ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.69
Committed: Sat Dec 4 22:00:05 2010 UTC (13 years, 5 months ago) by jsr166
Branch: MAIN
Changes since 1.68: +19 -16 lines
Log Message:
typos and style touchups

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four fields:
241 *
242 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * * parties -- the number of parties to wait (bits 16-31)
244 * * phase -- the generation of the barrier (bits 32-62)
245 * * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished with the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed. Method reconcileState
264 * is usually attempted only only when the number of unarrived
265 * parties appears to be zero, which indicates a potential lag in
266 * updating phase after the root advanced.
267 */
268 private volatile long state;
269
270 private static final int MAX_PARTIES = 0xffff;
271 private static final int MAX_PHASE = 0x7fffffff;
272 private static final int PARTIES_SHIFT = 16;
273 private static final int PHASE_SHIFT = 32;
274 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
275 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
276 private static final long TERMINATION_BIT = 1L << 63;
277
278 // some special values
279 private static final int ONE_ARRIVAL = 1;
280 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
281 private static final int EMPTY = 1;
282
283 // The following unpacking methods are usually manually inlined
284
285 private static int unarrivedOf(long s) {
286 int counts = (int)s;
287 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
288 }
289
290 private static int partiesOf(long s) {
291 return (int)s >>> PARTIES_SHIFT;
292 }
293
294 private static int phaseOf(long s) {
295 return (int) (s >>> PHASE_SHIFT);
296 }
297
298 private static int arrivedOf(long s) {
299 int counts = (int)s;
300 return (counts == EMPTY) ? 0 :
301 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302 }
303
304 /**
305 * The parent of this phaser, or null if none
306 */
307 private final Phaser parent;
308
309 /**
310 * The root of phaser tree. Equals this if not in a tree.
311 */
312 private final Phaser root;
313
314 /**
315 * Heads of Treiber stacks for waiting threads. To eliminate
316 * contention when releasing some threads while adding others, we
317 * use two of them, alternating across even and odd phases.
318 * Subphasers share queues with root to speed up releases.
319 */
320 private final AtomicReference<QNode> evenQ;
321 private final AtomicReference<QNode> oddQ;
322
323 private AtomicReference<QNode> queueFor(int phase) {
324 return ((phase & 1) == 0) ? evenQ : oddQ;
325 }
326
327 /**
328 * Returns message string for bounds exceptions on arrival.
329 */
330 private String badArrive(long s) {
331 return "Attempted arrival of unregistered party for " +
332 stateToString(s);
333 }
334
335 /**
336 * Returns message string for bounds exceptions on registration.
337 */
338 private String badRegister(long s) {
339 return "Attempt to register more than " +
340 MAX_PARTIES + " parties for " + stateToString(s);
341 }
342
343 /**
344 * Main implementation for methods arrive and arriveAndDeregister.
345 * Manually tuned to speed up and minimize race windows for the
346 * common case of just decrementing unarrived field.
347 *
348 * @param deregister false for arrive, true for arriveAndDeregister
349 */
350 private int doArrive(boolean deregister) {
351 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
352 final Phaser root = this.root;
353 for (;;) {
354 long s = (root == this) ? state : reconcileState();
355 int phase = (int)(s >>> PHASE_SHIFT);
356 int counts = (int)s;
357 int unarrived = (counts & UNARRIVED_MASK) - 1;
358 if (phase < 0)
359 return phase;
360 else if (counts == EMPTY || unarrived < 0) {
361 if (root == this || reconcileState() == s)
362 throw new IllegalStateException(badArrive(s));
363 }
364 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
365 if (unarrived == 0) {
366 long n = s & PARTIES_MASK; // base of next state
367 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
368 if (root != this)
369 return parent.doArrive(nextUnarrived == 0);
370 if (onAdvance(phase, nextUnarrived))
371 n |= TERMINATION_BIT;
372 else if (nextUnarrived == 0)
373 n |= EMPTY;
374 else
375 n |= nextUnarrived;
376 n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
377 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
378 releaseWaiters(phase);
379 }
380 return phase;
381 }
382 }
383 }
384
385 /**
386 * Implementation of register, bulkRegister
387 *
388 * @param registrations number to add to both parties and
389 * unarrived fields. Must be greater than zero.
390 */
391 private int doRegister(int registrations) {
392 // adjustment to state
393 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
394 Phaser par = parent;
395 int phase;
396 for (;;) {
397 long s = state;
398 int counts = (int)s;
399 int parties = counts >>> PARTIES_SHIFT;
400 int unarrived = counts & UNARRIVED_MASK;
401 if (registrations > MAX_PARTIES - parties)
402 throw new IllegalStateException(badRegister(s));
403 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
404 break;
405 else if (counts != EMPTY) { // not 1st registration
406 if (par == null || reconcileState() == s) {
407 if (unarrived == 0) // wait out advance
408 root.internalAwaitAdvance(phase, null);
409 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
410 s, s + adj))
411 break;
412 }
413 }
414 else if (par == null) { // 1st root registration
415 long next = (((long) phase) << PHASE_SHIFT) | adj;
416 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
417 break;
418 }
419 else {
420 synchronized (this) { // 1st sub registration
421 if (state == s) { // recheck under lock
422 par.doRegister(1);
423 do { // force current phase
424 phase = (int)(root.state >>> PHASE_SHIFT);
425 // assert phase < 0 || (int)state == EMPTY;
426 } while (!UNSAFE.compareAndSwapLong
427 (this, stateOffset, state,
428 (((long) phase) << PHASE_SHIFT) | adj));
429 break;
430 }
431 }
432 }
433 }
434 return phase;
435 }
436
437 /**
438 * Resolves lagged phase propagation from root if necessary.
439 */
440 private long reconcileState() {
441 Phaser rt = root;
442 long s = state;
443 if (rt != this) {
444 int phase;
445 while ((phase = (int)(rt.state >>> PHASE_SHIFT)) !=
446 (int)(s >>> PHASE_SHIFT)) {
447 // assert phase < 0 || unarrivedOf(s) == 0
448 long t; // to reread s
449 long p = s & PARTIES_MASK; // unshifted parties field
450 long n = (((long) phase) << PHASE_SHIFT) | p;
451 if (phase >= 0) {
452 if (p == 0L)
453 n |= EMPTY; // reset to empty
454 else
455 n |= p >>> PARTIES_SHIFT; // set unarr to parties
456 }
457 if ((t = state) == s &&
458 UNSAFE.compareAndSwapLong(this, stateOffset, s, s = n))
459 break;
460 s = t;
461 }
462 }
463 return s;
464 }
465
466 /**
467 * Creates a new phaser with no initially registered parties, no
468 * parent, and initial phase number 0. Any thread using this
469 * phaser will need to first register for it.
470 */
471 public Phaser() {
472 this(null, 0);
473 }
474
475 /**
476 * Creates a new phaser with the given number of registered
477 * unarrived parties, no parent, and initial phase number 0.
478 *
479 * @param parties the number of parties required to advance to the
480 * next phase
481 * @throws IllegalArgumentException if parties less than zero
482 * or greater than the maximum number of parties supported
483 */
484 public Phaser(int parties) {
485 this(null, parties);
486 }
487
488 /**
489 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
490 *
491 * @param parent the parent phaser
492 */
493 public Phaser(Phaser parent) {
494 this(parent, 0);
495 }
496
497 /**
498 * Creates a new phaser with the given parent and number of
499 * registered unarrived parties. When the given parent is non-null
500 * and the given number of parties is greater than zero, this
501 * child phaser is registered with its parent.
502 *
503 * @param parent the parent phaser
504 * @param parties the number of parties required to advance to the
505 * next phase
506 * @throws IllegalArgumentException if parties less than zero
507 * or greater than the maximum number of parties supported
508 */
509 public Phaser(Phaser parent, int parties) {
510 if (parties >>> PARTIES_SHIFT != 0)
511 throw new IllegalArgumentException("Illegal number of parties");
512 int phase = 0;
513 this.parent = parent;
514 if (parent != null) {
515 final Phaser root = parent.root;
516 this.root = root;
517 this.evenQ = root.evenQ;
518 this.oddQ = root.oddQ;
519 if (parties != 0)
520 phase = parent.doRegister(1);
521 }
522 else {
523 this.root = this;
524 this.evenQ = new AtomicReference<QNode>();
525 this.oddQ = new AtomicReference<QNode>();
526 }
527 this.state = (parties == 0) ? (long) EMPTY :
528 ((((long) phase) << PHASE_SHIFT) |
529 (((long) parties) << PARTIES_SHIFT) |
530 ((long) parties));
531 }
532
533 /**
534 * Adds a new unarrived party to this phaser. If an ongoing
535 * invocation of {@link #onAdvance} is in progress, this method
536 * may await its completion before returning. If this phaser has
537 * a parent, and this phaser previously had no registered parties,
538 * this child phaser is also registered with its parent. If
539 * this phaser is terminated, the attempt to register has
540 * no effect, and a negative value is returned.
541 *
542 * @return the arrival phase number to which this registration
543 * applied. If this value is negative, then this phaser has
544 * terminated, in which case registration has no effect.
545 * @throws IllegalStateException if attempting to register more
546 * than the maximum supported number of parties
547 */
548 public int register() {
549 return doRegister(1);
550 }
551
552 /**
553 * Adds the given number of new unarrived parties to this phaser.
554 * If an ongoing invocation of {@link #onAdvance} is in progress,
555 * this method may await its completion before returning. If this
556 * phaser has a parent, and the given number of parties is greater
557 * than zero, and this phaser previously had no registered
558 * parties, this child phaser is also registered with its parent.
559 * If this phaser is terminated, the attempt to register has no
560 * effect, and a negative value is returned.
561 *
562 * @param parties the number of additional parties required to
563 * advance to the next phase
564 * @return the arrival phase number to which this registration
565 * applied. If this value is negative, then this phaser has
566 * terminated, in which case registration has no effect.
567 * @throws IllegalStateException if attempting to register more
568 * than the maximum supported number of parties
569 * @throws IllegalArgumentException if {@code parties < 0}
570 */
571 public int bulkRegister(int parties) {
572 if (parties < 0)
573 throw new IllegalArgumentException();
574 if (parties == 0)
575 return getPhase();
576 return doRegister(parties);
577 }
578
579 /**
580 * Arrives at this phaser, without waiting for others to arrive.
581 *
582 * <p>It is a usage error for an unregistered party to invoke this
583 * method. However, this error may result in an {@code
584 * IllegalStateException} only upon some subsequent operation on
585 * this phaser, if ever.
586 *
587 * @return the arrival phase number, or a negative value if terminated
588 * @throws IllegalStateException if not terminated and the number
589 * of unarrived parties would become negative
590 */
591 public int arrive() {
592 return doArrive(false);
593 }
594
595 /**
596 * Arrives at this phaser and deregisters from it without waiting
597 * for others to arrive. Deregistration reduces the number of
598 * parties required to advance in future phases. If this phaser
599 * has a parent, and deregistration causes this phaser to have
600 * zero parties, this phaser is also deregistered from its parent.
601 *
602 * <p>It is a usage error for an unregistered party to invoke this
603 * method. However, this error may result in an {@code
604 * IllegalStateException} only upon some subsequent operation on
605 * this phaser, if ever.
606 *
607 * @return the arrival phase number, or a negative value if terminated
608 * @throws IllegalStateException if not terminated and the number
609 * of registered or unarrived parties would become negative
610 */
611 public int arriveAndDeregister() {
612 return doArrive(true);
613 }
614
615 /**
616 * Arrives at this phaser and awaits others. Equivalent in effect
617 * to {@code awaitAdvance(arrive())}. If you need to await with
618 * interruption or timeout, you can arrange this with an analogous
619 * construction using one of the other forms of the {@code
620 * awaitAdvance} method. If instead you need to deregister upon
621 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
622 *
623 * <p>It is a usage error for an unregistered party to invoke this
624 * method. However, this error may result in an {@code
625 * IllegalStateException} only upon some subsequent operation on
626 * this phaser, if ever.
627 *
628 * @return the arrival phase number, or the (negative)
629 * {@linkplain #getPhase() current phase} if terminated
630 * @throws IllegalStateException if not terminated and the number
631 * of unarrived parties would become negative
632 */
633 public int arriveAndAwaitAdvance() {
634 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
635 final Phaser root = this.root;
636 for (;;) {
637 long s = (root == this) ? state : reconcileState();
638 int phase = (int)(s >>> PHASE_SHIFT);
639 int counts = (int)s;
640 int unarrived = (counts & UNARRIVED_MASK) - 1;
641 if (phase < 0)
642 return phase;
643 else if (counts == EMPTY || unarrived < 0) {
644 if (reconcileState() == s)
645 throw new IllegalStateException(badArrive(s));
646 }
647 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
648 s -= ONE_ARRIVAL)) {
649 if (unarrived != 0)
650 return root.internalAwaitAdvance(phase, null);
651 if (root != this)
652 return parent.arriveAndAwaitAdvance();
653 long n = s & PARTIES_MASK; // base of next state
654 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
655 if (onAdvance(phase, nextUnarrived))
656 n |= TERMINATION_BIT;
657 else if (nextUnarrived == 0)
658 n |= EMPTY;
659 else
660 n |= nextUnarrived;
661 int nextPhase = (phase + 1) & MAX_PHASE;
662 n |= (long)nextPhase << PHASE_SHIFT;
663 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
664 return (int)(state >>> PHASE_SHIFT); // terminated
665 releaseWaiters(phase);
666 return nextPhase;
667 }
668 }
669 }
670
671 /**
672 * Awaits the phase of this phaser to advance from the given phase
673 * value, returning immediately if the current phase is not equal
674 * to the given phase value or this phaser is terminated.
675 *
676 * @param phase an arrival phase number, or negative value if
677 * terminated; this argument is normally the value returned by a
678 * previous call to {@code arrive} or {@code arriveAndDeregister}.
679 * @return the next arrival phase number, or the argument if it is
680 * negative, or the (negative) {@linkplain #getPhase() current phase}
681 * if terminated
682 */
683 public int awaitAdvance(int phase) {
684 final Phaser root = this.root;
685 long s = (root == this) ? state : reconcileState();
686 int p = (int)(s >>> PHASE_SHIFT);
687 if (phase < 0)
688 return phase;
689 if (p == phase)
690 return root.internalAwaitAdvance(phase, null);
691 return p;
692 }
693
694 /**
695 * Awaits the phase of this phaser to advance from the given phase
696 * value, throwing {@code InterruptedException} if interrupted
697 * while waiting, or returning immediately if the current phase is
698 * not equal to the given phase value or this phaser is
699 * terminated.
700 *
701 * @param phase an arrival phase number, or negative value if
702 * terminated; this argument is normally the value returned by a
703 * previous call to {@code arrive} or {@code arriveAndDeregister}.
704 * @return the next arrival phase number, or the argument if it is
705 * negative, or the (negative) {@linkplain #getPhase() current phase}
706 * if terminated
707 * @throws InterruptedException if thread interrupted while waiting
708 */
709 public int awaitAdvanceInterruptibly(int phase)
710 throws InterruptedException {
711 final Phaser root = this.root;
712 long s = (root == this) ? state : reconcileState();
713 int p = (int)(s >>> PHASE_SHIFT);
714 if (phase < 0)
715 return phase;
716 if (p == phase) {
717 QNode node = new QNode(this, phase, true, false, 0L);
718 p = root.internalAwaitAdvance(phase, node);
719 if (node.wasInterrupted)
720 throw new InterruptedException();
721 }
722 return p;
723 }
724
725 /**
726 * Awaits the phase of this phaser to advance from the given phase
727 * value or the given timeout to elapse, throwing {@code
728 * InterruptedException} if interrupted while waiting, or
729 * returning immediately if the current phase is not equal to the
730 * given phase value or this phaser is terminated.
731 *
732 * @param phase an arrival phase number, or negative value if
733 * terminated; this argument is normally the value returned by a
734 * previous call to {@code arrive} or {@code arriveAndDeregister}.
735 * @param timeout how long to wait before giving up, in units of
736 * {@code unit}
737 * @param unit a {@code TimeUnit} determining how to interpret the
738 * {@code timeout} parameter
739 * @return the next arrival phase number, or the argument if it is
740 * negative, or the (negative) {@linkplain #getPhase() current phase}
741 * if terminated
742 * @throws InterruptedException if thread interrupted while waiting
743 * @throws TimeoutException if timed out while waiting
744 */
745 public int awaitAdvanceInterruptibly(int phase,
746 long timeout, TimeUnit unit)
747 throws InterruptedException, TimeoutException {
748 long nanos = unit.toNanos(timeout);
749 final Phaser root = this.root;
750 long s = (root == this) ? state : reconcileState();
751 int p = (int)(s >>> PHASE_SHIFT);
752 if (phase < 0)
753 return phase;
754 if (p == phase) {
755 QNode node = new QNode(this, phase, true, true, nanos);
756 p = root.internalAwaitAdvance(phase, node);
757 if (node.wasInterrupted)
758 throw new InterruptedException();
759 else if (p == phase)
760 throw new TimeoutException();
761 }
762 return p;
763 }
764
765 /**
766 * Forces this phaser to enter termination state. Counts of
767 * registered parties are unaffected. If this phaser is a member
768 * of a tiered set of phasers, then all of the phasers in the set
769 * are terminated. If this phaser is already terminated, this
770 * method has no effect. This method may be useful for
771 * coordinating recovery after one or more tasks encounter
772 * unexpected exceptions.
773 */
774 public void forceTermination() {
775 // Only need to change root state
776 final Phaser root = this.root;
777 long s;
778 while ((s = root.state) >= 0) {
779 long next = (s & ~((long)UNARRIVED_MASK)) | TERMINATION_BIT;
780 if (UNSAFE.compareAndSwapLong(root, stateOffset, s, next)) {
781 // signal all threads
782 releaseWaiters(0);
783 releaseWaiters(1);
784 return;
785 }
786 }
787 }
788
789 /**
790 * Returns the current phase number. The maximum phase number is
791 * {@code Integer.MAX_VALUE}, after which it restarts at
792 * zero. Upon termination, the phase number is negative,
793 * in which case the prevailing phase prior to termination
794 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
795 *
796 * @return the phase number, or a negative value if terminated
797 */
798 public final int getPhase() {
799 return (int)(root.state >>> PHASE_SHIFT);
800 }
801
802 /**
803 * Returns the number of parties registered at this phaser.
804 *
805 * @return the number of parties
806 */
807 public int getRegisteredParties() {
808 return partiesOf(state);
809 }
810
811 /**
812 * Returns the number of registered parties that have arrived at
813 * the current phase of this phaser.
814 *
815 * @return the number of arrived parties
816 */
817 public int getArrivedParties() {
818 return arrivedOf(reconcileState());
819 }
820
821 /**
822 * Returns the number of registered parties that have not yet
823 * arrived at the current phase of this phaser.
824 *
825 * @return the number of unarrived parties
826 */
827 public int getUnarrivedParties() {
828 return unarrivedOf(reconcileState());
829 }
830
831 /**
832 * Returns the parent of this phaser, or {@code null} if none.
833 *
834 * @return the parent of this phaser, or {@code null} if none
835 */
836 public Phaser getParent() {
837 return parent;
838 }
839
840 /**
841 * Returns the root ancestor of this phaser, which is the same as
842 * this phaser if it has no parent.
843 *
844 * @return the root ancestor of this phaser
845 */
846 public Phaser getRoot() {
847 return root;
848 }
849
850 /**
851 * Returns {@code true} if this phaser has been terminated.
852 *
853 * @return {@code true} if this phaser has been terminated
854 */
855 public boolean isTerminated() {
856 return root.state < 0L;
857 }
858
859 /**
860 * Overridable method to perform an action upon impending phase
861 * advance, and to control termination. This method is invoked
862 * upon arrival of the party advancing this phaser (when all other
863 * waiting parties are dormant). If this method returns {@code
864 * true}, this phaser will be set to a final termination state
865 * upon advance, and subsequent calls to {@link #isTerminated}
866 * will return true. Any (unchecked) Exception or Error thrown by
867 * an invocation of this method is propagated to the party
868 * attempting to advance this phaser, in which case no advance
869 * occurs.
870 *
871 * <p>The arguments to this method provide the state of the phaser
872 * prevailing for the current transition. The effects of invoking
873 * arrival, registration, and waiting methods on this phaser from
874 * within {@code onAdvance} are unspecified and should not be
875 * relied on.
876 *
877 * <p>If this phaser is a member of a tiered set of phasers, then
878 * {@code onAdvance} is invoked only for its root phaser on each
879 * advance.
880 *
881 * <p>To support the most common use cases, the default
882 * implementation of this method returns {@code true} when the
883 * number of registered parties has become zero as the result of a
884 * party invoking {@code arriveAndDeregister}. You can disable
885 * this behavior, thus enabling continuation upon future
886 * registrations, by overriding this method to always return
887 * {@code false}:
888 *
889 * <pre> {@code
890 * Phaser phaser = new Phaser() {
891 * protected boolean onAdvance(int phase, int parties) { return false; }
892 * }}</pre>
893 *
894 * @param phase the current phase number on entry to this method,
895 * before this phaser is advanced
896 * @param registeredParties the current number of registered parties
897 * @return {@code true} if this phaser should terminate
898 */
899 protected boolean onAdvance(int phase, int registeredParties) {
900 return registeredParties == 0;
901 }
902
903 /**
904 * Returns a string identifying this phaser, as well as its
905 * state. The state, in brackets, includes the String {@code
906 * "phase = "} followed by the phase number, {@code "parties = "}
907 * followed by the number of registered parties, and {@code
908 * "arrived = "} followed by the number of arrived parties.
909 *
910 * @return a string identifying this phaser, as well as its state
911 */
912 public String toString() {
913 return stateToString(reconcileState());
914 }
915
916 /**
917 * Implementation of toString and string-based error messages
918 */
919 private String stateToString(long s) {
920 return super.toString() +
921 "[phase = " + phaseOf(s) +
922 " parties = " + partiesOf(s) +
923 " arrived = " + arrivedOf(s) + "]";
924 }
925
926 // Waiting mechanics
927
928 /**
929 * Removes and signals threads from queue for phase.
930 */
931 private void releaseWaiters(int phase) {
932 QNode q; // first element of queue
933 Thread t; // its thread
934 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
935 while ((q = head.get()) != null &&
936 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
937 if (head.compareAndSet(q, q.next) &&
938 (t = q.thread) != null) {
939 q.thread = null;
940 LockSupport.unpark(t);
941 }
942 }
943 }
944
945 /**
946 * Variant of releaseWaiters that additionally tries to remove any
947 * nodes no longer waiting for advance due to timeout or
948 * interrupt. Currently, nodes are removed only if they are at
949 * head of queue, which suffices to reduce memory footprint in
950 * most usages.
951 *
952 * @return current phase on exit
953 */
954 private int abortWait(int phase) {
955 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
956 for (;;) {
957 Thread t;
958 QNode q = head.get();
959 int p = (int)(root.state >>> PHASE_SHIFT);
960 if (q == null || ((t = q.thread) != null && q.phase == p))
961 return p;
962 if (head.compareAndSet(q, q.next) && t != null) {
963 q.thread = null;
964 LockSupport.unpark(t);
965 }
966 }
967 }
968
969 /** The number of CPUs, for spin control */
970 private static final int NCPU = Runtime.getRuntime().availableProcessors();
971
972 /**
973 * The number of times to spin before blocking while waiting for
974 * advance, per arrival while waiting. On multiprocessors, fully
975 * blocking and waking up a large number of threads all at once is
976 * usually a very slow process, so we use rechargeable spins to
977 * avoid it when threads regularly arrive: When a thread in
978 * internalAwaitAdvance notices another arrival before blocking,
979 * and there appear to be enough CPUs available, it spins
980 * SPINS_PER_ARRIVAL more times before blocking. The value trades
981 * off good-citizenship vs big unnecessary slowdowns.
982 */
983 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
984
985 /**
986 * Possibly blocks and waits for phase to advance unless aborted.
987 * Call only from root node.
988 *
989 * @param phase current phase
990 * @param node if non-null, the wait node to track interrupt and timeout;
991 * if null, denotes noninterruptible wait
992 * @return current phase
993 */
994 private int internalAwaitAdvance(int phase, QNode node) {
995 releaseWaiters(phase-1); // ensure old queue clean
996 boolean queued = false; // true when node is enqueued
997 int lastUnarrived = 0; // to increase spins upon change
998 int spins = SPINS_PER_ARRIVAL;
999 long s;
1000 int p;
1001 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1002 if (node == null) { // spinning in noninterruptible mode
1003 int unarrived = (int)s & UNARRIVED_MASK;
1004 if (unarrived != lastUnarrived &&
1005 (lastUnarrived = unarrived) < NCPU)
1006 spins += SPINS_PER_ARRIVAL;
1007 boolean interrupted = Thread.interrupted();
1008 if (interrupted || --spins < 0) { // need node to record intr
1009 node = new QNode(this, phase, false, false, 0L);
1010 node.wasInterrupted = interrupted;
1011 }
1012 }
1013 else if (node.isReleasable()) // done or aborted
1014 break;
1015 else if (!queued) { // push onto queue
1016 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1017 QNode q = node.next = head.get();
1018 if ((q == null || q.phase == phase) &&
1019 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1020 queued = head.compareAndSet(q, node);
1021 }
1022 else {
1023 try {
1024 ForkJoinPool.managedBlock(node);
1025 } catch (InterruptedException ie) {
1026 node.wasInterrupted = true;
1027 }
1028 }
1029 }
1030
1031 if (node != null) {
1032 if (node.thread != null)
1033 node.thread = null; // avoid need for unpark()
1034 if (node.wasInterrupted && !node.interruptible)
1035 Thread.currentThread().interrupt();
1036 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1037 return abortWait(phase); // possibly clean up on abort
1038 }
1039 releaseWaiters(phase);
1040 return p;
1041 }
1042
1043 /**
1044 * Wait nodes for Treiber stack representing wait queue
1045 */
1046 static final class QNode implements ForkJoinPool.ManagedBlocker {
1047 final Phaser phaser;
1048 final int phase;
1049 final boolean interruptible;
1050 final boolean timed;
1051 boolean wasInterrupted;
1052 long nanos;
1053 long lastTime;
1054 volatile Thread thread; // nulled to cancel wait
1055 QNode next;
1056
1057 QNode(Phaser phaser, int phase, boolean interruptible,
1058 boolean timed, long nanos) {
1059 this.phaser = phaser;
1060 this.phase = phase;
1061 this.interruptible = interruptible;
1062 this.nanos = nanos;
1063 this.timed = timed;
1064 this.lastTime = timed ? System.nanoTime() : 0L;
1065 thread = Thread.currentThread();
1066 }
1067
1068 public boolean isReleasable() {
1069 if (thread == null)
1070 return true;
1071 if (phaser.getPhase() != phase) {
1072 thread = null;
1073 return true;
1074 }
1075 if (Thread.interrupted())
1076 wasInterrupted = true;
1077 if (wasInterrupted && interruptible) {
1078 thread = null;
1079 return true;
1080 }
1081 if (timed) {
1082 if (nanos > 0L) {
1083 long now = System.nanoTime();
1084 nanos -= now - lastTime;
1085 lastTime = now;
1086 }
1087 if (nanos <= 0L) {
1088 thread = null;
1089 return true;
1090 }
1091 }
1092 return false;
1093 }
1094
1095 public boolean block() {
1096 if (isReleasable())
1097 return true;
1098 else if (!timed)
1099 LockSupport.park(this);
1100 else if (nanos > 0)
1101 LockSupport.parkNanos(this, nanos);
1102 return isReleasable();
1103 }
1104 }
1105
1106 // Unsafe mechanics
1107
1108 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1109 private static final long stateOffset =
1110 objectFieldOffset("state", Phaser.class);
1111
1112 private static long objectFieldOffset(String field, Class<?> klazz) {
1113 try {
1114 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1115 } catch (NoSuchFieldException e) {
1116 // Convert Exception to corresponding Error
1117 NoSuchFieldError error = new NoSuchFieldError(field);
1118 error.initCause(e);
1119 throw error;
1120 }
1121 }
1122
1123 /**
1124 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1125 * Replace with a simple call to Unsafe.getUnsafe when integrating
1126 * into a jdk.
1127 *
1128 * @return a sun.misc.Unsafe
1129 */
1130 private static sun.misc.Unsafe getUnsafe() {
1131 try {
1132 return sun.misc.Unsafe.getUnsafe();
1133 } catch (SecurityException se) {
1134 try {
1135 return java.security.AccessController.doPrivileged
1136 (new java.security
1137 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1138 public sun.misc.Unsafe run() throws Exception {
1139 java.lang.reflect.Field f = sun.misc
1140 .Unsafe.class.getDeclaredField("theUnsafe");
1141 f.setAccessible(true);
1142 return (sun.misc.Unsafe) f.get(null);
1143 }});
1144 } catch (java.security.PrivilegedActionException e) {
1145 throw new RuntimeException("Could not initialize intrinsics",
1146 e.getCause());
1147 }
1148 }
1149 }
1150 }