reconcileState()) < 0;
735 }
736
737 /**
738 * Overridable method to perform an action upon impending phase
739 * advance, and to control termination. This method is invoked
740 * upon arrival of the party tripping the barrier (when all other
741 * waiting parties are dormant). If this method returns {@code
742 * true}, then, rather than advance the phase number, this barrier
743 * will be set to a final termination state, and subsequent calls
744 * to {@link #isTerminated} will return true. Any (unchecked)
745 * Exception or Error thrown by an invocation of this method is
746 * propagated to the party attempting to trip the barrier, in
747 * which case no advance occurs.
748 *
749 * <p>The arguments to this method provide the state of the phaser
750 * prevailing for the current transition. The effects of invoking
751 * arrival, registration, and waiting methods on this Phaser from
752 * within {@code onAdvance} are unspecified and should not be
753 * relied on.
754 *
755 * <p>If this Phaser is a member of a tiered set of Phasers, then
756 * {@code onAdvance} is invoked only for its root Phaser on each
757 * advance.
758 *
759 * <p>The default version returns {@code true} when the number of
760 * registered parties is zero. Normally, overrides that arrange
761 * termination for other reasons should also preserve this
762 * property.
763 *
764 * @param phase the phase number on entering the barrier
765 * @param registeredParties the current number of registered parties
766 * @return {@code true} if this barrier should terminate
767 */
768 protected boolean onAdvance(int phase, int registeredParties) {
769 return registeredParties <= 0;
770 }
771
772 /**
773 * Returns a string identifying this phaser, as well as its
774 * state. The state, in brackets, includes the String {@code
775 * "phase = "} followed by the phase number, {@code "parties = "}
776 * followed by the number of registered parties, and {@code
777 * "arrived = "} followed by the number of arrived parties.
778 *
779 * @return a string identifying this barrier, as well as its state
780 */
781 public String toString() {
782 long s = reconcileState();
783 return super.toString() +
784 "[phase = " + phaseOf(s) +
785 " parties = " + partiesOf(s) +
786 " arrived = " + arrivedOf(s) + "]";
787 }
788
789 /**
790 * Removes and signals threads from queue for phase
791 */
792 private void releaseWaiters(int phase) {
793 AtomicReference<QNode> head = queueFor(phase);
794 QNode q;
795 int p;
796 while ((q = head.get()) != null &&
797 ((p = q.phase) == phase ||
798 (int)(root.state >>> PHASE_SHIFT) != p)) {
799 if (head.compareAndSet(q, q.next))
800 q.signal();
801 }
802 }
803
804 /**
805 * Tries to enqueue given node in the appropriate wait queue.
806 *
807 * @return true if successful
808 */
809 private boolean tryEnqueue(int phase, QNode node) {
810 releaseWaiters(phase-1); // ensure old queue clean
811 AtomicReference<QNode> head = queueFor(phase);
812 QNode q = head.get();
813 return ((q == null || q.phase == phase) &&
814 (int)(root.state >>> PHASE_SHIFT) == phase &&
815 head.compareAndSet(node.next = q, node));
816 }
817
818 /** The number of CPUs, for spin control */
819 private static final int NCPU = Runtime.getRuntime().availableProcessors();
820
821 /**
822 * The number of times to spin before blocking while waiting for
823 * advance, per arrival while waiting. On multiprocessors, fully
824 * blocking and waking up a large number of threads all at once is
825 * usually a very slow process, so we use rechargeable spins to
826 * avoid it when threads regularly arrive: When a thread in
827 * internalAwaitAdvance notices another arrival before blocking,
828 * and there appear to be enough CPUs available, it spins
829 * SPINS_PER_ARRIVAL more times before continuing to try to
830 * block. The value trades off good-citizenship vs big unnecessary
831 * slowdowns.
832 */
833 static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
834
835 /**
836 * Possibly blocks and waits for phase to advance unless aborted.
837 *
838 * @param phase current phase
839 * @param node if non-null, the wait node to track interrupt and timeout;
840 * if null, denotes noninterruptible wait
841 * @return current phase
842 */
843 private int internalAwaitAdvance(int phase, QNode node) {
844 Phaser current = this; // to eventually wait at root if tiered
845 Phaser par = parent;
846 boolean queued = false;
847 int spins = SPINS_PER_ARRIVAL;
848 int lastUnarrived = -1; // to increase spins upon change
849 long s;
850 int p;
851 while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
852 int unarrived = (int)(s & UNARRIVED_MASK);
853 if (unarrived != lastUnarrived) {
854 if ((lastUnarrived = unarrived) < NCPU)
855 spins += SPINS_PER_ARRIVAL;
856 }
857 else if (unarrived == 0 && par != null) {
858 current = par; // if all arrived, use parent
859 par = par.parent;
860 }
861 else if (spins > 0)
862 --spins;
863 else if (node == null)
864 node = new QNode(this, phase, false, false, 0L);
865 else if (node.isReleasable())
866 break;
867 else if (!queued)
868 queued = tryEnqueue(phase, node);
869 else {
870 try {
871 ForkJoinPool.managedBlock(node);
872 } catch (InterruptedException ie) {
873 node.wasInterrupted = true;
874 }
875 }
876 }
877 if (node != null) {
878 if (node.thread != null)
879 node.thread = null;
880 if (!node.interruptible && node.wasInterrupted)
881 Thread.currentThread().interrupt();
882 }
883 if (p == phase)
884 p = (int)(reconcileState() >>> PHASE_SHIFT);
885 if (p != phase)
886 releaseWaiters(phase);
887 return p;
888 }
889
890 /**
891 * Wait nodes for Treiber stack representing wait queue
892 */
893 static final class QNode implements ForkJoinPool.ManagedBlocker {
894 final Phaser phaser;
895 final int phase;
896 final boolean interruptible;
897 final boolean timed;
898 boolean wasInterrupted;
899 long nanos;
900 long lastTime;
901 volatile Thread thread; // nulled to cancel wait
902 QNode next;
903
904 QNode(Phaser phaser, int phase, boolean interruptible,
905 boolean timed, long nanos) {
906 this.phaser = phaser;
907 this.phase = phase;
908 this.interruptible = interruptible;
909 this.nanos = nanos;
910 this.timed = timed;
911 this.lastTime = timed? System.nanoTime() : 0L;
912 thread = Thread.currentThread();
913 }
914
915 public boolean isReleasable() {
916 Thread t = thread;
917 if (t != null) {
918 if (phaser.getPhase() != phase)
919 t = null;
920 else {
921 if (Thread.interrupted())
922 wasInterrupted = true;
923 if (interruptible && wasInterrupted)
924 t = null;
925 else if (timed) {
926 if (nanos > 0) {
927 long now = System.nanoTime();
928 nanos -= now - lastTime;
929 lastTime = now;
930 }
931 if (nanos <= 0)
932 t = null;
933 }
934 }
935 if (t != null)
936 return false;
937 thread = null;
938 }
939 return true;
940 }
941
942 public boolean block() {
943 if (isReleasable())
944 return true;
945 else if (!timed)
946 LockSupport.park(this);
947 else if (nanos > 0)
948 LockSupport.parkNanos(this, nanos);
949 return isReleasable();
950 }
951
952 void signal() {
953 Thread t = thread;
954 if (t != null) {
955 thread = null;
956 LockSupport.unpark(t);
957 }
958 }
959 }
960
961 // Unsafe mechanics
962
963 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
964 private static final long stateOffset =
965 objectFieldOffset("state", Phaser.class);
966
967 private static long objectFieldOffset(String field, Class<?> klazz) {
968 try {
969 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
970 } catch (NoSuchFieldException e) {
971 // Convert Exception to corresponding Error
972 NoSuchFieldError error = new NoSuchFieldError(field);
973 error.initCause(e);
974 throw error;
975 }
976 }
977
978 /**
979 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
980 * Replace with a simple call to Unsafe.getUnsafe when integrating
981 * into a jdk.
982 *
983 * @return a sun.misc.Unsafe
984 */
985 private static sun.misc.Unsafe getUnsafe() {
986 try {
987 return sun.misc.Unsafe.getUnsafe();
988 } catch (SecurityException se) {
989 try {
990 return java.security.AccessController.doPrivileged
991 (new java.security
992 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
993 public sun.misc.Unsafe run() throws Exception {
994 java.lang.reflect.Field f = sun.misc
995 .Unsafe.class.getDeclaredField("theUnsafe");
996 f.setAccessible(true);
997 return (sun.misc.Unsafe) f.get(null);
998 }});
999 } catch (java.security.PrivilegedActionException e) {
1000 throw new RuntimeException("Could not initialize intrinsics",
1001 e.getCause());
1002 }
1003 }
1004 }
1005 }