ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.65
Committed: Wed Dec 1 17:20:41 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.64: +178 -141 lines
Log Message:
Fix case of re-registering root; forceTermination spec

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state in which all synchronization methods immediately return
79 * without updating phaser state or waiting for advance, and
80 * indicating (via a negative phase value) that execution is complete.
81 * Termination is triggered when an invocation of {@code onAdvance}
82 * returns {@code true}. The default implementation returns {@code
83 * true} if a deregistration has caused the number of registered
84 * parties to become zero. As illustrated below, when phasers control
85 * actions with a fixed number of iterations, it is often convenient
86 * to override this method to cause termination when the current phase
87 * number reaches a threshold. Method {@link #forceTermination} is
88 * also available to abruptly release waiting threads and allow them
89 * to terminate.
90 *
91 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
92 * constructed in tree structures) to reduce contention. Phasers with
93 * large numbers of parties that would otherwise experience heavy
94 * synchronization contention costs may instead be set up so that
95 * groups of sub-phasers share a common parent. This may greatly
96 * increase throughput even though it incurs greater per-operation
97 * overhead.
98 *
99 * <p><b>Monitoring.</b> While synchronization methods may be invoked
100 * only by registered parties, the current state of a phaser may be
101 * monitored by any caller. At any given moment there are {@link
102 * #getRegisteredParties} parties in total, of which {@link
103 * #getArrivedParties} have arrived at the current phase ({@link
104 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
105 * parties arrive, the phase advances. The values returned by these
106 * methods may reflect transient states and so are not in general
107 * useful for synchronization control. Method {@link #toString}
108 * returns snapshots of these state queries in a form convenient for
109 * informal monitoring.
110 *
111 * <p><b>Sample usages:</b>
112 *
113 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
114 * to control a one-shot action serving a variable number of parties.
115 * The typical idiom is for the method setting this up to first
116 * register, then start the actions, then deregister, as in:
117 *
118 * <pre> {@code
119 * void runTasks(List<Runnable> tasks) {
120 * final Phaser phaser = new Phaser(1); // "1" to register self
121 * // create and start threads
122 * for (Runnable task : tasks) {
123 * phaser.register();
124 * new Thread() {
125 * public void run() {
126 * phaser.arriveAndAwaitAdvance(); // await all creation
127 * task.run();
128 * }
129 * }.start();
130 * }
131 *
132 * // allow threads to start and deregister self
133 * phaser.arriveAndDeregister();
134 * }}</pre>
135 *
136 * <p>One way to cause a set of threads to repeatedly perform actions
137 * for a given number of iterations is to override {@code onAdvance}:
138 *
139 * <pre> {@code
140 * void startTasks(List<Runnable> tasks, final int iterations) {
141 * final Phaser phaser = new Phaser() {
142 * protected boolean onAdvance(int phase, int registeredParties) {
143 * return phase >= iterations || registeredParties == 0;
144 * }
145 * };
146 * phaser.register();
147 * for (final Runnable task : tasks) {
148 * phaser.register();
149 * new Thread() {
150 * public void run() {
151 * do {
152 * task.run();
153 * phaser.arriveAndAwaitAdvance();
154 * } while (!phaser.isTerminated());
155 * }
156 * }.start();
157 * }
158 * phaser.arriveAndDeregister(); // deregister self, don't wait
159 * }}</pre>
160 *
161 * If the main task must later await termination, it
162 * may re-register and then execute a similar loop:
163 * <pre> {@code
164 * // ...
165 * phaser.register();
166 * while (!phaser.isTerminated())
167 * phaser.arriveAndAwaitAdvance();}</pre>
168 *
169 * <p>Related constructions may be used to await particular phase numbers
170 * in contexts where you are sure that the phase will never wrap around
171 * {@code Integer.MAX_VALUE}. For example:
172 *
173 * <pre> {@code
174 * void awaitPhase(Phaser phaser, int phase) {
175 * int p = phaser.register(); // assumes caller not already registered
176 * while (p < phase) {
177 * if (phaser.isTerminated())
178 * // ... deal with unexpected termination
179 * else
180 * p = phaser.arriveAndAwaitAdvance();
181 * }
182 * phaser.arriveAndDeregister();
183 * }}</pre>
184 *
185 *
186 * <p>To create a set of {@code n} tasks using a tree of phasers, you
187 * could use code of the following form, assuming a Task class with a
188 * constructor accepting a {@code Phaser} that it registers with upon
189 * construction. After invocation of {@code build(new Task[n], 0, n,
190 * new Phaser())}, these tasks could then be started, for example by
191 * submitting to a pool:
192 *
193 * <pre> {@code
194 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
195 * if (hi - lo > TASKS_PER_PHASER) {
196 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
197 * int j = Math.min(i + TASKS_PER_PHASER, hi);
198 * build(tasks, i, j, new Phaser(ph));
199 * }
200 * } else {
201 * for (int i = lo; i < hi; ++i)
202 * tasks[i] = new Task(ph);
203 * // assumes new Task(ph) performs ph.register()
204 * }
205 * }}</pre>
206 *
207 * The best value of {@code TASKS_PER_PHASER} depends mainly on
208 * expected synchronization rates. A value as low as four may
209 * be appropriate for extremely small per-phase task bodies (thus
210 * high rates), or up to hundreds for extremely large ones.
211 *
212 * <p><b>Implementation notes</b>: This implementation restricts the
213 * maximum number of parties to 65535. Attempts to register additional
214 * parties result in {@code IllegalStateException}. However, you can and
215 * should create tiered phasers to accommodate arbitrarily large sets
216 * of participants.
217 *
218 * @since 1.7
219 * @author Doug Lea
220 */
221 public class Phaser {
222 /*
223 * This class implements an extension of X10 "clocks". Thanks to
224 * Vijay Saraswat for the idea, and to Vivek Sarkar for
225 * enhancements to extend functionality.
226 */
227
228 /**
229 * Primary state representation, holding four fields:
230 *
231 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
232 * * parties -- the number of parties to wait (bits 16-31)
233 * * phase -- the generation of the barrier (bits 32-62)
234 * * terminated -- set if barrier is terminated (bit 63 / sign)
235 *
236 * Except that a phaser with no registered parties is
237 * distinguished with the otherwise illegal state of having zero
238 * parties and one unarrived parties (encoded as EMPTY below).
239 *
240 * To efficiently maintain atomicity, these values are packed into
241 * a single (atomic) long. Good performance relies on keeping
242 * state decoding and encoding simple, and keeping race windows
243 * short.
244 *
245 * All state updates are performed via CAS except initial
246 * registration of a sub-phaser (i.e., one with a non-null
247 * parent). In this (relatively rare) case, we use built-in
248 * synchronization to lock while first registering with its
249 * parent.
250 *
251 * The phase of a subphaser is allowed to lag that of its
252 * ancestors until it is actually accessed. Method reconcileState
253 * is usually attempted only only when the number of unarrived
254 * parties appears to be zero, which indicates a potential lag in
255 * updating phase after the root advanced.
256 */
257 private volatile long state;
258
259 private static final int MAX_PARTIES = 0xffff;
260 private static final int MAX_PHASE = 0x7fffffff;
261 private static final int PARTIES_SHIFT = 16;
262 private static final int PHASE_SHIFT = 32;
263 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
264 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
265 private static final long TERMINATION_BIT = 1L << 63;
266
267 // some special values
268 private static final int ONE_ARRIVAL = 1;
269 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
270 private static final int EMPTY = 1;
271
272 // The following unpacking methods are usually manually inlined
273
274 private static int unarrivedOf(long s) {
275 int counts = (int)s;
276 return (counts == EMPTY)? 0 : counts & UNARRIVED_MASK;
277 }
278
279 private static int partiesOf(long s) {
280 int counts = (int)s;
281 return (counts == EMPTY)? 0 : counts >>> PARTIES_SHIFT;
282 }
283
284 private static int phaseOf(long s) {
285 return (int) (s >>> PHASE_SHIFT);
286 }
287
288 private static int arrivedOf(long s) {
289 int counts = (int)s;
290 return (counts == EMPTY)? 0 :
291 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
292 }
293
294 /**
295 * The parent of this phaser, or null if none
296 */
297 private final Phaser parent;
298
299 /**
300 * The root of phaser tree. Equals this if not in a tree.
301 */
302 private final Phaser root;
303
304 /**
305 * Heads of Treiber stacks for waiting threads. To eliminate
306 * contention when releasing some threads while adding others, we
307 * use two of them, alternating across even and odd phases.
308 * Subphasers share queues with root to speed up releases.
309 */
310 private final AtomicReference<QNode> evenQ;
311 private final AtomicReference<QNode> oddQ;
312
313 private AtomicReference<QNode> queueFor(int phase) {
314 return ((phase & 1) == 0) ? evenQ : oddQ;
315 }
316
317 /**
318 * Returns message string for bounds exceptions on arrival.
319 */
320 private String badArrive(long s) {
321 return "Attempted arrival of unregistered party for " +
322 stateToString(s);
323 }
324
325 /**
326 * Returns message string for bounds exceptions on registration.
327 */
328 private String badRegister(long s) {
329 return "Attempt to register more than " +
330 MAX_PARTIES + " parties for " + stateToString(s);
331 }
332
333 /**
334 * Main implementation for methods arrive and arriveAndDeregister.
335 * Manually tuned to speed up and minimize race windows for the
336 * common case of just decrementing unarrived field.
337 *
338 * @param deregister false for arrive, true for arriveAndDeregister
339 */
340 private int doArrive(boolean deregister) {
341 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
342 long s;
343 int phase;
344 while ((phase = (int)((s = state) >>> PHASE_SHIFT)) >= 0) {
345 int counts = (int)s;
346 int unarrived = counts & UNARRIVED_MASK;
347 if (counts == EMPTY || unarrived == 0) {
348 if (reconcileState() == s)
349 throw new IllegalStateException(badArrive(s));
350 }
351 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
352 if (unarrived == 1) {
353 long n = s & PARTIES_MASK; // unshifted parties field
354 int u = ((int)n) >>> PARTIES_SHIFT;
355 Phaser par = parent;
356 if (par != null) {
357 par.doArrive(u == 0);
358 reconcileState();
359 }
360 else {
361 n |= (((long)((phase+1) & MAX_PHASE)) << PHASE_SHIFT);
362 if (onAdvance(phase, u))
363 n |= TERMINATION_BIT;
364 else if (u == 0)
365 n |= EMPTY; // reset to unregistered
366 else
367 n |= (long)u; // reset unarr to parties
368 // assert state == s || isTerminated();
369 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
370 releaseWaiters(phase);
371 }
372 }
373 break;
374 }
375 }
376 return phase;
377 }
378
379 /**
380 * Implementation of register, bulkRegister
381 *
382 * @param registrations number to add to both parties and
383 * unarrived fields. Must be greater than zero.
384 */
385 private int doRegister(int registrations) {
386 // adjustment to state
387 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
388 Phaser par = parent;
389 int phase;
390 for (;;) {
391 long s = state;
392 int counts = (int)s;
393 int parties = counts >>> PARTIES_SHIFT;
394 int unarrived = counts & UNARRIVED_MASK;
395 if (registrations > MAX_PARTIES - parties)
396 throw new IllegalStateException(badRegister(s));
397 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
398 break;
399 else if (counts != EMPTY) { // not 1st registration
400 if (par == null || reconcileState() == s) {
401 if (unarrived == 0) // wait out advance
402 root.internalAwaitAdvance(phase, null);
403 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
404 s, s + adj))
405 break;
406 }
407 }
408 else if (par == null) { // 1st root registration
409 long next = (((long) phase) << PHASE_SHIFT) | adj;
410 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
411 break;
412 }
413 else {
414 synchronized(this) { // 1st sub registration
415 if (state == s) { // recheck under lock
416 par.doRegister(1);
417 do { // force current phase
418 phase = (int)(root.state >>> PHASE_SHIFT);
419 // assert phase < 0 || (int)state == EMPTY;
420 } while (!UNSAFE.compareAndSwapLong
421 (this, stateOffset, state,
422 (((long) phase) << PHASE_SHIFT) | adj));
423 break;
424 }
425 }
426 }
427 }
428 return phase;
429 }
430
431 /**
432 * Resolves lagged phase propagation from root if necessary.
433 */
434 private long reconcileState() {
435 Phaser rt = root;
436 long s = state;
437 if (rt != this) {
438 int phase;
439 while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
440 (int)(s >>> PHASE_SHIFT)) {
441 // assert phase < 0 || unarrivedOf(s) == 0
442 long t; // to reread s
443 long p = s & PARTIES_MASK; // unshifted parties field
444 long n = (((long) phase) << PHASE_SHIFT) | p;
445 if (phase >= 0) {
446 if (p == 0L)
447 n |= EMPTY; // reset to empty
448 else
449 n |= p >>> PARTIES_SHIFT; // set unarr to parties
450 }
451 if ((t = state) == s &&
452 UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
453 break;
454 s = t;
455 }
456 }
457 return s;
458 }
459
460 /**
461 * Creates a new phaser with no initially registered parties, no
462 * parent, and initial phase number 0. Any thread using this
463 * phaser will need to first register for it.
464 */
465 public Phaser() {
466 this(null, 0);
467 }
468
469 /**
470 * Creates a new phaser with the given number of registered
471 * unarrived parties, no parent, and initial phase number 0.
472 *
473 * @param parties the number of parties required to advance to the
474 * next phase
475 * @throws IllegalArgumentException if parties less than zero
476 * or greater than the maximum number of parties supported
477 */
478 public Phaser(int parties) {
479 this(null, parties);
480 }
481
482 /**
483 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
484 *
485 * @param parent the parent phaser
486 */
487 public Phaser(Phaser parent) {
488 this(parent, 0);
489 }
490
491 /**
492 * Creates a new phaser with the given parent and number of
493 * registered unarrived parties. Registration and deregistration
494 * of this child phaser with its parent are managed automatically.
495 * If the given parent is non-null, whenever this child phaser has
496 * any registered parties (as established in this constructor,
497 * {@link #register}, or {@link #bulkRegister}), this child phaser
498 * is registered with its parent. Whenever the number of
499 * registered parties becomes zero as the result of an invocation
500 * of {@link #arriveAndDeregister}, this child phaser is
501 * deregistered from its parent.
502 *
503 * @param parent the parent phaser
504 * @param parties the number of parties required to advance to the
505 * next phase
506 * @throws IllegalArgumentException if parties less than zero
507 * or greater than the maximum number of parties supported
508 */
509 public Phaser(Phaser parent, int parties) {
510 if (parties >>> PARTIES_SHIFT != 0)
511 throw new IllegalArgumentException("Illegal number of parties");
512 int phase = 0;
513 this.parent = parent;
514 if (parent != null) {
515 Phaser r = parent.root;
516 this.root = r;
517 this.evenQ = r.evenQ;
518 this.oddQ = r.oddQ;
519 if (parties != 0)
520 phase = parent.doRegister(1);
521 }
522 else {
523 this.root = this;
524 this.evenQ = new AtomicReference<QNode>();
525 this.oddQ = new AtomicReference<QNode>();
526 }
527 this.state = (parties == 0)? ((long) EMPTY) :
528 ((((long) phase) << PHASE_SHIFT) |
529 (((long) parties) << PARTIES_SHIFT) |
530 ((long) parties));
531 }
532
533 /**
534 * Adds a new unarrived party to this phaser. If an ongoing
535 * invocation of {@link #onAdvance} is in progress, this method
536 * may await its completion before returning. If this phaser has
537 * a parent, and this phaser previously had no registered parties,
538 * this phaser is also registered with its parent.
539 *
540 * @return the arrival phase number to which this registration applied
541 * @throws IllegalStateException if attempting to register more
542 * than the maximum supported number of parties
543 */
544 public int register() {
545 return doRegister(1);
546 }
547
548 /**
549 * Adds the given number of new unarrived parties to this phaser.
550 * If an ongoing invocation of {@link #onAdvance} is in progress,
551 * this method may await its completion before returning. If this
552 * phaser has a parent, and the given number of parities is
553 * greater than zero, and this phaser previously had no registered
554 * parties, this phaser is also registered with its parent.
555 *
556 * @param parties the number of additional parties required to
557 * advance to the next phase
558 * @return the arrival phase number to which this registration applied
559 * @throws IllegalStateException if attempting to register more
560 * than the maximum supported number of parties
561 * @throws IllegalArgumentException if {@code parties < 0}
562 */
563 public int bulkRegister(int parties) {
564 if (parties < 0)
565 throw new IllegalArgumentException();
566 if (parties == 0)
567 return getPhase();
568 return doRegister(parties);
569 }
570
571 /**
572 * Arrives at this phaser, without waiting for others to arrive.
573 *
574 * <p>It is a usage error for an unregistered party to invoke this
575 * method. However, this error may result in an {@code
576 * IllegalStateException} only upon some subsequent operation on
577 * this phaser, if ever.
578 *
579 * @return the arrival phase number, or a negative value if terminated
580 * @throws IllegalStateException if not terminated and the number
581 * of unarrived parties would become negative
582 */
583 public int arrive() {
584 return doArrive(false);
585 }
586
587 /**
588 * Arrives at this phaser and deregisters from it without waiting
589 * for others to arrive. Deregistration reduces the number of
590 * parties required to advance in future phases. If this phaser
591 * has a parent, and deregistration causes this phaser to have
592 * zero parties, this phaser is also deregistered from its parent.
593 *
594 * <p>It is a usage error for an unregistered party to invoke this
595 * method. However, this error may result in an {@code
596 * IllegalStateException} only upon some subsequent operation on
597 * this phaser, if ever.
598 *
599 * @return the arrival phase number, or a negative value if terminated
600 * @throws IllegalStateException if not terminated and the number
601 * of registered or unarrived parties would become negative
602 */
603 public int arriveAndDeregister() {
604 return doArrive(true);
605 }
606
607 /**
608 * Arrives at this phaser and awaits others. Equivalent in effect
609 * to {@code awaitAdvance(arrive())}. If you need to await with
610 * interruption or timeout, you can arrange this with an analogous
611 * construction using one of the other forms of the {@code
612 * awaitAdvance} method. If instead you need to deregister upon
613 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
614 *
615 * <p>It is a usage error for an unregistered party to invoke this
616 * method. However, this error may result in an {@code
617 * IllegalStateException} only upon some subsequent operation on
618 * this phaser, if ever.
619 *
620 * @return the arrival phase number, or a negative number if terminated
621 * @throws IllegalStateException if not terminated and the number
622 * of unarrived parties would become negative
623 */
624 public int arriveAndAwaitAdvance() {
625 return awaitAdvance(doArrive(false));
626 }
627
628 /**
629 * Awaits the phase of this phaser to advance from the given phase
630 * value, returning immediately if the current phase is not equal
631 * to the given phase value or this phaser is terminated.
632 *
633 * @param phase an arrival phase number, or negative value if
634 * terminated; this argument is normally the value returned by a
635 * previous call to {@code arrive} or {@code arriveAndDeregister}.
636 * @return the next arrival phase number, or a negative value
637 * if terminated or argument is negative
638 */
639 public int awaitAdvance(int phase) {
640 Phaser rt;
641 int p = (int)(state >>> PHASE_SHIFT);
642 if (phase < 0)
643 return phase;
644 if (p == phase) {
645 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase)
646 return rt.internalAwaitAdvance(phase, null);
647 reconcileState();
648 }
649 return p;
650 }
651
652 /**
653 * Awaits the phase of this phaser to advance from the given phase
654 * value, throwing {@code InterruptedException} if interrupted
655 * while waiting, or returning immediately if the current phase is
656 * not equal to the given phase value or this phaser is
657 * terminated.
658 *
659 * @param phase an arrival phase number, or negative value if
660 * terminated; this argument is normally the value returned by a
661 * previous call to {@code arrive} or {@code arriveAndDeregister}.
662 * @return the next arrival phase number, or a negative value
663 * if terminated or argument is negative
664 * @throws InterruptedException if thread interrupted while waiting
665 */
666 public int awaitAdvanceInterruptibly(int phase)
667 throws InterruptedException {
668 Phaser rt;
669 int p = (int)(state >>> PHASE_SHIFT);
670 if (phase < 0)
671 return phase;
672 if (p == phase) {
673 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
674 QNode node = new QNode(this, phase, true, false, 0L);
675 p = rt.internalAwaitAdvance(phase, node);
676 if (node.wasInterrupted)
677 throw new InterruptedException();
678 }
679 else
680 reconcileState();
681 }
682 return p;
683 }
684
685 /**
686 * Awaits the phase of this phaser to advance from the given phase
687 * value or the given timeout to elapse, throwing {@code
688 * InterruptedException} if interrupted while waiting, or
689 * returning immediately if the current phase is not equal to the
690 * given phase value or this phaser is terminated.
691 *
692 * @param phase an arrival phase number, or negative value if
693 * terminated; this argument is normally the value returned by a
694 * previous call to {@code arrive} or {@code arriveAndDeregister}.
695 * @param timeout how long to wait before giving up, in units of
696 * {@code unit}
697 * @param unit a {@code TimeUnit} determining how to interpret the
698 * {@code timeout} parameter
699 * @return the next arrival phase number, or a negative value
700 * if terminated or argument is negative
701 * @throws InterruptedException if thread interrupted while waiting
702 * @throws TimeoutException if timed out while waiting
703 */
704 public int awaitAdvanceInterruptibly(int phase,
705 long timeout, TimeUnit unit)
706 throws InterruptedException, TimeoutException {
707 long nanos = unit.toNanos(timeout);
708 Phaser rt;
709 int p = (int)(state >>> PHASE_SHIFT);
710 if (phase < 0)
711 return phase;
712 if (p == phase) {
713 if ((p = (int)((rt = root).state >>> PHASE_SHIFT)) == phase) {
714 QNode node = new QNode(this, phase, true, true, nanos);
715 p = rt.internalAwaitAdvance(phase, node);
716 if (node.wasInterrupted)
717 throw new InterruptedException();
718 else if (p == phase)
719 throw new TimeoutException();
720 }
721 else
722 reconcileState();
723 }
724 return p;
725 }
726
727 /**
728 * Forces this phaser to enter termination state. Counts of
729 * registered parties are unaffected. If this phaser is a member
730 * of a tiered set of phasers, then all of the phasers in the set
731 * are terminated. If this phaser is already terminated, this
732 * method has no effect. This method may be useful for
733 * coordinating recovery after one or more tasks encounter
734 * unexpected exceptions.
735 */
736 public void forceTermination() {
737 // Only need to change root state
738 final Phaser root = this.root;
739 long s;
740 while ((s = root.state) >= 0) {
741 long next = (s & ~(long)(MAX_PARTIES)) | TERMINATION_BIT;
742 if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
743 releaseWaiters(0); // signal all threads
744 releaseWaiters(1);
745 return;
746 }
747 }
748 }
749
750 /**
751 * Returns the current phase number. The maximum phase number is
752 * {@code Integer.MAX_VALUE}, after which it restarts at
753 * zero. Upon termination, the phase number is negative,
754 * in which case the prevailing phase prior to termination
755 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
756 *
757 * @return the phase number, or a negative value if terminated
758 */
759 public final int getPhase() {
760 return (int)(root.state >>> PHASE_SHIFT);
761 }
762
763 /**
764 * Returns the number of parties registered at this phaser.
765 *
766 * @return the number of parties
767 */
768 public int getRegisteredParties() {
769 return partiesOf(state);
770 }
771
772 /**
773 * Returns the number of registered parties that have arrived at
774 * the current phase of this phaser.
775 *
776 * @return the number of arrived parties
777 */
778 public int getArrivedParties() {
779 return arrivedOf(reconcileState());
780 }
781
782 /**
783 * Returns the number of registered parties that have not yet
784 * arrived at the current phase of this phaser.
785 *
786 * @return the number of unarrived parties
787 */
788 public int getUnarrivedParties() {
789 return unarrivedOf(reconcileState());
790 }
791
792 /**
793 * Returns the parent of this phaser, or {@code null} if none.
794 *
795 * @return the parent of this phaser, or {@code null} if none
796 */
797 public Phaser getParent() {
798 return parent;
799 }
800
801 /**
802 * Returns the root ancestor of this phaser, which is the same as
803 * this phaser if it has no parent.
804 *
805 * @return the root ancestor of this phaser
806 */
807 public Phaser getRoot() {
808 return root;
809 }
810
811 /**
812 * Returns {@code true} if this phaser has been terminated.
813 *
814 * @return {@code true} if this phaser has been terminated
815 */
816 public boolean isTerminated() {
817 return root.state < 0L;
818 }
819
820 /**
821 * Overridable method to perform an action upon impending phase
822 * advance, and to control termination. This method is invoked
823 * upon arrival of the party advancing this phaser (when all other
824 * waiting parties are dormant). If this method returns {@code
825 * true}, this phaser will be set to a final termination state
826 * upon advance, and subsequent calls to {@link #isTerminated}
827 * will return true. Any (unchecked) Exception or Error thrown by
828 * an invocation of this method is propagated to the party
829 * attempting to advance this phaser, in which case no advance
830 * occurs.
831 *
832 * <p>The arguments to this method provide the state of the phaser
833 * prevailing for the current transition. The effects of invoking
834 * arrival, registration, and waiting methods on this phaser from
835 * within {@code onAdvance} are unspecified and should not be
836 * relied on.
837 *
838 * <p>If this phaser is a member of a tiered set of phasers, then
839 * {@code onAdvance} is invoked only for its root phaser on each
840 * advance.
841 *
842 * <p>To support the most common use cases, the default
843 * implementation of this method returns {@code true} when the
844 * number of registered parties has become zero as the result of a
845 * party invoking {@code arriveAndDeregister}. You can disable
846 * this behavior, thus enabling continuation upon future
847 * registrations, by overriding this method to always return
848 * {@code false}:
849 *
850 * <pre> {@code
851 * Phaser phaser = new Phaser() {
852 * protected boolean onAdvance(int phase, int parties) { return false; }
853 * }}</pre>
854 *
855 * @param phase the current phase number on entry to this method,
856 * before this phaser is advanced
857 * @param registeredParties the current number of registered parties
858 * @return {@code true} if this phaser should terminate
859 */
860 protected boolean onAdvance(int phase, int registeredParties) {
861 return registeredParties == 0;
862 }
863
864 /**
865 * Returns a string identifying this phaser, as well as its
866 * state. The state, in brackets, includes the String {@code
867 * "phase = "} followed by the phase number, {@code "parties = "}
868 * followed by the number of registered parties, and {@code
869 * "arrived = "} followed by the number of arrived parties.
870 *
871 * @return a string identifying this phaser, as well as its state
872 */
873 public String toString() {
874 return stateToString(reconcileState());
875 }
876
877 /**
878 * Implementation of toString and string-based error messages
879 */
880 private String stateToString(long s) {
881 return super.toString() +
882 "[phase = " + phaseOf(s) +
883 " parties = " + partiesOf(s) +
884 " arrived = " + arrivedOf(s) + "]";
885 }
886
887 // Waiting mechanics
888
889 /**
890 * Removes and signals threads from queue for phase.
891 */
892 private void releaseWaiters(int phase) {
893 QNode q; // first element of queue
894 int p; // its phase
895 Thread t; // its thread
896 // assert phase != phaseOf(root.state);
897 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
898 while ((q = head.get()) != null &&
899 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
900 if (head.compareAndSet(q, q.next) &&
901 (t = q.thread) != null) {
902 q.thread = null;
903 LockSupport.unpark(t);
904 }
905 }
906 }
907
908 /** The number of CPUs, for spin control */
909 private static final int NCPU = Runtime.getRuntime().availableProcessors();
910
911 /**
912 * The number of times to spin before blocking while waiting for
913 * advance, per arrival while waiting. On multiprocessors, fully
914 * blocking and waking up a large number of threads all at once is
915 * usually a very slow process, so we use rechargeable spins to
916 * avoid it when threads regularly arrive: When a thread in
917 * internalAwaitAdvance notices another arrival before blocking,
918 * and there appear to be enough CPUs available, it spins
919 * SPINS_PER_ARRIVAL more times before blocking. The value trades
920 * off good-citizenship vs big unnecessary slowdowns.
921 */
922 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
923
924 /**
925 * Possibly blocks and waits for phase to advance unless aborted.
926 * Call only from root node.
927 *
928 * @param phase current phase
929 * @param node if non-null, the wait node to track interrupt and timeout;
930 * if null, denotes noninterruptible wait
931 * @return current phase
932 */
933 private int internalAwaitAdvance(int phase, QNode node) {
934 releaseWaiters(phase-1); // ensure old queue clean
935 boolean queued = false; // true when node is enqueued
936 int lastUnarrived = 0; // to increase spins upon change
937 int spins = SPINS_PER_ARRIVAL;
938 long s;
939 int p;
940 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
941 if (node == null) { // spinning in noninterruptible mode
942 int unarrived = (int)s & UNARRIVED_MASK;
943 if (unarrived != lastUnarrived &&
944 (lastUnarrived = unarrived) < NCPU)
945 spins += SPINS_PER_ARRIVAL;
946 boolean interrupted = Thread.interrupted();
947 if (interrupted || --spins < 0) { // need node to record intr
948 node = new QNode(this, phase, false, false, 0L);
949 node.wasInterrupted = interrupted;
950 }
951 }
952 else if (node.isReleasable()) // done or aborted
953 break;
954 else if (!queued) { // push onto queue
955 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 QNode q = node.next = head.get();
957 if ((q == null || q.phase == phase) &&
958 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
959 queued = head.compareAndSet(q, node);
960 }
961 else {
962 try {
963 ForkJoinPool.managedBlock(node);
964 } catch (InterruptedException ie) {
965 node.wasInterrupted = true;
966 }
967 }
968 }
969
970 if (node != null) {
971 if (node.thread != null)
972 node.thread = null; // avoid need for unpark()
973 if (node.wasInterrupted && !node.interruptible)
974 Thread.currentThread().interrupt();
975 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
976 return p; // recheck abort
977 }
978 releaseWaiters(phase);
979 return p;
980 }
981
982 /**
983 * Wait nodes for Treiber stack representing wait queue
984 */
985 static final class QNode implements ForkJoinPool.ManagedBlocker {
986 final Phaser phaser;
987 final int phase;
988 final boolean interruptible;
989 final boolean timed;
990 boolean wasInterrupted;
991 long nanos;
992 long lastTime;
993 volatile Thread thread; // nulled to cancel wait
994 QNode next;
995
996 QNode(Phaser phaser, int phase, boolean interruptible,
997 boolean timed, long nanos) {
998 this.phaser = phaser;
999 this.phase = phase;
1000 this.interruptible = interruptible;
1001 this.nanos = nanos;
1002 this.timed = timed;
1003 this.lastTime = timed ? System.nanoTime() : 0L;
1004 thread = Thread.currentThread();
1005 }
1006
1007 public boolean isReleasable() {
1008 if (thread == null)
1009 return true;
1010 if (phaser.getPhase() != phase) {
1011 thread = null;
1012 return true;
1013 }
1014 if (Thread.interrupted())
1015 wasInterrupted = true;
1016 if (wasInterrupted && interruptible) {
1017 thread = null;
1018 return true;
1019 }
1020 if (timed) {
1021 if (nanos > 0L) {
1022 long now = System.nanoTime();
1023 nanos -= now - lastTime;
1024 lastTime = now;
1025 }
1026 if (nanos <= 0L) {
1027 thread = null;
1028 return true;
1029 }
1030 }
1031 return false;
1032 }
1033
1034 public boolean block() {
1035 if (isReleasable())
1036 return true;
1037 else if (!timed)
1038 LockSupport.park(this);
1039 else if (nanos > 0)
1040 LockSupport.parkNanos(this, nanos);
1041 return isReleasable();
1042 }
1043 }
1044
1045 // Unsafe mechanics
1046
1047 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1048 private static final long stateOffset =
1049 objectFieldOffset("state", Phaser.class);
1050
1051 private static long objectFieldOffset(String field, Class<?> klazz) {
1052 try {
1053 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1054 } catch (NoSuchFieldException e) {
1055 // Convert Exception to corresponding Error
1056 NoSuchFieldError error = new NoSuchFieldError(field);
1057 error.initCause(e);
1058 throw error;
1059 }
1060 }
1061
1062 /**
1063 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1064 * Replace with a simple call to Unsafe.getUnsafe when integrating
1065 * into a jdk.
1066 *
1067 * @return a sun.misc.Unsafe
1068 */
1069 private static sun.misc.Unsafe getUnsafe() {
1070 try {
1071 return sun.misc.Unsafe.getUnsafe();
1072 } catch (SecurityException se) {
1073 try {
1074 return java.security.AccessController.doPrivileged
1075 (new java.security
1076 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1077 public sun.misc.Unsafe run() throws Exception {
1078 java.lang.reflect.Field f = sun.misc
1079 .Unsafe.class.getDeclaredField("theUnsafe");
1080 f.setAccessible(true);
1081 return (sun.misc.Unsafe) f.get(null);
1082 }});
1083 } catch (java.security.PrivilegedActionException e) {
1084 throw new RuntimeException("Could not initialize intrinsics",
1085 e.getCause());
1086 }
1087 }
1088 }
1089 }