ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.54
Committed: Sat Nov 13 13:10:04 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.53: +109 -96 lines
Log Message:
Improve error messages, simplify loops

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e., arranged
90 * in tree structures) to reduce contention. Phasers with large
91 * numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_COUNT = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final long UNARRIVED_MASK = 0xffffL;
248 private static final long PARTIES_MASK = 0xffff0000L;
249 private static final long ONE_ARRIVAL = 1L;
250 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252
253 // The following unpacking methods are usually manually inlined
254
255 private static int unarrivedOf(long s) {
256 return (int) (s & UNARRIVED_MASK);
257 }
258
259 private static int partiesOf(long s) {
260 return ((int) (s & PARTIES_MASK)) >>> PARTIES_SHIFT;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> PHASE_SHIFT);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 /**
272 * The parent of this phaser, or null if none
273 */
274 private final Phaser parent;
275
276 /**
277 * The root of phaser tree. Equals this if not in a tree. Used to
278 * support faster state push-down.
279 */
280 private final Phaser root;
281
282 /**
283 * Heads of Treiber stacks for waiting threads. To eliminate
284 * contention when releasing some threads while adding others, we
285 * use two of them, alternating across even and odd phases.
286 * Subphasers share queues with root to speed up releases.
287 */
288 private final AtomicReference<QNode> evenQ;
289 private final AtomicReference<QNode> oddQ;
290
291 private AtomicReference<QNode> queueFor(int phase) {
292 return ((phase & 1) == 0) ? evenQ : oddQ;
293 }
294
295 /**
296 * Main implementation for methods arrive and arriveAndDeregister.
297 * Manually tuned to speed up and minimize race windows for the
298 * common case of just decrementing unarrived field.
299 *
300 * @param adj - adjustment to apply to state -- either
301 * ONE_ARRIVAL (for arrive) or
302 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 */
304 private int doArrive(long adj) {
305 for (;;) {
306 long s;
307 int phase, unarrived;
308 if ((phase = (int)((s = state) >>> PHASE_SHIFT)) < 0)
309 return phase;
310 else if ((unarrived = (int)(s & UNARRIVED_MASK)) == 0)
311 checkBadArrive(s);
312 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s -= adj)){
313 if (unarrived == 1) {
314 Phaser par;
315 long p = s & PARTIES_MASK; // unshifted parties field
316 long lu = p >>> PARTIES_SHIFT;
317 int u = (int)lu;
318 int nextPhase = (phase + 1) & MAX_PHASE;
319 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 if ((par = parent) == null) {
321 UNSAFE.compareAndSwapLong
322 (this, stateOffset, s, onAdvance(phase, u)?
323 next | TERMINATION_PHASE : next);
324 releaseWaiters(phase);
325 }
326 else {
327 par.doArrive(u == 0?
328 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
329 if ((int)(par.state >>> PHASE_SHIFT) != nextPhase ||
330 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
331 !UNSAFE.compareAndSwapLong(this, stateOffset,
332 s, next)))
333 reconcileState();
334 }
335 }
336 return phase;
337 }
338 }
339 }
340
341 /**
342 * Rechecks state and throws bounds exceptions on arrival -- called
343 * only if unarrived is apparently zero.
344 */
345 private void checkBadArrive(long s) {
346 if (reconcileState() == s)
347 throw new IllegalStateException
348 ("Attempted arrival of unregistered party for " +
349 stateToString(s));
350 }
351
352 /**
353 * Implementation of register, bulkRegister
354 *
355 * @param registrations number to add to both parties and unarrived fields
356 */
357 private int doRegister(int registrations) {
358 long adj = (long)registrations; // adjustment to state
359 adj |= adj << PARTIES_SHIFT;
360 Phaser par = parent;
361 for (;;) {
362 int phase, parties;
363 long s = par == null? state : reconcileState();
364 if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
365 return phase;
366 if ((parties = ((int)(s & PARTIES_MASK)) >>> PARTIES_SHIFT) != 0 &&
367 (s & UNARRIVED_MASK) == 0)
368 internalAwaitAdvance(phase, null); // wait for onAdvance
369 else if (parties + registrations > MAX_COUNT)
370 throw new IllegalStateException(badRegister(s));
371 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
372 return phase;
373 }
374 }
375
376 /**
377 * Returns message string for bounds exceptions on registration
378 */
379 private String badRegister(long s) {
380 return "Attempt to register more than " +
381 MAX_COUNT + " parties for " + stateToString(s);
382 }
383
384 /**
385 * Recursively resolves lagged phase propagation from root if
386 * necessary.
387 */
388 private long reconcileState() {
389 Phaser par = parent;
390 if (par == null)
391 return state;
392 Phaser rt = root;
393 for (;;) {
394 long s, u;
395 int phase, rPhase, pPhase;
396 if ((phase = (int)((s = state)>>> PHASE_SHIFT)) < 0 ||
397 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) == phase)
398 return s;
399 long pState = par.parent == null? par.state : par.reconcileState();
400 if (state == s) {
401 if ((rPhase < 0 || (s & UNARRIVED_MASK) == 0) &&
402 ((pPhase = (int)(pState >>> PHASE_SHIFT)) < 0 ||
403 pPhase == ((phase + 1) & MAX_PHASE)))
404 UNSAFE.compareAndSwapLong
405 (this, stateOffset, s,
406 (((long) pPhase) << PHASE_SHIFT) |
407 (u = s & PARTIES_MASK) |
408 (u >>> PARTIES_SHIFT)); // reset unarrived to parties
409 else
410 releaseWaiters(phase); // help release others
411 }
412 }
413 }
414
415 /**
416 * Creates a new phaser without any initially registered parties,
417 * initial phase number 0, and no parent. Any thread using this
418 * phaser will need to first register for it.
419 */
420 public Phaser() {
421 this(null, 0);
422 }
423
424 /**
425 * Creates a new phaser with the given number of registered
426 * unarrived parties, initial phase number 0, and no parent.
427 *
428 * @param parties the number of parties required to trip barrier
429 * @throws IllegalArgumentException if parties less than zero
430 * or greater than the maximum number of parties supported
431 */
432 public Phaser(int parties) {
433 this(null, parties);
434 }
435
436 /**
437 * Creates a new phaser with the given parent, without any
438 * initially registered parties. If parent is non-null this phaser
439 * is registered with the parent and its initial phase number is
440 * the same as that of parent phaser.
441 *
442 * @param parent the parent phaser
443 */
444 public Phaser(Phaser parent) {
445 this(parent, 0);
446 }
447
448 /**
449 * Creates a new phaser with the given parent and number of
450 * registered unarrived parties. If parent is non-null, this phaser
451 * is registered with the parent and its initial phase number is
452 * the same as that of parent phaser.
453 *
454 * @param parent the parent phaser
455 * @param parties the number of parties required to trip barrier
456 * @throws IllegalArgumentException if parties less than zero
457 * or greater than the maximum number of parties supported
458 */
459 public Phaser(Phaser parent, int parties) {
460 if (parties < 0 || parties > MAX_COUNT)
461 throw new IllegalArgumentException("Illegal number of parties");
462 int phase;
463 this.parent = parent;
464 if (parent != null) {
465 Phaser r = parent.root;
466 this.root = r;
467 this.evenQ = r.evenQ;
468 this.oddQ = r.oddQ;
469 phase = parent.register();
470 }
471 else {
472 this.root = this;
473 this.evenQ = new AtomicReference<QNode>();
474 this.oddQ = new AtomicReference<QNode>();
475 phase = 0;
476 }
477 long p = (long)parties;
478 this.state = (((long) phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
479 }
480
481 /**
482 * Adds a new unarrived party to this phaser.
483 * If an ongoing invocation of {@link #onAdvance} is in progress,
484 * this method may wait until its completion before registering.
485 *
486 * @return the arrival phase number to which this registration applied
487 * @throws IllegalStateException if attempting to register more
488 * than the maximum supported number of parties
489 */
490 public int register() {
491 return doRegister(1);
492 }
493
494 /**
495 * Adds the given number of new unarrived parties to this phaser.
496 * If an ongoing invocation of {@link #onAdvance} is in progress,
497 * this method may wait until its completion before registering.
498 *
499 * @param parties the number of additional parties required to trip barrier
500 * @return the arrival phase number to which this registration applied
501 * @throws IllegalStateException if attempting to register more
502 * than the maximum supported number of parties
503 * @throws IllegalArgumentException if {@code parties < 0}
504 */
505 public int bulkRegister(int parties) {
506 if (parties < 0)
507 throw new IllegalArgumentException();
508 if (parties > MAX_COUNT)
509 throw new IllegalStateException(badRegister(state));
510 if (parties == 0)
511 return getPhase();
512 return doRegister(parties);
513 }
514
515 /**
516 * Arrives at the barrier, but does not wait for others. (You can
517 * in turn wait for others via {@link #awaitAdvance}). It is an
518 * unenforced usage error for an unregistered party to invoke this
519 * method.
520 *
521 * @return the arrival phase number, or a negative value if terminated
522 * @throws IllegalStateException if not terminated and the number
523 * of unarrived parties would become negative
524 */
525 public int arrive() {
526 return doArrive(ONE_ARRIVAL);
527 }
528
529 /**
530 * Arrives at the barrier and deregisters from it without waiting
531 * for others. Deregistration reduces the number of parties
532 * required to trip the barrier in future phases. If this phaser
533 * has a parent, and deregistration causes this phaser to have
534 * zero parties, this phaser also arrives at and is deregistered
535 * from its parent. It is an unenforced usage error for an
536 * unregistered party to invoke this method.
537 *
538 * @return the arrival phase number, or a negative value if terminated
539 * @throws IllegalStateException if not terminated and the number
540 * of registered or unarrived parties would become negative
541 */
542 public int arriveAndDeregister() {
543 return doArrive(ONE_ARRIVAL|ONE_PARTY);
544 }
545
546 /**
547 * Arrives at the barrier and awaits others. Equivalent in effect
548 * to {@code awaitAdvance(arrive())}. If you need to await with
549 * interruption or timeout, you can arrange this with an analogous
550 * construction using one of the other forms of the {@code
551 * awaitAdvance} method. If instead you need to deregister upon
552 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
553 * usage error for an unregistered party to invoke this method.
554 *
555 * @return the arrival phase number, or a negative number if terminated
556 * @throws IllegalStateException if not terminated and the number
557 * of unarrived parties would become negative
558 */
559 public int arriveAndAwaitAdvance() {
560 return awaitAdvance(arrive());
561 }
562
563 /**
564 * Awaits the phase of the barrier to advance from the given phase
565 * value, returning immediately if the current phase of the
566 * barrier is not equal to the given phase value or this barrier
567 * is terminated.
568 *
569 * @param phase an arrival phase number, or negative value if
570 * terminated; this argument is normally the value returned by a
571 * previous call to {@code arrive} or its variants
572 * @return the next arrival phase number, or a negative value
573 * if terminated or argument is negative
574 */
575 public int awaitAdvance(int phase) {
576 if (phase < 0)
577 return phase;
578 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
579 if (p != phase)
580 return p;
581 return internalAwaitAdvance(phase, null);
582 }
583
584 /**
585 * Awaits the phase of the barrier to advance from the given phase
586 * value, throwing {@code InterruptedException} if interrupted
587 * while waiting, or returning immediately if the current phase of
588 * the barrier is not equal to the given phase value or this
589 * barrier is terminated.
590 *
591 * @param phase an arrival phase number, or negative value if
592 * terminated; this argument is normally the value returned by a
593 * previous call to {@code arrive} or its variants
594 * @return the next arrival phase number, or a negative value
595 * if terminated or argument is negative
596 * @throws InterruptedException if thread interrupted while waiting
597 */
598 public int awaitAdvanceInterruptibly(int phase)
599 throws InterruptedException {
600 if (phase < 0)
601 return phase;
602 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
603 if (p != phase)
604 return p;
605 QNode node = new QNode(this, phase, true, false, 0L);
606 p = internalAwaitAdvance(phase, node);
607 if (node.wasInterrupted)
608 throw new InterruptedException();
609 else
610 return p;
611 }
612
613 /**
614 * Awaits the phase of the barrier to advance from the given phase
615 * value or the given timeout to elapse, throwing {@code
616 * InterruptedException} if interrupted while waiting, or
617 * returning immediately if the current phase of the barrier is
618 * not equal to the given phase value or this barrier is
619 * terminated.
620 *
621 * @param phase an arrival phase number, or negative value if
622 * terminated; this argument is normally the value returned by a
623 * previous call to {@code arrive} or its variants
624 * @param timeout how long to wait before giving up, in units of
625 * {@code unit}
626 * @param unit a {@code TimeUnit} determining how to interpret the
627 * {@code timeout} parameter
628 * @return the next arrival phase number, or a negative value
629 * if terminated or argument is negative
630 * @throws InterruptedException if thread interrupted while waiting
631 * @throws TimeoutException if timed out while waiting
632 */
633 public int awaitAdvanceInterruptibly(int phase,
634 long timeout, TimeUnit unit)
635 throws InterruptedException, TimeoutException {
636 long nanos = unit.toNanos(timeout);
637 if (phase < 0)
638 return phase;
639 int p = (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
640 if (p != phase)
641 return p;
642 QNode node = new QNode(this, phase, true, true, nanos);
643 p = internalAwaitAdvance(phase, node);
644 if (node.wasInterrupted)
645 throw new InterruptedException();
646 else if (p == phase)
647 throw new TimeoutException();
648 else
649 return p;
650 }
651
652 /**
653 * Forces this barrier to enter termination state. Counts of
654 * arrived and registered parties are unaffected. If this phaser
655 * has a parent, it too is terminated. This method may be useful
656 * for coordinating recovery after one or more tasks encounter
657 * unexpected exceptions.
658 */
659 public void forceTermination() {
660 Phaser r = root; // force at root then reconcile
661 long s;
662 while ((s = r.state) >= 0)
663 UNSAFE.compareAndSwapLong(r, stateOffset, s, s | TERMINATION_PHASE);
664 reconcileState();
665 releaseWaiters(0); // signal all threads
666 releaseWaiters(1);
667 }
668
669 /**
670 * Returns the current phase number. The maximum phase number is
671 * {@code Integer.MAX_VALUE}, after which it restarts at
672 * zero. Upon termination, the phase number is negative.
673 *
674 * @return the phase number, or a negative value if terminated
675 */
676 public final int getPhase() {
677 return (int)((parent==null? state : reconcileState()) >>> PHASE_SHIFT);
678 }
679
680 /**
681 * Returns the number of parties registered at this barrier.
682 *
683 * @return the number of parties
684 */
685 public int getRegisteredParties() {
686 return partiesOf(parent==null? state : reconcileState());
687 }
688
689 /**
690 * Returns the number of registered parties that have arrived at
691 * the current phase of this barrier.
692 *
693 * @return the number of arrived parties
694 */
695 public int getArrivedParties() {
696 return arrivedOf(parent==null? state : reconcileState());
697 }
698
699 /**
700 * Returns the number of registered parties that have not yet
701 * arrived at the current phase of this barrier.
702 *
703 * @return the number of unarrived parties
704 */
705 public int getUnarrivedParties() {
706 return unarrivedOf(parent==null? state : reconcileState());
707 }
708
709 /**
710 * Returns the parent of this phaser, or {@code null} if none.
711 *
712 * @return the parent of this phaser, or {@code null} if none
713 */
714 public Phaser getParent() {
715 return parent;
716 }
717
718 /**
719 * Returns the root ancestor of this phaser, which is the same as
720 * this phaser if it has no parent.
721 *
722 * @return the root ancestor of this phaser
723 */
724 public Phaser getRoot() {
725 return root;
726 }
727
728 /**
729 * Returns {@code true} if this barrier has been terminated.
730 *
731 * @return {@code true} if this barrier has been terminated
732 */
733 public boolean isTerminated() {
734 return (parent == null? state : reconcileState()) < 0;
735 }
736
737 /**
738 * Overridable method to perform an action upon impending phase
739 * advance, and to control termination. This method is invoked
740 * upon arrival of the party tripping the barrier (when all other
741 * waiting parties are dormant). If this method returns {@code
742 * true}, then, rather than advance the phase number, this barrier
743 * will be set to a final termination state, and subsequent calls
744 * to {@link #isTerminated} will return true. Any (unchecked)
745 * Exception or Error thrown by an invocation of this method is
746 * propagated to the party attempting to trip the barrier, in
747 * which case no advance occurs.
748 *
749 * <p>The arguments to this method provide the state of the phaser
750 * prevailing for the current transition. The effects of invoking
751 * arrival, registration, and waiting methods on this Phaser from
752 * within {@code onAdvance} are unspecified and should not be
753 * relied on.
754 *
755 * <p>If this Phaser is a member of a tiered set of Phasers, then
756 * {@code onAdvance} is invoked only for its root Phaser on each
757 * advance.
758 *
759 * <p>The default version returns {@code true} when the number of
760 * registered parties is zero. Normally, overrides that arrange
761 * termination for other reasons should also preserve this
762 * property.
763 *
764 * @param phase the phase number on entering the barrier
765 * @param registeredParties the current number of registered parties
766 * @return {@code true} if this barrier should terminate
767 */
768 protected boolean onAdvance(int phase, int registeredParties) {
769 return registeredParties <= 0;
770 }
771
772 /**
773 * Returns a string identifying this phaser, as well as its
774 * state. The state, in brackets, includes the String {@code
775 * "phase = "} followed by the phase number, {@code "parties = "}
776 * followed by the number of registered parties, and {@code
777 * "arrived = "} followed by the number of arrived parties.
778 *
779 * @return a string identifying this barrier, as well as its state
780 */
781 public String toString() {
782 return stateToString(reconcileState());
783 }
784
785 /**
786 * Implementation of toString and string-based error messages
787 */
788 private String stateToString(long s) {
789 return super.toString() +
790 "[phase = " + phaseOf(s) +
791 " parties = " + partiesOf(s) +
792 " arrived = " + arrivedOf(s) + "]";
793 }
794
795 // Waiting mechanics
796
797 /**
798 * Removes and signals threads from queue for phase
799 */
800 private void releaseWaiters(int phase) {
801 AtomicReference<QNode> head = queueFor(phase);
802 QNode q;
803 int p;
804 while ((q = head.get()) != null &&
805 ((p = q.phase) == phase ||
806 (int)(root.state >>> PHASE_SHIFT) != p)) {
807 if (head.compareAndSet(q, q.next))
808 q.signal();
809 }
810 }
811
812 /**
813 * Tries to enqueue given node in the appropriate wait queue.
814 *
815 * @return true if successful
816 */
817 private boolean tryEnqueue(int phase, QNode node) {
818 releaseWaiters(phase-1); // ensure old queue clean
819 AtomicReference<QNode> head = queueFor(phase);
820 QNode q = head.get();
821 return ((q == null || q.phase == phase) &&
822 (int)(root.state >>> PHASE_SHIFT) == phase &&
823 head.compareAndSet(node.next = q, node));
824 }
825
826 /** The number of CPUs, for spin control */
827 private static final int NCPU = Runtime.getRuntime().availableProcessors();
828
829 /**
830 * The number of times to spin before blocking while waiting for
831 * advance, per arrival while waiting. On multiprocessors, fully
832 * blocking and waking up a large number of threads all at once is
833 * usually a very slow process, so we use rechargeable spins to
834 * avoid it when threads regularly arrive: When a thread in
835 * internalAwaitAdvance notices another arrival before blocking,
836 * and there appear to be enough CPUs available, it spins
837 * SPINS_PER_ARRIVAL more times before continuing to try to
838 * block. The value trades off good-citizenship vs big unnecessary
839 * slowdowns.
840 */
841 static final int SPINS_PER_ARRIVAL = NCPU < 2? 1 : 1 << 8;
842
843 /**
844 * Possibly blocks and waits for phase to advance unless aborted.
845 *
846 * @param phase current phase
847 * @param node if non-null, the wait node to track interrupt and timeout;
848 * if null, denotes noninterruptible wait
849 * @return current phase
850 */
851 private int internalAwaitAdvance(int phase, QNode node) {
852 Phaser current = this; // to eventually wait at root if tiered
853 boolean queued = false; // true when node is enqueued
854 int lastUnarrived = -1; // to increase spins upon change
855 int spins = SPINS_PER_ARRIVAL;
856 for (;;) {
857 int p, unarrived;
858 Phaser par;
859 long s = current.state;
860 if ((p = (int)(s >>> PHASE_SHIFT)) != phase) {
861 if (node != null)
862 node.onRelease();
863 releaseWaiters(phase);
864 return p;
865 }
866 else if ((unarrived = (int)(s & UNARRIVED_MASK)) != lastUnarrived) {
867 if ((lastUnarrived = unarrived) < NCPU)
868 spins += SPINS_PER_ARRIVAL;
869 }
870 else if (unarrived == 0 && (par = current.parent) != null) {
871 current = par; // if all arrived, use parent
872 par = par.parent;
873 lastUnarrived = -1;
874 }
875 else if (spins > 0)
876 --spins;
877 else if (node == null) // must be noninterruptible
878 node = new QNode(this, phase, false, false, 0L);
879 else if (node.isReleasable()) {
880 if ((int)(reconcileState() >>> PHASE_SHIFT) == phase)
881 return phase; // aborted
882 }
883 else if (!queued)
884 queued = tryEnqueue(phase, node);
885 else {
886 try {
887 ForkJoinPool.managedBlock(node);
888 } catch (InterruptedException ie) {
889 node.wasInterrupted = true;
890 }
891 }
892 }
893 }
894
895 /**
896 * Wait nodes for Treiber stack representing wait queue
897 */
898 static final class QNode implements ForkJoinPool.ManagedBlocker {
899 final Phaser phaser;
900 final int phase;
901 final boolean interruptible;
902 final boolean timed;
903 boolean wasInterrupted;
904 long nanos;
905 long lastTime;
906 volatile Thread thread; // nulled to cancel wait
907 QNode next;
908
909 QNode(Phaser phaser, int phase, boolean interruptible,
910 boolean timed, long nanos) {
911 this.phaser = phaser;
912 this.phase = phase;
913 this.interruptible = interruptible;
914 this.nanos = nanos;
915 this.timed = timed;
916 this.lastTime = timed? System.nanoTime() : 0L;
917 thread = Thread.currentThread();
918 }
919
920 public boolean isReleasable() {
921 Thread t = thread;
922 if (t != null) {
923 if (phaser.getPhase() != phase)
924 t = null;
925 else {
926 if (Thread.interrupted())
927 wasInterrupted = true;
928 if (interruptible && wasInterrupted)
929 t = null;
930 else if (timed) {
931 if (nanos > 0) {
932 long now = System.nanoTime();
933 nanos -= now - lastTime;
934 lastTime = now;
935 }
936 if (nanos <= 0)
937 t = null;
938 }
939 }
940 if (t != null)
941 return false;
942 thread = null;
943 }
944 return true;
945 }
946
947 public boolean block() {
948 if (isReleasable())
949 return true;
950 else if (!timed)
951 LockSupport.park(this);
952 else if (nanos > 0)
953 LockSupport.parkNanos(this, nanos);
954 return isReleasable();
955 }
956
957 void signal() {
958 Thread t = thread;
959 if (t != null) {
960 thread = null;
961 LockSupport.unpark(t);
962 }
963 }
964
965 void onRelease() { // actions upon return from internalAwaitAdvance
966 if (!interruptible && wasInterrupted)
967 Thread.currentThread().interrupt();
968 if (thread != null)
969 thread = null;
970 }
971
972 }
973
974 // Unsafe mechanics
975
976 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
977 private static final long stateOffset =
978 objectFieldOffset("state", Phaser.class);
979
980 private static long objectFieldOffset(String field, Class<?> klazz) {
981 try {
982 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
983 } catch (NoSuchFieldException e) {
984 // Convert Exception to corresponding Error
985 NoSuchFieldError error = new NoSuchFieldError(field);
986 error.initCause(e);
987 throw error;
988 }
989 }
990
991 /**
992 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
993 * Replace with a simple call to Unsafe.getUnsafe when integrating
994 * into a jdk.
995 *
996 * @return a sun.misc.Unsafe
997 */
998 private static sun.misc.Unsafe getUnsafe() {
999 try {
1000 return sun.misc.Unsafe.getUnsafe();
1001 } catch (SecurityException se) {
1002 try {
1003 return java.security.AccessController.doPrivileged
1004 (new java.security
1005 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1006 public sun.misc.Unsafe run() throws Exception {
1007 java.lang.reflect.Field f = sun.misc
1008 .Unsafe.class.getDeclaredField("theUnsafe");
1009 f.setAccessible(true);
1010 return (sun.misc.Unsafe) f.get(null);
1011 }});
1012 } catch (java.security.PrivilegedActionException e) {
1013 throw new RuntimeException("Could not initialize intrinsics",
1014 e.getCause());
1015 }
1016 }
1017 }
1018 }