ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.58
Committed: Wed Nov 24 15:48:01 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.57: +23 -15 lines
Log Message:
Improve javadoc for constructing child Phasers

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a {@code Phaser} has an associated phase number. The
38 * phase number starts at zero, and advances when all parties arrive
39 * at the barrier, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a barrier and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival at a
49 * barrier. These methods do not block, but return an associated
50 * <em>arrival phase number</em>; that is, the phase number of
51 * the barrier to which the arrival applied. When the final
52 * party for a given phase arrives, an optional barrier action
53 * is performed and the phase advances. Barrier actions,
54 * performed by the party triggering a phase advance, are
55 * arranged by overriding method {@link #onAdvance(int, int)},
56 * which also controls termination. Overriding this method is
57 * similar to, but more flexible than, providing a barrier
58 * action to a {@code CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the barrier advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the barrier. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A {@code Phaser} may enter a
78 * <em>termination</em> state in which all synchronization methods
79 * immediately return without updating phaser state or waiting for
80 * advance, and indicating (via a negative phase value) that execution
81 * is complete. Termination is triggered when an invocation of {@code
82 * onAdvance} returns {@code true}. As illustrated below, when
83 * phasers control actions with a fixed number of iterations, it is
84 * often convenient to override this method to cause termination when
85 * the current phase number reaches a threshold. Method {@link
86 * #forceTermination} is also available to abruptly release waiting
87 * threads and allow them to terminate.
88 *
89 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
90 * constructed in tree structures) to reduce contention. Phasers with
91 * large numbers of parties that would otherwise experience heavy
92 * synchronization contention costs may instead be set up so that
93 * groups of sub-phasers share a common parent. This may greatly
94 * increase throughput even though it incurs greater per-operation
95 * overhead.
96 *
97 * <p><b>Monitoring.</b> While synchronization methods may be invoked
98 * only by registered parties, the current state of a phaser may be
99 * monitored by any caller. At any given moment there are {@link
100 * #getRegisteredParties} parties in total, of which {@link
101 * #getArrivedParties} have arrived at the current phase ({@link
102 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
103 * parties arrive, the phase advances. The values returned by these
104 * methods may reflect transient states and so are not in general
105 * useful for synchronization control. Method {@link #toString}
106 * returns snapshots of these state queries in a form convenient for
107 * informal monitoring.
108 *
109 * <p><b>Sample usages:</b>
110 *
111 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
112 * to control a one-shot action serving a variable number of parties.
113 * The typical idiom is for the method setting this up to first
114 * register, then start the actions, then deregister, as in:
115 *
116 * <pre> {@code
117 * void runTasks(List<Runnable> tasks) {
118 * final Phaser phaser = new Phaser(1); // "1" to register self
119 * // create and start threads
120 * for (Runnable task : tasks) {
121 * phaser.register();
122 * new Thread() {
123 * public void run() {
124 * phaser.arriveAndAwaitAdvance(); // await all creation
125 * task.run();
126 * }
127 * }.start();
128 * }
129 *
130 * // allow threads to start and deregister self
131 * phaser.arriveAndDeregister();
132 * }}</pre>
133 *
134 * <p>One way to cause a set of threads to repeatedly perform actions
135 * for a given number of iterations is to override {@code onAdvance}:
136 *
137 * <pre> {@code
138 * void startTasks(List<Runnable> tasks, final int iterations) {
139 * final Phaser phaser = new Phaser() {
140 * protected boolean onAdvance(int phase, int registeredParties) {
141 * return phase >= iterations || registeredParties == 0;
142 * }
143 * };
144 * phaser.register();
145 * for (final Runnable task : tasks) {
146 * phaser.register();
147 * new Thread() {
148 * public void run() {
149 * do {
150 * task.run();
151 * phaser.arriveAndAwaitAdvance();
152 * } while (!phaser.isTerminated());
153 * }
154 * }.start();
155 * }
156 * phaser.arriveAndDeregister(); // deregister self, don't wait
157 * }}</pre>
158 *
159 * If the main task must later await termination, it
160 * may re-register and then execute a similar loop:
161 * <pre> {@code
162 * // ...
163 * phaser.register();
164 * while (!phaser.isTerminated())
165 * phaser.arriveAndAwaitAdvance();}</pre>
166 *
167 * <p>Related constructions may be used to await particular phase numbers
168 * in contexts where you are sure that the phase will never wrap around
169 * {@code Integer.MAX_VALUE}. For example:
170 *
171 * <pre> {@code
172 * void awaitPhase(Phaser phaser, int phase) {
173 * int p = phaser.register(); // assumes caller not already registered
174 * while (p < phase) {
175 * if (phaser.isTerminated())
176 * // ... deal with unexpected termination
177 * else
178 * p = phaser.arriveAndAwaitAdvance();
179 * }
180 * phaser.arriveAndDeregister();
181 * }}</pre>
182 *
183 *
184 * <p>To create a set of tasks using a tree of phasers,
185 * you could use code of the following form, assuming a
186 * Task class with a constructor accepting a phaser that
187 * it registers with upon construction:
188 *
189 * <pre> {@code
190 * void build(Task[] actions, int lo, int hi, Phaser ph) {
191 * if (hi - lo > TASKS_PER_PHASER) {
192 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
193 * int j = Math.min(i + TASKS_PER_PHASER, hi);
194 * build(actions, i, j, new Phaser(ph));
195 * }
196 * } else {
197 * for (int i = lo; i < hi; ++i)
198 * actions[i] = new Task(ph);
199 * // assumes new Task(ph) performs ph.register()
200 * }
201 * }
202 * // .. initially called, for n tasks via
203 * build(new Task[n], 0, n, new Phaser());}</pre>
204 *
205 * The best value of {@code TASKS_PER_PHASER} depends mainly on
206 * expected barrier synchronization rates. A value as low as four may
207 * be appropriate for extremely small per-barrier task bodies (thus
208 * high rates), or up to hundreds for extremely large ones.
209 *
210 * <p><b>Implementation notes</b>: This implementation restricts the
211 * maximum number of parties to 65535. Attempts to register additional
212 * parties result in {@code IllegalStateException}. However, you can and
213 * should create tiered phasers to accommodate arbitrarily large sets
214 * of participants.
215 *
216 * @since 1.7
217 * @author Doug Lea
218 */
219 public class Phaser {
220 /*
221 * This class implements an extension of X10 "clocks". Thanks to
222 * Vijay Saraswat for the idea, and to Vivek Sarkar for
223 * enhancements to extend functionality.
224 */
225
226 /**
227 * Barrier state representation. Conceptually, a barrier contains
228 * four values:
229 *
230 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
231 * * parties -- the number of parties to wait (bits 16-31)
232 * * phase -- the generation of the barrier (bits 32-62)
233 * * terminated -- set if barrier is terminated (bit 63 / sign)
234 *
235 * However, to efficiently maintain atomicity, these values are
236 * packed into a single (atomic) long. Termination uses the sign
237 * bit of 32 bit representation of phase, so phase is set to -1 on
238 * termination. Good performance relies on keeping state decoding
239 * and encoding simple, and keeping race windows short.
240 */
241 private volatile long state;
242
243 private static final int MAX_PARTIES = 0xffff;
244 private static final int MAX_PHASE = 0x7fffffff;
245 private static final int PARTIES_SHIFT = 16;
246 private static final int PHASE_SHIFT = 32;
247 private static final int UNARRIVED_MASK = 0xffff;
248 private static final long PARTIES_MASK = 0xffff0000L; // for masking long
249 private static final long ONE_ARRIVAL = 1L;
250 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
251 private static final long TERMINATION_PHASE = -1L << PHASE_SHIFT;
252
253 // The following unpacking methods are usually manually inlined
254
255 private static int unarrivedOf(long s) {
256 return (int)s & UNARRIVED_MASK;
257 }
258
259 private static int partiesOf(long s) {
260 return (int)s >>> PARTIES_SHIFT;
261 }
262
263 private static int phaseOf(long s) {
264 return (int) (s >>> PHASE_SHIFT);
265 }
266
267 private static int arrivedOf(long s) {
268 return partiesOf(s) - unarrivedOf(s);
269 }
270
271 /**
272 * The parent of this phaser, or null if none
273 */
274 private final Phaser parent;
275
276 /**
277 * The root of phaser tree. Equals this if not in a tree. Used to
278 * support faster state push-down.
279 */
280 private final Phaser root;
281
282 /**
283 * Heads of Treiber stacks for waiting threads. To eliminate
284 * contention when releasing some threads while adding others, we
285 * use two of them, alternating across even and odd phases.
286 * Subphasers share queues with root to speed up releases.
287 */
288 private final AtomicReference<QNode> evenQ;
289 private final AtomicReference<QNode> oddQ;
290
291 private AtomicReference<QNode> queueFor(int phase) {
292 return ((phase & 1) == 0) ? evenQ : oddQ;
293 }
294
295 /**
296 * Main implementation for methods arrive and arriveAndDeregister.
297 * Manually tuned to speed up and minimize race windows for the
298 * common case of just decrementing unarrived field.
299 *
300 * @param adj - adjustment to apply to state -- either
301 * ONE_ARRIVAL (for arrive) or
302 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
303 */
304 private int doArrive(long adj) {
305 for (;;) {
306 long s = state;
307 int phase = (int)(s >>> PHASE_SHIFT);
308 if (phase < 0)
309 return phase;
310 int unarrived = (int)s & UNARRIVED_MASK;
311 if (unarrived == 0)
312 checkBadArrive(s);
313 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
314 if (unarrived == 1) {
315 long p = s & PARTIES_MASK; // unshifted parties field
316 long lu = p >>> PARTIES_SHIFT;
317 int u = (int)lu;
318 int nextPhase = (phase + 1) & MAX_PHASE;
319 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
320 final Phaser parent = this.parent;
321 if (parent == null) {
322 if (onAdvance(phase, u))
323 next |= TERMINATION_PHASE; // obliterate phase
324 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
325 releaseWaiters(phase);
326 }
327 else {
328 parent.doArrive((u == 0) ?
329 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
330 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase ||
331 ((int)(state >>> PHASE_SHIFT) != nextPhase &&
332 !UNSAFE.compareAndSwapLong(this, stateOffset,
333 s, next)))
334 reconcileState();
335 }
336 }
337 return phase;
338 }
339 }
340 }
341
342 /**
343 * Rechecks state and throws bounds exceptions on arrival -- called
344 * only if unarrived is apparently zero.
345 */
346 private void checkBadArrive(long s) {
347 if (reconcileState() == s)
348 throw new IllegalStateException
349 ("Attempted arrival of unregistered party for " +
350 stateToString(s));
351 }
352
353 /**
354 * Implementation of register, bulkRegister
355 *
356 * @param registrations number to add to both parties and
357 * unarrived fields. Must be greater than zero.
358 */
359 private int doRegister(int registrations) {
360 // adjustment to state
361 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
362 final Phaser parent = this.parent;
363 for (;;) {
364 long s = (parent == null) ? state : reconcileState();
365 int parties = (int)s >>> PARTIES_SHIFT;
366 int phase = (int)(s >>> PHASE_SHIFT);
367 if (phase < 0)
368 return phase;
369 else if (parties != 0 && ((int)s & UNARRIVED_MASK) == 0)
370 internalAwaitAdvance(phase, null); // wait for onAdvance
371 else if (registrations > MAX_PARTIES - parties)
372 throw new IllegalStateException(badRegister(s));
373 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
374 return phase;
375 }
376 }
377
378 /**
379 * Returns message string for out of bounds exceptions on registration.
380 */
381 private String badRegister(long s) {
382 return "Attempt to register more than " +
383 MAX_PARTIES + " parties for " + stateToString(s);
384 }
385
386 /**
387 * Recursively resolves lagged phase propagation from root if necessary.
388 */
389 private long reconcileState() {
390 Phaser par = parent;
391 long s = state;
392 if (par != null) {
393 Phaser rt = root;
394 int phase, rPhase;
395 while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
396 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
397 if ((int)(par.state >>> PHASE_SHIFT) != rPhase)
398 par.reconcileState();
399 else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
400 long u = s & PARTIES_MASK; // reset unarrived to parties
401 long next = ((((long) rPhase) << PHASE_SHIFT) | u |
402 (u >>> PARTIES_SHIFT));
403 if (state == s &&
404 UNSAFE.compareAndSwapLong(this, stateOffset,
405 s, s = next))
406 break;
407 }
408 s = state;
409 }
410 }
411 return s;
412 }
413
414 /**
415 * Creates a new phaser without any initially registered parties,
416 * initial phase number 0, and no parent. Any thread using this
417 * phaser will need to first register for it.
418 */
419 public Phaser() {
420 this(null, 0);
421 }
422
423 /**
424 * Creates a new phaser with the given number of registered
425 * unarrived parties, initial phase number 0, and no parent.
426 *
427 * @param parties the number of parties required to trip barrier
428 * @throws IllegalArgumentException if parties less than zero
429 * or greater than the maximum number of parties supported
430 */
431 public Phaser(int parties) {
432 this(null, parties);
433 }
434
435 /**
436 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
437 *
438 * @param parent the parent phaser
439 */
440 public Phaser(Phaser parent) {
441 this(parent, 0);
442 }
443
444 /**
445 * Creates a new phaser with the given parent and number of
446 * registered unarrived parties. If parent is non-null, this
447 * phaser is registered with the parent and its initial phase
448 * number is the same as that of parent phaser. If the number of
449 * parties is zero, the parent phaser will not proceed until this
450 * child phaser registers parties and advances, or this child
451 * phaser deregisters with its parent, or the parent is otherwise
452 * terminated. This child Phaser will be deregistered from its
453 * parent automatically upon any invocation of the child's {@link
454 * #arriveAndDeregister} method that results in the child's number
455 * of registered parties becoming zero. (Although rarely
456 * appropriate, this child may also explicity deregister from its
457 * parent using {@code getParent().arriveAndDeregister()}.) After
458 * deregistration, the child cannot re-register. (Instead, you can
459 * create a new child Phaser.)
460 *
461 * @param parent the parent phaser
462 * @param parties the number of parties required to trip barrier
463 * @throws IllegalArgumentException if parties less than zero
464 * or greater than the maximum number of parties supported
465 */
466 public Phaser(Phaser parent, int parties) {
467 if (parties >>> PARTIES_SHIFT != 0)
468 throw new IllegalArgumentException("Illegal number of parties");
469 int phase;
470 this.parent = parent;
471 if (parent != null) {
472 Phaser r = parent.root;
473 this.root = r;
474 this.evenQ = r.evenQ;
475 this.oddQ = r.oddQ;
476 phase = parent.doRegister(1);
477 }
478 else {
479 this.root = this;
480 this.evenQ = new AtomicReference<QNode>();
481 this.oddQ = new AtomicReference<QNode>();
482 phase = 0;
483 }
484 long p = (long)parties;
485 this.state = (((long)phase) << PHASE_SHIFT) | p | (p << PARTIES_SHIFT);
486 }
487
488 /**
489 * Adds a new unarrived party to this phaser.
490 * If an ongoing invocation of {@link #onAdvance} is in progress,
491 * this method may wait until its completion before registering.
492 *
493 * @return the arrival phase number to which this registration applied
494 * @throws IllegalStateException if attempting to register more
495 * than the maximum supported number of parties
496 */
497 public int register() {
498 return doRegister(1);
499 }
500
501 /**
502 * Adds the given number of new unarrived parties to this phaser.
503 * If an ongoing invocation of {@link #onAdvance} is in progress,
504 * this method may wait until its completion before registering.
505 *
506 * @param parties the number of additional parties required to trip barrier
507 * @return the arrival phase number to which this registration applied
508 * @throws IllegalStateException if attempting to register more
509 * than the maximum supported number of parties
510 * @throws IllegalArgumentException if {@code parties < 0}
511 */
512 public int bulkRegister(int parties) {
513 if (parties < 0)
514 throw new IllegalArgumentException();
515 if (parties == 0)
516 return getPhase();
517 return doRegister(parties);
518 }
519
520 /**
521 * Arrives at the barrier, but does not wait for others. (You can
522 * in turn wait for others via {@link #awaitAdvance}). It is an
523 * unenforced usage error for an unregistered party to invoke this
524 * method.
525 *
526 * @return the arrival phase number, or a negative value if terminated
527 * @throws IllegalStateException if not terminated and the number
528 * of unarrived parties would become negative
529 */
530 public int arrive() {
531 return doArrive(ONE_ARRIVAL);
532 }
533
534 /**
535 * Arrives at the barrier and deregisters from it without waiting
536 * for others. Deregistration reduces the number of parties
537 * required to trip the barrier in future phases. If this phaser
538 * has a parent, and deregistration causes this phaser to have
539 * zero parties, this phaser also arrives at and is deregistered
540 * from its parent. It is an unenforced usage error for an
541 * unregistered party to invoke this method.
542 *
543 * @return the arrival phase number, or a negative value if terminated
544 * @throws IllegalStateException if not terminated and the number
545 * of registered or unarrived parties would become negative
546 */
547 public int arriveAndDeregister() {
548 return doArrive(ONE_ARRIVAL|ONE_PARTY);
549 }
550
551 /**
552 * Arrives at the barrier and awaits others. Equivalent in effect
553 * to {@code awaitAdvance(arrive())}. If you need to await with
554 * interruption or timeout, you can arrange this with an analogous
555 * construction using one of the other forms of the {@code
556 * awaitAdvance} method. If instead you need to deregister upon
557 * arrival, use {@link #arriveAndDeregister}. It is an unenforced
558 * usage error for an unregistered party to invoke this method.
559 *
560 * @return the arrival phase number, or a negative number if terminated
561 * @throws IllegalStateException if not terminated and the number
562 * of unarrived parties would become negative
563 */
564 public int arriveAndAwaitAdvance() {
565 return awaitAdvance(arrive());
566 }
567
568 /**
569 * Awaits the phase of the barrier to advance from the given phase
570 * value, returning immediately if the current phase of the
571 * barrier is not equal to the given phase value or this barrier
572 * is terminated.
573 *
574 * @param phase an arrival phase number, or negative value if
575 * terminated; this argument is normally the value returned by a
576 * previous call to {@code arrive} or its variants
577 * @return the next arrival phase number, or a negative value
578 * if terminated or argument is negative
579 */
580 public int awaitAdvance(int phase) {
581 if (phase < 0)
582 return phase;
583 long s = (parent == null) ? state : reconcileState();
584 int p = (int)(s >>> PHASE_SHIFT);
585 return (p != phase) ? p : internalAwaitAdvance(phase, null);
586 }
587
588 /**
589 * Awaits the phase of the barrier to advance from the given phase
590 * value, throwing {@code InterruptedException} if interrupted
591 * while waiting, or returning immediately if the current phase of
592 * the barrier is not equal to the given phase value or this
593 * barrier is terminated.
594 *
595 * @param phase an arrival phase number, or negative value if
596 * terminated; this argument is normally the value returned by a
597 * previous call to {@code arrive} or its variants
598 * @return the next arrival phase number, or a negative value
599 * if terminated or argument is negative
600 * @throws InterruptedException if thread interrupted while waiting
601 */
602 public int awaitAdvanceInterruptibly(int phase)
603 throws InterruptedException {
604 if (phase < 0)
605 return phase;
606 long s = (parent == null) ? state : reconcileState();
607 int p = (int)(s >>> PHASE_SHIFT);
608 if (p == phase) {
609 QNode node = new QNode(this, phase, true, false, 0L);
610 p = internalAwaitAdvance(phase, node);
611 if (node.wasInterrupted)
612 throw new InterruptedException();
613 }
614 return p;
615 }
616
617 /**
618 * Awaits the phase of the barrier to advance from the given phase
619 * value or the given timeout to elapse, throwing {@code
620 * InterruptedException} if interrupted while waiting, or
621 * returning immediately if the current phase of the barrier is
622 * not equal to the given phase value or this barrier is
623 * terminated.
624 *
625 * @param phase an arrival phase number, or negative value if
626 * terminated; this argument is normally the value returned by a
627 * previous call to {@code arrive} or its variants
628 * @param timeout how long to wait before giving up, in units of
629 * {@code unit}
630 * @param unit a {@code TimeUnit} determining how to interpret the
631 * {@code timeout} parameter
632 * @return the next arrival phase number, or a negative value
633 * if terminated or argument is negative
634 * @throws InterruptedException if thread interrupted while waiting
635 * @throws TimeoutException if timed out while waiting
636 */
637 public int awaitAdvanceInterruptibly(int phase,
638 long timeout, TimeUnit unit)
639 throws InterruptedException, TimeoutException {
640 if (phase < 0)
641 return phase;
642 long s = (parent == null) ? state : reconcileState();
643 int p = (int)(s >>> PHASE_SHIFT);
644 if (p == phase) {
645 long nanos = unit.toNanos(timeout);
646 QNode node = new QNode(this, phase, true, true, nanos);
647 p = internalAwaitAdvance(phase, node);
648 if (node.wasInterrupted)
649 throw new InterruptedException();
650 else if (p == phase)
651 throw new TimeoutException();
652 }
653 return p;
654 }
655
656 /**
657 * Forces this barrier to enter termination state. Counts of
658 * arrived and registered parties are unaffected. If this phaser
659 * is a member of a tiered set of phasers, then all of the phasers
660 * in the set are terminated. If this phaser is already
661 * terminated, this method has no effect. This method may be
662 * useful for coordinating recovery after one or more tasks
663 * encounter unexpected exceptions.
664 */
665 public void forceTermination() {
666 // Only need to change root state
667 final Phaser root = this.root;
668 long s;
669 while ((s = root.state) >= 0) {
670 if (UNSAFE.compareAndSwapLong(root, stateOffset,
671 s, s | TERMINATION_PHASE)) {
672 releaseWaiters(0); // signal all threads
673 releaseWaiters(1);
674 return;
675 }
676 }
677 }
678
679 /**
680 * Returns the current phase number. The maximum phase number is
681 * {@code Integer.MAX_VALUE}, after which it restarts at
682 * zero. Upon termination, the phase number is negative.
683 *
684 * @return the phase number, or a negative value if terminated
685 */
686 public final int getPhase() {
687 return (int)(root.state >>> PHASE_SHIFT);
688 }
689
690 /**
691 * Returns the number of parties registered at this barrier.
692 *
693 * @return the number of parties
694 */
695 public int getRegisteredParties() {
696 return partiesOf(state);
697 }
698
699 /**
700 * Returns the number of registered parties that have arrived at
701 * the current phase of this barrier.
702 *
703 * @return the number of arrived parties
704 */
705 public int getArrivedParties() {
706 return arrivedOf(parent==null? state : reconcileState());
707 }
708
709 /**
710 * Returns the number of registered parties that have not yet
711 * arrived at the current phase of this barrier.
712 *
713 * @return the number of unarrived parties
714 */
715 public int getUnarrivedParties() {
716 return unarrivedOf(parent==null? state : reconcileState());
717 }
718
719 /**
720 * Returns the parent of this phaser, or {@code null} if none.
721 *
722 * @return the parent of this phaser, or {@code null} if none
723 */
724 public Phaser getParent() {
725 return parent;
726 }
727
728 /**
729 * Returns the root ancestor of this phaser, which is the same as
730 * this phaser if it has no parent.
731 *
732 * @return the root ancestor of this phaser
733 */
734 public Phaser getRoot() {
735 return root;
736 }
737
738 /**
739 * Returns {@code true} if this barrier has been terminated.
740 *
741 * @return {@code true} if this barrier has been terminated
742 */
743 public boolean isTerminated() {
744 return root.state < 0L;
745 }
746
747 /**
748 * Overridable method to perform an action upon impending phase
749 * advance, and to control termination. This method is invoked
750 * upon arrival of the party tripping the barrier (when all other
751 * waiting parties are dormant). If this method returns {@code
752 * true}, then, rather than advance the phase number, this barrier
753 * will be set to a final termination state, and subsequent calls
754 * to {@link #isTerminated} will return true. Any (unchecked)
755 * Exception or Error thrown by an invocation of this method is
756 * propagated to the party attempting to trip the barrier, in
757 * which case no advance occurs.
758 *
759 * <p>The arguments to this method provide the state of the phaser
760 * prevailing for the current transition. The effects of invoking
761 * arrival, registration, and waiting methods on this Phaser from
762 * within {@code onAdvance} are unspecified and should not be
763 * relied on.
764 *
765 * <p>If this Phaser is a member of a tiered set of Phasers, then
766 * {@code onAdvance} is invoked only for its root Phaser on each
767 * advance.
768 *
769 * <p>The default version returns {@code true} when the number of
770 * registered parties is zero. Normally, overrides that arrange
771 * termination for other reasons should also preserve this
772 * property.
773 *
774 * @param phase the phase number on entering the barrier
775 * @param registeredParties the current number of registered parties
776 * @return {@code true} if this barrier should terminate
777 */
778 protected boolean onAdvance(int phase, int registeredParties) {
779 return registeredParties <= 0;
780 }
781
782 /**
783 * Returns a string identifying this phaser, as well as its
784 * state. The state, in brackets, includes the String {@code
785 * "phase = "} followed by the phase number, {@code "parties = "}
786 * followed by the number of registered parties, and {@code
787 * "arrived = "} followed by the number of arrived parties.
788 *
789 * @return a string identifying this barrier, as well as its state
790 */
791 public String toString() {
792 return stateToString(reconcileState());
793 }
794
795 /**
796 * Implementation of toString and string-based error messages
797 */
798 private String stateToString(long s) {
799 return super.toString() +
800 "[phase = " + phaseOf(s) +
801 " parties = " + partiesOf(s) +
802 " arrived = " + arrivedOf(s) + "]";
803 }
804
805 // Waiting mechanics
806
807 /**
808 * Removes and signals threads from queue for phase.
809 */
810 private void releaseWaiters(int phase) {
811 AtomicReference<QNode> head = queueFor(phase);
812 QNode q;
813 int p;
814 while ((q = head.get()) != null &&
815 ((p = q.phase) == phase ||
816 (int)(root.state >>> PHASE_SHIFT) != p)) {
817 if (head.compareAndSet(q, q.next))
818 q.signal();
819 }
820 }
821
822 /** The number of CPUs, for spin control */
823 private static final int NCPU = Runtime.getRuntime().availableProcessors();
824
825 /**
826 * The number of times to spin before blocking while waiting for
827 * advance, per arrival while waiting. On multiprocessors, fully
828 * blocking and waking up a large number of threads all at once is
829 * usually a very slow process, so we use rechargeable spins to
830 * avoid it when threads regularly arrive: When a thread in
831 * internalAwaitAdvance notices another arrival before blocking,
832 * and there appear to be enough CPUs available, it spins
833 * SPINS_PER_ARRIVAL more times before blocking. Plus, even on
834 * uniprocessors, there is at least one intervening Thread.yield
835 * before blocking. The value trades off good-citizenship vs big
836 * unnecessary slowdowns.
837 */
838 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
839
840 /**
841 * Possibly blocks and waits for phase to advance unless aborted.
842 *
843 * @param phase current phase
844 * @param node if non-null, the wait node to track interrupt and timeout;
845 * if null, denotes noninterruptible wait
846 * @return current phase
847 */
848 private int internalAwaitAdvance(int phase, QNode node) {
849 Phaser current = this; // to eventually wait at root if tiered
850 boolean queued = false; // true when node is enqueued
851 int lastUnarrived = -1; // to increase spins upon change
852 int spins = SPINS_PER_ARRIVAL;
853 long s;
854 int p;
855 while ((p = (int)((s = current.state) >>> PHASE_SHIFT)) == phase) {
856 Phaser par;
857 int unarrived = (int)s & UNARRIVED_MASK;
858 if (unarrived != lastUnarrived) {
859 if (lastUnarrived == -1) // ensure old queue clean
860 releaseWaiters(phase-1);
861 if ((lastUnarrived = unarrived) < NCPU)
862 spins += SPINS_PER_ARRIVAL;
863 }
864 else if (unarrived == 0 && (par = current.parent) != null) {
865 current = par; // if all arrived, use parent
866 par = par.parent;
867 lastUnarrived = -1;
868 }
869 else if (spins > 0) {
870 if (--spins == (SPINS_PER_ARRIVAL >>> 1))
871 Thread.yield(); // yield midway through spin
872 }
873 else if (node == null) // must be noninterruptible
874 node = new QNode(this, phase, false, false, 0L);
875 else if (node.isReleasable()) {
876 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
877 break;
878 else
879 return phase; // aborted
880 }
881 else if (!queued) { // push onto queue
882 AtomicReference<QNode> head = queueFor(phase);
883 QNode q = head.get();
884 if (q == null || q.phase == phase) {
885 node.next = q;
886 if ((p = (int)(root.state >>> PHASE_SHIFT)) != phase)
887 break; // recheck to avoid stale enqueue
888 else
889 queued = head.compareAndSet(q, node);
890 }
891 }
892 else {
893 try {
894 ForkJoinPool.managedBlock(node);
895 } catch (InterruptedException ie) {
896 node.wasInterrupted = true;
897 }
898 }
899 }
900 releaseWaiters(phase);
901 if (node != null)
902 node.onRelease();
903 return p;
904 }
905
906 /**
907 * Wait nodes for Treiber stack representing wait queue
908 */
909 static final class QNode implements ForkJoinPool.ManagedBlocker {
910 final Phaser phaser;
911 final int phase;
912 final boolean interruptible;
913 final boolean timed;
914 boolean wasInterrupted;
915 long nanos;
916 long lastTime;
917 volatile Thread thread; // nulled to cancel wait
918 QNode next;
919
920 QNode(Phaser phaser, int phase, boolean interruptible,
921 boolean timed, long nanos) {
922 this.phaser = phaser;
923 this.phase = phase;
924 this.interruptible = interruptible;
925 this.nanos = nanos;
926 this.timed = timed;
927 this.lastTime = timed? System.nanoTime() : 0L;
928 thread = Thread.currentThread();
929 }
930
931 public boolean isReleasable() {
932 Thread t = thread;
933 if (t != null) {
934 if (phaser.getPhase() != phase)
935 t = null;
936 else {
937 if (Thread.interrupted())
938 wasInterrupted = true;
939 if (interruptible && wasInterrupted)
940 t = null;
941 else if (timed) {
942 if (nanos > 0) {
943 long now = System.nanoTime();
944 nanos -= now - lastTime;
945 lastTime = now;
946 }
947 if (nanos <= 0)
948 t = null;
949 }
950 }
951 if (t != null)
952 return false;
953 thread = null;
954 }
955 return true;
956 }
957
958 public boolean block() {
959 if (isReleasable())
960 return true;
961 else if (!timed)
962 LockSupport.park(this);
963 else if (nanos > 0)
964 LockSupport.parkNanos(this, nanos);
965 return isReleasable();
966 }
967
968 void signal() {
969 Thread t = thread;
970 if (t != null) {
971 thread = null;
972 LockSupport.unpark(t);
973 }
974 }
975
976 void onRelease() { // actions upon return from internalAwaitAdvance
977 if (!interruptible && wasInterrupted)
978 Thread.currentThread().interrupt();
979 if (thread != null)
980 thread = null;
981 }
982
983 }
984
985 // Unsafe mechanics
986
987 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
988 private static final long stateOffset =
989 objectFieldOffset("state", Phaser.class);
990
991 private static long objectFieldOffset(String field, Class<?> klazz) {
992 try {
993 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
994 } catch (NoSuchFieldException e) {
995 // Convert Exception to corresponding Error
996 NoSuchFieldError error = new NoSuchFieldError(field);
997 error.initCause(e);
998 throw error;
999 }
1000 }
1001
1002 /**
1003 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1004 * Replace with a simple call to Unsafe.getUnsafe when integrating
1005 * into a jdk.
1006 *
1007 * @return a sun.misc.Unsafe
1008 */
1009 private static sun.misc.Unsafe getUnsafe() {
1010 try {
1011 return sun.misc.Unsafe.getUnsafe();
1012 } catch (SecurityException se) {
1013 try {
1014 return java.security.AccessController.doPrivileged
1015 (new java.security
1016 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1017 public sun.misc.Unsafe run() throws Exception {
1018 java.lang.reflect.Field f = sun.misc
1019 .Unsafe.class.getDeclaredField("theUnsafe");
1020 f.setAccessible(true);
1021 return (sun.misc.Unsafe) f.get(null);
1022 }});
1023 } catch (java.security.PrivilegedActionException e) {
1024 throw new RuntimeException("Could not initialize intrinsics",
1025 e.getCause());
1026 }
1027 }
1028 }
1029 }