ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.64
Committed: Mon Nov 29 20:58:06 2010 UTC (13 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.63: +1 -1 lines
Log Message:
consistent ternary operator style

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state in which all synchronization methods immediately return
79 * without updating phaser state or waiting for advance, and
80 * indicating (via a negative phase value) that execution is complete.
81 * Termination is triggered when an invocation of {@code onAdvance}
82 * returns {@code true}. The default implementation returns {@code
83 * true} if a deregistration has caused the number of registered
84 * parties to become zero. As illustrated below, when phasers control
85 * actions with a fixed number of iterations, it is often convenient
86 * to override this method to cause termination when the current phase
87 * number reaches a threshold. Method {@link #forceTermination} is
88 * also available to abruptly release waiting threads and allow them
89 * to terminate.
90 *
91 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 * constructed in tree structures) to reduce contention. Phasers with
93 * large numbers of parties that would otherwise experience heavy
94 * synchronization contention costs may instead be set up so that
95 * groups of sub-phasers share a common parent. This may greatly
96 * increase throughput even though it incurs greater per-operation
97 * overhead.
98 *
99 * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 * only by registered parties, the current state of a phaser may be
101 * monitored by any caller. At any given moment there are {@link
102 * #getRegisteredParties} parties in total, of which {@link
103 * #getArrivedParties} have arrived at the current phase ({@link
104 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 * parties arrive, the phase advances. The values returned by these
106 * methods may reflect transient states and so are not in general
107 * useful for synchronization control. Method {@link #toString}
108 * returns snapshots of these state queries in a form convenient for
109 * informal monitoring.
110 *
111 * <p><b>Sample usages:</b>
112 *
113 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 * to control a one-shot action serving a variable number of parties.
115 * The typical idiom is for the method setting this up to first
116 * register, then start the actions, then deregister, as in:
117 *
118 * <pre> {@code
119 * void runTasks(List<Runnable> tasks) {
120 * final Phaser phaser = new Phaser(1); // "1" to register self
121 * // create and start threads
122 * for (Runnable task : tasks) {
123 * phaser.register();
124 * new Thread() {
125 * public void run() {
126 * phaser.arriveAndAwaitAdvance(); // await all creation
127 * task.run();
128 * }
129 * }.start();
130 * }
131 *
132 * // allow threads to start and deregister self
133 * phaser.arriveAndDeregister();
134 * }}</pre>
135 *
136 * <p>One way to cause a set of threads to repeatedly perform actions
137 * for a given number of iterations is to override {@code onAdvance}:
138 *
139 * <pre> {@code
140 * void startTasks(List<Runnable> tasks, final int iterations) {
141 * final Phaser phaser = new Phaser() {
142 * protected boolean onAdvance(int phase, int registeredParties) {
143 * return phase >= iterations || registeredParties == 0;
144 * }
145 * };
146 * phaser.register();
147 * for (final Runnable task : tasks) {
148 * phaser.register();
149 * new Thread() {
150 * public void run() {
151 * do {
152 * task.run();
153 * phaser.arriveAndAwaitAdvance();
154 * } while (!phaser.isTerminated());
155 * }
156 * }.start();
157 * }
158 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 * }}</pre>
160 *
161 * If the main task must later await termination, it
162 * may re-register and then execute a similar loop:
163 * <pre> {@code
164 * // ...
165 * phaser.register();
166 * while (!phaser.isTerminated())
167 * phaser.arriveAndAwaitAdvance();}</pre>
168 *
169 * <p>Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }}</pre>
184 *
185 *
186 * <p>To create a set of tasks using a tree of phasers,
187 * you could use code of the following form, assuming a
188 * Task class with a constructor accepting a {@code Phaser} that
189 * it registers with upon construction:
190 *
191 * <pre> {@code
192 * void build(Task[] actions, int lo, int hi, Phaser ph) {
193 * if (hi - lo > TASKS_PER_PHASER) {
194 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
195 * int j = Math.min(i + TASKS_PER_PHASER, hi);
196 * build(actions, i, j, new Phaser(ph));
197 * }
198 * } else {
199 * for (int i = lo; i < hi; ++i)
200 * actions[i] = new Task(ph);
201 * // assumes new Task(ph) performs ph.register()
202 * }
203 * }
204 * // .. initially called, for n tasks via
205 * build(new Task[n], 0, n, new Phaser());}</pre>
206 *
207 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 * expected synchronization rates. A value as low as four may
209 * be appropriate for extremely small per-phase task bodies (thus
210 * high rates), or up to hundreds for extremely large ones.
211 *
212 * <p><b>Implementation notes</b>: This implementation restricts the
213 * maximum number of parties to 65535. Attempts to register additional
214 * parties result in {@code IllegalStateException}. However, you can and
215 * should create tiered phasers to accommodate arbitrarily large sets
216 * of participants.
217 *
218 * @since 1.7
219 * @author Doug Lea
220 */
221 public class Phaser {
222 /*
223 * This class implements an extension of X10 "clocks". Thanks to
224 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 * enhancements to extend functionality.
226 */
227
228 /**
229 * Primary state representation, holding four fields:
230 *
231 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
232 * * parties -- the number of parties to wait (bits 16-31)
233 * * phase -- the generation of the barrier (bits 32-62)
234 * * terminated -- set if barrier is terminated (bit 63 / sign)
235 *
236 * However, to efficiently maintain atomicity, these values are
237 * packed into a single (atomic) long. Termination uses the sign
238 * bit of 32 bit representation of phase, so phase is set to -1 on
239 * termination. Good performance relies on keeping state decoding
240 * and encoding simple, and keeping race windows short.
241 */
242 private volatile long state;
243
244 private static final int MAX_PARTIES = 0xffff;
245 private static final int MAX_PHASE = 0x7fffffff;
246 private static final int PARTIES_SHIFT = 16;
247 private static final int PHASE_SHIFT = 32;
248 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
249 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
250 private static final long ONE_ARRIVAL = 1L;
251 private static final long ONE_PARTY = 1L << PARTIES_SHIFT;
252 private static final long TERMINATION_BIT = 1L << 63;
253
254 // The following unpacking methods are usually manually inlined
255
256 private static int unarrivedOf(long s) {
257 return (int)s & UNARRIVED_MASK;
258 }
259
260 private static int partiesOf(long s) {
261 return (int)s >>> PARTIES_SHIFT;
262 }
263
264 private static int phaseOf(long s) {
265 return (int) (s >>> PHASE_SHIFT);
266 }
267
268 private static int arrivedOf(long s) {
269 return partiesOf(s) - unarrivedOf(s);
270 }
271
272 /**
273 * The parent of this phaser, or null if none
274 */
275 private final Phaser parent;
276
277 /**
278 * The root of phaser tree. Equals this if not in a tree. Used to
279 * support faster state push-down.
280 */
281 private final Phaser root;
282
283 /**
284 * Heads of Treiber stacks for waiting threads. To eliminate
285 * contention when releasing some threads while adding others, we
286 * use two of them, alternating across even and odd phases.
287 * Subphasers share queues with root to speed up releases.
288 */
289 private final AtomicReference<QNode> evenQ;
290 private final AtomicReference<QNode> oddQ;
291
292 private AtomicReference<QNode> queueFor(int phase) {
293 return ((phase & 1) == 0) ? evenQ : oddQ;
294 }
295
296 /**
297 * Returns message string for bounds exceptions on arrival.
298 */
299 private String badArrive(long s) {
300 return "Attempted arrival of unregistered party for " +
301 stateToString(s);
302 }
303
304 /**
305 * Returns message string for bounds exceptions on registration.
306 */
307 private String badRegister(long s) {
308 return "Attempt to register more than " +
309 MAX_PARTIES + " parties for " + stateToString(s);
310 }
311
312 /**
313 * Main implementation for methods arrive and arriveAndDeregister.
314 * Manually tuned to speed up and minimize race windows for the
315 * common case of just decrementing unarrived field.
316 *
317 * @param adj - adjustment to apply to state -- either
318 * ONE_ARRIVAL (for arrive) or
319 * ONE_ARRIVAL|ONE_PARTY (for arriveAndDeregister)
320 */
321 private int doArrive(long adj) {
322 for (;;) {
323 long s = state;
324 int unarrived = (int)s & UNARRIVED_MASK;
325 int phase = (int)(s >>> PHASE_SHIFT);
326 if (phase < 0)
327 return phase;
328 else if (unarrived == 0) {
329 if (reconcileState() == s) // recheck
330 throw new IllegalStateException(badArrive(s));
331 }
332 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
333 if (unarrived == 1) {
334 long p = s & PARTIES_MASK; // unshifted parties field
335 long lu = p >>> PARTIES_SHIFT;
336 int u = (int)lu;
337 int nextPhase = (phase + 1) & MAX_PHASE;
338 long next = ((long)nextPhase << PHASE_SHIFT) | p | lu;
339 final Phaser parent = this.parent;
340 if (parent == null) {
341 if (onAdvance(phase, u))
342 next |= TERMINATION_BIT;
343 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
344 releaseWaiters(phase);
345 }
346 else {
347 parent.doArrive((u == 0) ?
348 ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL);
349 if ((int)(parent.state >>> PHASE_SHIFT) != nextPhase)
350 reconcileState();
351 else if (state == s)
352 UNSAFE.compareAndSwapLong(this, stateOffset, s,
353 next);
354 }
355 }
356 return phase;
357 }
358 }
359 }
360
361 /**
362 * Implementation of register, bulkRegister
363 *
364 * @param registrations number to add to both parties and
365 * unarrived fields. Must be greater than zero.
366 */
367 private int doRegister(int registrations) {
368 // adjustment to state
369 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
370 final Phaser parent = this.parent;
371 for (;;) {
372 long s = (parent == null) ? state : reconcileState();
373 int parties = (int)s >>> PARTIES_SHIFT;
374 int phase = (int)(s >>> PHASE_SHIFT);
375 if (phase < 0)
376 return phase;
377 else if (registrations > MAX_PARTIES - parties)
378 throw new IllegalStateException(badRegister(s));
379 else if ((parties == 0 && parent == null) || // first reg of root
380 ((int)s & UNARRIVED_MASK) != 0) { // not advancing
381 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s + adj))
382 return phase;
383 }
384 else if (parties != 0) // wait for onAdvance
385 root.internalAwaitAdvance(phase, null);
386 else { // 1st registration of child
387 synchronized (this) { // register parent first
388 if (reconcileState() == s) { // recheck under lock
389 parent.doRegister(1); // OK if throws IllegalState
390 for (;;) { // simpler form of outer loop
391 s = reconcileState();
392 phase = (int)(s >>> PHASE_SHIFT);
393 if (phase < 0 ||
394 UNSAFE.compareAndSwapLong(this, stateOffset,
395 s, s + adj))
396 return phase;
397 }
398 }
399 }
400 }
401 }
402 }
403
404 /**
405 * Recursively resolves lagged phase propagation from root if necessary.
406 */
407 private long reconcileState() {
408 Phaser par = parent;
409 long s = state;
410 if (par != null) {
411 Phaser rt = root;
412 int phase, rPhase;
413 while ((phase = (int)(s >>> PHASE_SHIFT)) >= 0 &&
414 (rPhase = (int)(rt.state >>> PHASE_SHIFT)) != phase) {
415 if (par != rt && (int)(par.state >>> PHASE_SHIFT) != rPhase)
416 par.reconcileState();
417 else if (rPhase < 0 || ((int)s & UNARRIVED_MASK) == 0) {
418 long u = s & PARTIES_MASK; // reset unarrived to parties
419 long next = ((((long) rPhase) << PHASE_SHIFT) | u |
420 (u >>> PARTIES_SHIFT));
421 UNSAFE.compareAndSwapLong(this, stateOffset, s, next);
422 }
423 s = state;
424 }
425 }
426 return s;
427 }
428
429 /**
430 * Creates a new phaser with no initially registered parties, no
431 * parent, and initial phase number 0. Any thread using this
432 * phaser will need to first register for it.
433 */
434 public Phaser() {
435 this(null, 0);
436 }
437
438 /**
439 * Creates a new phaser with the given number of registered
440 * unarrived parties, no parent, and initial phase number 0.
441 *
442 * @param parties the number of parties required to advance to the
443 * next phase
444 * @throws IllegalArgumentException if parties less than zero
445 * or greater than the maximum number of parties supported
446 */
447 public Phaser(int parties) {
448 this(null, parties);
449 }
450
451 /**
452 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
453 *
454 * @param parent the parent phaser
455 */
456 public Phaser(Phaser parent) {
457 this(parent, 0);
458 }
459
460 /**
461 * Creates a new phaser with the given parent and number of
462 * registered unarrived parties. Registration and deregistration
463 * of this child phaser with its parent are managed automatically.
464 * If the given parent is non-null, whenever this child phaser has
465 * any registered parties (as established in this constructor,
466 * {@link #register}, or {@link #bulkRegister}), this child phaser
467 * is registered with its parent. Whenever the number of
468 * registered parties becomes zero as the result of an invocation
469 * of {@link #arriveAndDeregister}, this child phaser is
470 * deregistered from its parent.
471 *
472 * @param parent the parent phaser
473 * @param parties the number of parties required to advance to the
474 * next phase
475 * @throws IllegalArgumentException if parties less than zero
476 * or greater than the maximum number of parties supported
477 */
478 public Phaser(Phaser parent, int parties) {
479 if (parties >>> PARTIES_SHIFT != 0)
480 throw new IllegalArgumentException("Illegal number of parties");
481 long s = ((long) parties) | (((long) parties) << PARTIES_SHIFT);
482 this.parent = parent;
483 if (parent != null) {
484 Phaser r = parent.root;
485 this.root = r;
486 this.evenQ = r.evenQ;
487 this.oddQ = r.oddQ;
488 if (parties != 0)
489 s |= ((long)(parent.doRegister(1))) << PHASE_SHIFT;
490 }
491 else {
492 this.root = this;
493 this.evenQ = new AtomicReference<QNode>();
494 this.oddQ = new AtomicReference<QNode>();
495 }
496 this.state = s;
497 }
498
499 /**
500 * Adds a new unarrived party to this phaser. If an ongoing
501 * invocation of {@link #onAdvance} is in progress, this method
502 * may await its completion before returning. If this phaser has
503 * a parent, and this phaser previously had no registered parties,
504 * this phaser is also registered with its parent.
505 *
506 * @return the arrival phase number to which this registration applied
507 * @throws IllegalStateException if attempting to register more
508 * than the maximum supported number of parties
509 */
510 public int register() {
511 return doRegister(1);
512 }
513
514 /**
515 * Adds the given number of new unarrived parties to this phaser.
516 * If an ongoing invocation of {@link #onAdvance} is in progress,
517 * this method may await its completion before returning. If this
518 * phaser has a parent, and the given number of parities is
519 * greater than zero, and this phaser previously had no registered
520 * parties, this phaser is also registered with its parent.
521 *
522 * @param parties the number of additional parties required to
523 * advance to the next phase
524 * @return the arrival phase number to which this registration applied
525 * @throws IllegalStateException if attempting to register more
526 * than the maximum supported number of parties
527 * @throws IllegalArgumentException if {@code parties < 0}
528 */
529 public int bulkRegister(int parties) {
530 if (parties < 0)
531 throw new IllegalArgumentException();
532 if (parties == 0)
533 return getPhase();
534 return doRegister(parties);
535 }
536
537 /**
538 * Arrives at this phaser, without waiting for others to arrive.
539 *
540 * <p>It is a usage error for an unregistered party to invoke this
541 * method. However, this error may result in an {@code
542 * IllegalStateException} only upon some subsequent operation on
543 * this phaser, if ever.
544 *
545 * @return the arrival phase number, or a negative value if terminated
546 * @throws IllegalStateException if not terminated and the number
547 * of unarrived parties would become negative
548 */
549 public int arrive() {
550 return doArrive(ONE_ARRIVAL);
551 }
552
553 /**
554 * Arrives at this phaser and deregisters from it without waiting
555 * for others to arrive. Deregistration reduces the number of
556 * parties required to advance in future phases. If this phaser
557 * has a parent, and deregistration causes this phaser to have
558 * zero parties, this phaser is also deregistered from its parent.
559 *
560 * <p>It is a usage error for an unregistered party to invoke this
561 * method. However, this error may result in an {@code
562 * IllegalStateException} only upon some subsequent operation on
563 * this phaser, if ever.
564 *
565 * @return the arrival phase number, or a negative value if terminated
566 * @throws IllegalStateException if not terminated and the number
567 * of registered or unarrived parties would become negative
568 */
569 public int arriveAndDeregister() {
570 return doArrive(ONE_ARRIVAL|ONE_PARTY);
571 }
572
573 /**
574 * Arrives at this phaser and awaits others. Equivalent in effect
575 * to {@code awaitAdvance(arrive())}. If you need to await with
576 * interruption or timeout, you can arrange this with an analogous
577 * construction using one of the other forms of the {@code
578 * awaitAdvance} method. If instead you need to deregister upon
579 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
580 *
581 * <p>It is a usage error for an unregistered party to invoke this
582 * method. However, this error may result in an {@code
583 * IllegalStateException} only upon some subsequent operation on
584 * this phaser, if ever.
585 *
586 * @return the arrival phase number, or a negative number if terminated
587 * @throws IllegalStateException if not terminated and the number
588 * of unarrived parties would become negative
589 */
590 public int arriveAndAwaitAdvance() {
591 return awaitAdvance(doArrive(ONE_ARRIVAL));
592 }
593
594 /**
595 * Awaits the phase of this phaser to advance from the given phase
596 * value, returning immediately if the current phase is not equal
597 * to the given phase value or this phaser is terminated.
598 *
599 * @param phase an arrival phase number, or negative value if
600 * terminated; this argument is normally the value returned by a
601 * previous call to {@code arrive} or {@code arriveAndDeregister}.
602 * @return the next arrival phase number, or a negative value
603 * if terminated or argument is negative
604 */
605 public int awaitAdvance(int phase) {
606 Phaser rt;
607 int p = (int)(state >>> PHASE_SHIFT);
608 if (phase < 0)
609 return phase;
610 if (p == phase &&
611 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
612 return rt.internalAwaitAdvance(phase, null);
613 return p;
614 }
615
616 /**
617 * Awaits the phase of this phaser to advance from the given phase
618 * value, throwing {@code InterruptedException} if interrupted
619 * while waiting, or returning immediately if the current phase is
620 * not equal to the given phase value or this phaser is
621 * terminated.
622 *
623 * @param phase an arrival phase number, or negative value if
624 * terminated; this argument is normally the value returned by a
625 * previous call to {@code arrive} or {@code arriveAndDeregister}.
626 * @return the next arrival phase number, or a negative value
627 * if terminated or argument is negative
628 * @throws InterruptedException if thread interrupted while waiting
629 */
630 public int awaitAdvanceInterruptibly(int phase)
631 throws InterruptedException {
632 Phaser rt;
633 int p = (int)(state >>> PHASE_SHIFT);
634 if (phase < 0)
635 return phase;
636 if (p == phase &&
637 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
638 QNode node = new QNode(this, phase, true, false, 0L);
639 p = rt.internalAwaitAdvance(phase, node);
640 if (node.wasInterrupted)
641 throw new InterruptedException();
642 }
643 return p;
644 }
645
646 /**
647 * Awaits the phase of this phaser to advance from the given phase
648 * value or the given timeout to elapse, throwing {@code
649 * InterruptedException} if interrupted while waiting, or
650 * returning immediately if the current phase is not equal to the
651 * given phase value or this phaser is terminated.
652 *
653 * @param phase an arrival phase number, or negative value if
654 * terminated; this argument is normally the value returned by a
655 * previous call to {@code arrive} or {@code arriveAndDeregister}.
656 * @param timeout how long to wait before giving up, in units of
657 * {@code unit}
658 * @param unit a {@code TimeUnit} determining how to interpret the
659 * {@code timeout} parameter
660 * @return the next arrival phase number, or a negative value
661 * if terminated or argument is negative
662 * @throws InterruptedException if thread interrupted while waiting
663 * @throws TimeoutException if timed out while waiting
664 */
665 public int awaitAdvanceInterruptibly(int phase,
666 long timeout, TimeUnit unit)
667 throws InterruptedException, TimeoutException {
668 long nanos = unit.toNanos(timeout);
669 Phaser rt;
670 int p = (int)(state >>> PHASE_SHIFT);
671 if (phase < 0)
672 return phase;
673 if (p == phase &&
674 (p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
675 QNode node = new QNode(this, phase, true, true, nanos);
676 p = rt.internalAwaitAdvance(phase, node);
677 if (node.wasInterrupted)
678 throw new InterruptedException();
679 else if (p == phase)
680 throw new TimeoutException();
681 }
682 return p;
683 }
684
685 /**
686 * Forces this phaser to enter termination state. Counts of
687 * arrived and registered parties are unaffected. If this phaser
688 * is a member of a tiered set of phasers, then all of the phasers
689 * in the set are terminated. If this phaser is already
690 * terminated, this method has no effect. This method may be
691 * useful for coordinating recovery after one or more tasks
692 * encounter unexpected exceptions.
693 */
694 public void forceTermination() {
695 // Only need to change root state
696 final Phaser root = this.root;
697 long s;
698 while ((s = root.state) >= 0) {
699 if (UNSAFE.compareAndSwapLong(root, stateOffset,
700 s, s | TERMINATION_BIT)) {
701 releaseWaiters(0); // signal all threads
702 releaseWaiters(1);
703 return;
704 }
705 }
706 }
707
708 /**
709 * Returns the current phase number. The maximum phase number is
710 * {@code Integer.MAX_VALUE}, after which it restarts at
711 * zero. Upon termination, the phase number is negative,
712 * in which case the prevailing phase prior to termination
713 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
714 *
715 * @return the phase number, or a negative value if terminated
716 */
717 public final int getPhase() {
718 return (int)(root.state >>> PHASE_SHIFT);
719 }
720
721 /**
722 * Returns the number of parties registered at this phaser.
723 *
724 * @return the number of parties
725 */
726 public int getRegisteredParties() {
727 return partiesOf(state);
728 }
729
730 /**
731 * Returns the number of registered parties that have arrived at
732 * the current phase of this phaser.
733 *
734 * @return the number of arrived parties
735 */
736 public int getArrivedParties() {
737 long s = state;
738 int u = unarrivedOf(s); // only reconcile if possibly needed
739 return (u != 0 || parent == null) ?
740 partiesOf(s) - u :
741 arrivedOf(reconcileState());
742 }
743
744 /**
745 * Returns the number of registered parties that have not yet
746 * arrived at the current phase of this phaser.
747 *
748 * @return the number of unarrived parties
749 */
750 public int getUnarrivedParties() {
751 int u = unarrivedOf(state);
752 return (u != 0 || parent == null) ? u : unarrivedOf(reconcileState());
753 }
754
755 /**
756 * Returns the parent of this phaser, or {@code null} if none.
757 *
758 * @return the parent of this phaser, or {@code null} if none
759 */
760 public Phaser getParent() {
761 return parent;
762 }
763
764 /**
765 * Returns the root ancestor of this phaser, which is the same as
766 * this phaser if it has no parent.
767 *
768 * @return the root ancestor of this phaser
769 */
770 public Phaser getRoot() {
771 return root;
772 }
773
774 /**
775 * Returns {@code true} if this phaser has been terminated.
776 *
777 * @return {@code true} if this phaser has been terminated
778 */
779 public boolean isTerminated() {
780 return root.state < 0L;
781 }
782
783 /**
784 * Overridable method to perform an action upon impending phase
785 * advance, and to control termination. This method is invoked
786 * upon arrival of the party advancing this phaser (when all other
787 * waiting parties are dormant). If this method returns {@code
788 * true}, then, rather than advance the phase number, this phaser
789 * will be set to a final termination state, and subsequent calls
790 * to {@link #isTerminated} will return true. Any (unchecked)
791 * Exception or Error thrown by an invocation of this method is
792 * propagated to the party attempting to advance this phaser, in
793 * which case no advance occurs.
794 *
795 * <p>The arguments to this method provide the state of the phaser
796 * prevailing for the current transition. The effects of invoking
797 * arrival, registration, and waiting methods on this phaser from
798 * within {@code onAdvance} are unspecified and should not be
799 * relied on.
800 *
801 * <p>If this phaser is a member of a tiered set of phasers, then
802 * {@code onAdvance} is invoked only for its root phaser on each
803 * advance.
804 *
805 * <p>To support the most common use cases, the default
806 * implementation of this method returns {@code true} when the
807 * number of registered parties has become zero as the result of a
808 * party invoking {@code arriveAndDeregister}. You can disable
809 * this behavior, thus enabling continuation upon future
810 * registrations, by overriding this method to always return
811 * {@code false}:
812 *
813 * <pre> {@code
814 * Phaser phaser = new Phaser() {
815 * protected boolean onAdvance(int phase, int parties) { return false; }
816 * }}</pre>
817 *
818 * @param phase the current phase number on entry to this method,
819 * before this phaser is advanced
820 * @param registeredParties the current number of registered parties
821 * @return {@code true} if this phaser should terminate
822 */
823 protected boolean onAdvance(int phase, int registeredParties) {
824 return registeredParties == 0;
825 }
826
827 /**
828 * Returns a string identifying this phaser, as well as its
829 * state. The state, in brackets, includes the String {@code
830 * "phase = "} followed by the phase number, {@code "parties = "}
831 * followed by the number of registered parties, and {@code
832 * "arrived = "} followed by the number of arrived parties.
833 *
834 * @return a string identifying this phaser, as well as its state
835 */
836 public String toString() {
837 return stateToString(reconcileState());
838 }
839
840 /**
841 * Implementation of toString and string-based error messages
842 */
843 private String stateToString(long s) {
844 return super.toString() +
845 "[phase = " + phaseOf(s) +
846 " parties = " + partiesOf(s) +
847 " arrived = " + arrivedOf(s) + "]";
848 }
849
850 // Waiting mechanics
851
852 /**
853 * Removes and signals threads from queue for phase.
854 */
855 private void releaseWaiters(int phase) {
856 QNode q; // first element of queue
857 int p; // its phase
858 Thread t; // its thread
859 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
860 while ((q = head.get()) != null &&
861 ((p = q.phase) == phase ||
862 (int)(root.state >>> PHASE_SHIFT) != p)) {
863 if (head.compareAndSet(q, q.next) &&
864 (t = q.thread) != null) {
865 q.thread = null;
866 LockSupport.unpark(t);
867 }
868 }
869 }
870
871 /** The number of CPUs, for spin control */
872 private static final int NCPU = Runtime.getRuntime().availableProcessors();
873
874 /**
875 * The number of times to spin before blocking while waiting for
876 * advance, per arrival while waiting. On multiprocessors, fully
877 * blocking and waking up a large number of threads all at once is
878 * usually a very slow process, so we use rechargeable spins to
879 * avoid it when threads regularly arrive: When a thread in
880 * internalAwaitAdvance notices another arrival before blocking,
881 * and there appear to be enough CPUs available, it spins
882 * SPINS_PER_ARRIVAL more times before blocking. The value trades
883 * off good-citizenship vs big unnecessary slowdowns.
884 */
885 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
886
887 /**
888 * Possibly blocks and waits for phase to advance unless aborted.
889 * Call only from root node.
890 *
891 * @param phase current phase
892 * @param node if non-null, the wait node to track interrupt and timeout;
893 * if null, denotes noninterruptible wait
894 * @return current phase
895 */
896 private int internalAwaitAdvance(int phase, QNode node) {
897 releaseWaiters(phase-1); // ensure old queue clean
898 boolean queued = false; // true when node is enqueued
899 int lastUnarrived = 0; // to increase spins upon change
900 int spins = SPINS_PER_ARRIVAL;
901 long s;
902 int p;
903 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
904 if (node == null) { // spinning in noninterruptible mode
905 int unarrived = (int)s & UNARRIVED_MASK;
906 if (unarrived != lastUnarrived &&
907 (lastUnarrived = unarrived) < NCPU)
908 spins += SPINS_PER_ARRIVAL;
909 boolean interrupted = Thread.interrupted();
910 if (interrupted || --spins < 0) { // need node to record intr
911 node = new QNode(this, phase, false, false, 0L);
912 node.wasInterrupted = interrupted;
913 }
914 }
915 else if (node.isReleasable()) // done or aborted
916 break;
917 else if (!queued) { // push onto queue
918 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
919 QNode q = node.next = head.get();
920 if ((q == null || q.phase == phase) &&
921 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
922 queued = head.compareAndSet(q, node);
923 }
924 else {
925 try {
926 ForkJoinPool.managedBlock(node);
927 } catch (InterruptedException ie) {
928 node.wasInterrupted = true;
929 }
930 }
931 }
932
933 if (node != null) {
934 if (node.thread != null)
935 node.thread = null; // avoid need for unpark()
936 if (node.wasInterrupted && !node.interruptible)
937 Thread.currentThread().interrupt();
938 if ((p = (int)(state >>> PHASE_SHIFT)) == phase)
939 return p; // recheck abort
940 }
941 releaseWaiters(phase);
942 return p;
943 }
944
945 /**
946 * Wait nodes for Treiber stack representing wait queue
947 */
948 static final class QNode implements ForkJoinPool.ManagedBlocker {
949 final Phaser phaser;
950 final int phase;
951 final boolean interruptible;
952 final boolean timed;
953 boolean wasInterrupted;
954 long nanos;
955 long lastTime;
956 volatile Thread thread; // nulled to cancel wait
957 QNode next;
958
959 QNode(Phaser phaser, int phase, boolean interruptible,
960 boolean timed, long nanos) {
961 this.phaser = phaser;
962 this.phase = phase;
963 this.interruptible = interruptible;
964 this.nanos = nanos;
965 this.timed = timed;
966 this.lastTime = timed ? System.nanoTime() : 0L;
967 thread = Thread.currentThread();
968 }
969
970 public boolean isReleasable() {
971 if (thread == null)
972 return true;
973 if (phaser.getPhase() != phase) {
974 thread = null;
975 return true;
976 }
977 if (Thread.interrupted())
978 wasInterrupted = true;
979 if (wasInterrupted && interruptible) {
980 thread = null;
981 return true;
982 }
983 if (timed) {
984 if (nanos > 0L) {
985 long now = System.nanoTime();
986 nanos -= now - lastTime;
987 lastTime = now;
988 }
989 if (nanos <= 0L) {
990 thread = null;
991 return true;
992 }
993 }
994 return false;
995 }
996
997 public boolean block() {
998 if (isReleasable())
999 return true;
1000 else if (!timed)
1001 LockSupport.park(this);
1002 else if (nanos > 0)
1003 LockSupport.parkNanos(this, nanos);
1004 return isReleasable();
1005 }
1006 }
1007
1008 // Unsafe mechanics
1009
1010 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1011 private static final long stateOffset =
1012 objectFieldOffset("state", Phaser.class);
1013
1014 private static long objectFieldOffset(String field, Class<?> klazz) {
1015 try {
1016 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1017 } catch (NoSuchFieldException e) {
1018 // Convert Exception to corresponding Error
1019 NoSuchFieldError error = new NoSuchFieldError(field);
1020 error.initCause(e);
1021 throw error;
1022 }
1023 }
1024
1025 /**
1026 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1027 * Replace with a simple call to Unsafe.getUnsafe when integrating
1028 * into a jdk.
1029 *
1030 * @return a sun.misc.Unsafe
1031 */
1032 private static sun.misc.Unsafe getUnsafe() {
1033 try {
1034 return sun.misc.Unsafe.getUnsafe();
1035 } catch (SecurityException se) {
1036 try {
1037 return java.security.AccessController.doPrivileged
1038 (new java.security
1039 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1040 public sun.misc.Unsafe run() throws Exception {
1041 java.lang.reflect.Field f = sun.misc
1042 .Unsafe.class.getDeclaredField("theUnsafe");
1043 f.setAccessible(true);
1044 return (sun.misc.Unsafe) f.get(null);
1045 }});
1046 } catch (java.security.PrivilegedActionException e) {
1047 throw new RuntimeException("Could not initialize intrinsics",
1048 e.getCause());
1049 }
1050 }
1051 }
1052 }