ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.7
Committed: Mon Jan 5 03:53:26 2009 UTC (15 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.6: +18 -18 lines
Log Message:
use @code

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8 import java.util.concurrent.*;
9 import java.util.concurrent.atomic.*;
10 import java.util.concurrent.locks.LockSupport;
11 import sun.misc.Unsafe;
12 import java.lang.reflect.*;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to a
16 * {@link java.util.concurrent.CyclicBarrier} and {@link
17 * java.util.concurrent.CountDownLatch} but supporting more flexible
18 * usage.
19 *
20 * <ul>
21 *
22 * <li> The number of parties synchronizing on a phaser may vary over
23 * time. A task may register to be a party at any time, and may
24 * deregister upon arriving at the barrier. As is the case with most
25 * basic synchronization constructs, registration and deregistration
26 * affect only internal counts; they do not establish any further
27 * internal bookkeeping, so tasks cannot query whether they are
28 * registered. (However, you can introduce such bookkeeping in by
29 * subclassing this class.)
30 *
31 * <li> Each generation has an associated phase value, starting at
32 * zero, and advancing when all parties reach the barrier (wrapping
33 * around to zero after reaching {@code Integer.MAX_VALUE}).
34 *
35 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
36 * Method {@code arriveAndAwaitAdvance} has effect analogous to
37 * {@code CyclicBarrier.await}. However, Phasers separate two
38 * aspects of coordination, that may also be invoked independently:
39 *
40 * <ul>
41 *
42 * <li> Arriving at a barrier. Methods {@code arrive} and
43 * {@code arriveAndDeregister} do not block, but return
44 * the phase value current upon entry to the method.
45 *
46 * <li> Awaiting others. Method {@code awaitAdvance} requires an
47 * argument indicating the entry phase, and returns when the
48 * barrier advances to a new phase.
49 * </ul>
50 *
51 *
52 * <li> Barrier actions, performed by the task triggering a phase
53 * advance while others may be waiting, are arranged by overriding
54 * method {@code onAdvance}, that also controls termination.
55 * Overriding this method may be used to similar but more flexible
56 * effect as providing a barrier action to a CyclicBarrier.
57 *
58 * <li> Phasers may enter a <em>termination</em> state in which all
59 * await actions immediately return, indicating (via a negative phase
60 * value) that execution is complete. Termination is triggered by
61 * executing the overridable {@code onAdvance} method that is invoked
62 * each time the barrier is about to be tripped. When a Phaser is
63 * controlling an action with a fixed number of iterations, it is
64 * often convenient to override this method to cause termination when
65 * the current phase number reaches a threshold. Method
66 * {@code forceTermination} is also available to abruptly release
67 * waiting threads and allow them to terminate.
68 *
69 * <li> Phasers may be tiered to reduce contention. Phasers with large
70 * numbers of parties that would otherwise experience heavy
71 * synchronization contention costs may instead be arranged in trees.
72 * This will typically greatly increase throughput even though it
73 * incurs somewhat greater per-operation overhead.
74 *
75 * <li> By default, {@code awaitAdvance} continues to wait even if
76 * the waiting thread is interrupted. And unlike the case in
77 * CyclicBarriers, exceptions encountered while tasks wait
78 * interruptibly or with timeout do not change the state of the
79 * barrier. If necessary, you can perform any associated recovery
80 * within handlers of those exceptions, often after invoking
81 * {@code forceTermination}.
82 *
83 * </ul>
84 *
85 * <p><b>Sample usages:</b>
86 *
87 * <p>A Phaser may be used instead of a {@code CountdownLatch} to control
88 * a one-shot action serving a variable number of parties. The typical
89 * idiom is for the method setting this up to first register, then
90 * start the actions, then deregister, as in:
91 *
92 * <pre>
93 * void runTasks(List&lt;Runnable&gt; list) {
94 * final Phaser phaser = new Phaser(1); // "1" to register self
95 * for (Runnable r : list) {
96 * phaser.register();
97 * new Thread() {
98 * public void run() {
99 * phaser.arriveAndAwaitAdvance(); // await all creation
100 * r.run();
101 * phaser.arriveAndDeregister(); // signal completion
102 * }
103 * }.start();
104 * }
105 *
106 * doSomethingOnBehalfOfWorkers();
107 * phaser.arrive(); // allow threads to start
108 * int p = phaser.arriveAndDeregister(); // deregister self ...
109 * p = phaser.awaitAdvance(p); // ... and await arrival
110 * otherActions(); // do other things while tasks execute
111 * phaser.awaitAdvance(p); // awit final completion
112 * }
113 * </pre>
114 *
115 * <p>One way to cause a set of threads to repeatedly perform actions
116 * for a given number of iterations is to override {@code onAdvance}:
117 *
118 * <pre>
119 * void startTasks(List&lt;Runnable&gt; list, final int iterations) {
120 * final Phaser phaser = new Phaser() {
121 * public boolean onAdvance(int phase, int registeredParties) {
122 * return phase &gt;= iterations || registeredParties == 0;
123 * }
124 * };
125 * phaser.register();
126 * for (Runnable r : list) {
127 * phaser.register();
128 * new Thread() {
129 * public void run() {
130 * do {
131 * r.run();
132 * phaser.arriveAndAwaitAdvance();
133 * } while(!phaser.isTerminated();
134 * }
135 * }.start();
136 * }
137 * phaser.arriveAndDeregister(); // deregister self, don't wait
138 * }
139 * </pre>
140 *
141 * <p> To create a set of tasks using a tree of Phasers,
142 * you could use code of the following form, assuming a
143 * Task class with a constructor accepting a Phaser that
144 * it registers for upon construction:
145 * <pre>
146 * void build(Task[] actions, int lo, int hi, Phaser b) {
147 * int step = (hi - lo) / TASKS_PER_PHASER;
148 * if (step &gt; 1) {
149 * int i = lo;
150 * while (i &lt; hi) {
151 * int r = Math.min(i + step, hi);
152 * build(actions, i, r, new Phaser(b));
153 * i = r;
154 * }
155 * }
156 * else {
157 * for (int i = lo; i &lt; hi; ++i)
158 * actions[i] = new Task(b);
159 * // assumes new Task(b) performs b.register()
160 * }
161 * }
162 * // .. initially called, for n tasks via
163 * build(new Task[n], 0, n, new Phaser());
164 * </pre>
165 *
166 * The best value of {@code TASKS_PER_PHASER} depends mainly on
167 * expected barrier synchronization rates. A value as low as four may
168 * be appropriate for extremely small per-barrier task bodies (thus
169 * high rates), or up to hundreds for extremely large ones.
170 *
171 * </pre>
172 *
173 * <p><b>Implementation notes</b>: This implementation restricts the
174 * maximum number of parties to 65535. Attempts to register additional
175 * parties result in IllegalStateExceptions. However, you can and
176 * should create tiered phasers to accommodate arbitrarily large sets
177 * of participants.
178 */
179 public class Phaser {
180 /*
181 * This class implements an extension of X10 "clocks". Thanks to
182 * Vijay Saraswat for the idea, and to Vivek Sarkar for
183 * enhancements to extend functionality.
184 */
185
186 /**
187 * Barrier state representation. Conceptually, a barrier contains
188 * four values:
189 *
190 * * parties -- the number of parties to wait (16 bits)
191 * * unarrived -- the number of parties yet to hit barrier (16 bits)
192 * * phase -- the generation of the barrier (31 bits)
193 * * terminated -- set if barrier is terminated (1 bit)
194 *
195 * However, to efficiently maintain atomicity, these values are
196 * packed into a single (atomic) long. Termination uses the sign
197 * bit of 32 bit representation of phase, so phase is set to -1 on
198 * termination. Good performace relies on keeping state decoding
199 * and encoding simple, and keeping race windows short.
200 *
201 * Note: there are some cheats in arrive() that rely on unarrived
202 * being lowest 16 bits.
203 */
204 private volatile long state;
205
206 private static final int ushortBits = 16;
207 private static final int ushortMask = (1 << ushortBits) - 1;
208 private static final int phaseMask = 0x7fffffff;
209
210 private static int unarrivedOf(long s) {
211 return (int)(s & ushortMask);
212 }
213
214 private static int partiesOf(long s) {
215 return (int)(s & (ushortMask << 16)) >>> 16;
216 }
217
218 private static int phaseOf(long s) {
219 return (int)(s >>> 32);
220 }
221
222 private static int arrivedOf(long s) {
223 return partiesOf(s) - unarrivedOf(s);
224 }
225
226 private static long stateFor(int phase, int parties, int unarrived) {
227 return (((long)phase) << 32) | ((parties << 16) | unarrived);
228 }
229
230 private static long trippedStateFor(int phase, int parties) {
231 return (((long)phase) << 32) | ((parties << 16) | parties);
232 }
233
234 private static IllegalStateException badBounds(int parties, int unarrived) {
235 return new IllegalStateException
236 ("Attempt to set " + unarrived +
237 " unarrived of " + parties + " parties");
238 }
239
240 /**
241 * The parent of this phaser, or null if none
242 */
243 private final Phaser parent;
244
245 /**
246 * The root of Phaser tree. Equals this if not in a tree. Used to
247 * support faster state push-down.
248 */
249 private final Phaser root;
250
251 // Wait queues
252
253 /**
254 * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
255 * contention while releasing some threads while adding others, we
256 * use two of them, alternating across even and odd phases.
257 */
258 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
259 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
260
261 private AtomicReference<QNode> queueFor(int phase) {
262 return (phase & 1) == 0? evenQ : oddQ;
263 }
264
265 /**
266 * Returns current state, first resolving lagged propagation from
267 * root if necessary.
268 */
269 private long getReconciledState() {
270 return parent == null? state : reconcileState();
271 }
272
273 /**
274 * Recursively resolves state.
275 */
276 private long reconcileState() {
277 Phaser p = parent;
278 long s = state;
279 if (p != null) {
280 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
281 long parentState = p.getReconciledState();
282 int parentPhase = phaseOf(parentState);
283 int phase = phaseOf(s = state);
284 if (phase != parentPhase) {
285 long next = trippedStateFor(parentPhase, partiesOf(s));
286 if (casState(s, next)) {
287 releaseWaiters(phase);
288 s = next;
289 }
290 }
291 }
292 }
293 return s;
294 }
295
296 /**
297 * Creates a new Phaser without any initially registered parties,
298 * initial phase number 0, and no parent.
299 */
300 public Phaser() {
301 this(null);
302 }
303
304 /**
305 * Creates a new Phaser with the given numbers of registered
306 * unarrived parties, initial phase number 0, and no parent.
307 * @param parties the number of parties required to trip barrier.
308 * @throws IllegalArgumentException if parties less than zero
309 * or greater than the maximum number of parties supported.
310 */
311 public Phaser(int parties) {
312 this(null, parties);
313 }
314
315 /**
316 * Creates a new Phaser with the given parent, without any
317 * initially registered parties. If parent is non-null this phaser
318 * is registered with the parent and its initial phase number is
319 * the same as that of parent phaser.
320 * @param parent the parent phaser.
321 */
322 public Phaser(Phaser parent) {
323 int phase = 0;
324 this.parent = parent;
325 if (parent != null) {
326 this.root = parent.root;
327 phase = parent.register();
328 }
329 else
330 this.root = this;
331 this.state = trippedStateFor(phase, 0);
332 }
333
334 /**
335 * Creates a new Phaser with the given parent and numbers of
336 * registered unarrived parties. If parent is non-null this phaser
337 * is registered with the parent and its initial phase number is
338 * the same as that of parent phaser.
339 * @param parent the parent phaser.
340 * @param parties the number of parties required to trip barrier.
341 * @throws IllegalArgumentException if parties less than zero
342 * or greater than the maximum number of parties supported.
343 */
344 public Phaser(Phaser parent, int parties) {
345 if (parties < 0 || parties > ushortMask)
346 throw new IllegalArgumentException("Illegal number of parties");
347 int phase = 0;
348 this.parent = parent;
349 if (parent != null) {
350 this.root = parent.root;
351 phase = parent.register();
352 }
353 else
354 this.root = this;
355 this.state = trippedStateFor(phase, parties);
356 }
357
358 /**
359 * Adds a new unarrived party to this phaser.
360 * @return the current barrier phase number upon registration
361 * @throws IllegalStateException if attempting to register more
362 * than the maximum supported number of parties.
363 */
364 public int register() {
365 return doRegister(1);
366 }
367
368 /**
369 * Adds the given number of new unarrived parties to this phaser.
370 * @param parties the number of parties required to trip barrier.
371 * @return the current barrier phase number upon registration
372 * @throws IllegalStateException if attempting to register more
373 * than the maximum supported number of parties.
374 */
375 public int bulkRegister(int parties) {
376 if (parties < 0)
377 throw new IllegalArgumentException();
378 if (parties == 0)
379 return getPhase();
380 return doRegister(parties);
381 }
382
383 /**
384 * Shared code for register, bulkRegister
385 */
386 private int doRegister(int registrations) {
387 int phase;
388 for (;;) {
389 long s = getReconciledState();
390 phase = phaseOf(s);
391 int unarrived = unarrivedOf(s) + registrations;
392 int parties = partiesOf(s) + registrations;
393 if (phase < 0)
394 break;
395 if (parties > ushortMask || unarrived > ushortMask)
396 throw badBounds(parties, unarrived);
397 if (phase == phaseOf(root.state) &&
398 casState(s, stateFor(phase, parties, unarrived)))
399 break;
400 }
401 return phase;
402 }
403
404 /**
405 * Arrives at the barrier, but does not wait for others. (You can
406 * in turn wait for others via {@link #awaitAdvance}).
407 *
408 * @return the barrier phase number upon entry to this method, or a
409 * negative value if terminated;
410 * @throws IllegalStateException if not terminated and the number
411 * of unarrived parties would become negative.
412 */
413 public int arrive() {
414 int phase;
415 for (;;) {
416 long s = state;
417 phase = phaseOf(s);
418 int parties = partiesOf(s);
419 int unarrived = unarrivedOf(s) - 1;
420 if (unarrived > 0) { // Not the last arrival
421 if (casState(s, s - 1)) // s-1 adds one arrival
422 break;
423 }
424 else if (unarrived == 0) { // the last arrival
425 Phaser par = parent;
426 if (par == null) { // directly trip
427 if (casState
428 (s,
429 trippedStateFor(onAdvance(phase, parties)? -1 :
430 ((phase + 1) & phaseMask), parties))) {
431 releaseWaiters(phase);
432 break;
433 }
434 }
435 else { // cascade to parent
436 if (casState(s, s - 1)) { // zeroes unarrived
437 par.arrive();
438 reconcileState();
439 break;
440 }
441 }
442 }
443 else if (phase < 0) // Don't throw exception if terminated
444 break;
445 else if (phase != phaseOf(root.state)) // or if unreconciled
446 reconcileState();
447 else
448 throw badBounds(parties, unarrived);
449 }
450 return phase;
451 }
452
453 /**
454 * Arrives at the barrier, and deregisters from it, without
455 * waiting for others. Deregistration reduces number of parties
456 * required to trip the barrier in future phases. If this phaser
457 * has a parent, and deregistration causes this phaser to have
458 * zero parties, this phaser is also deregistered from its parent.
459 *
460 * @return the current barrier phase number upon entry to
461 * this method, or a negative value if terminated;
462 * @throws IllegalStateException if not terminated and the number
463 * of registered or unarrived parties would become negative.
464 */
465 public int arriveAndDeregister() {
466 // similar code to arrive, but too different to merge
467 Phaser par = parent;
468 int phase;
469 for (;;) {
470 long s = state;
471 phase = phaseOf(s);
472 int parties = partiesOf(s) - 1;
473 int unarrived = unarrivedOf(s) - 1;
474 if (parties >= 0) {
475 if (unarrived > 0 || (unarrived == 0 && par != null)) {
476 if (casState
477 (s,
478 stateFor(phase, parties, unarrived))) {
479 if (unarrived == 0) {
480 par.arriveAndDeregister();
481 reconcileState();
482 }
483 break;
484 }
485 continue;
486 }
487 if (unarrived == 0) {
488 if (casState
489 (s,
490 trippedStateFor(onAdvance(phase, parties)? -1 :
491 ((phase + 1) & phaseMask), parties))) {
492 releaseWaiters(phase);
493 break;
494 }
495 continue;
496 }
497 if (phase < 0)
498 break;
499 if (par != null && phase != phaseOf(root.state)) {
500 reconcileState();
501 continue;
502 }
503 }
504 throw badBounds(parties, unarrived);
505 }
506 return phase;
507 }
508
509 /**
510 * Arrives at the barrier and awaits others. Equivalent in effect
511 * to {@code awaitAdvance(arrive())}. If you instead need to
512 * await with interruption of timeout, and/or deregister upon
513 * arrival, you can arrange them using analogous constructions.
514 * @return the phase on entry to this method
515 * @throws IllegalStateException if not terminated and the number
516 * of unarrived parties would become negative.
517 */
518 public int arriveAndAwaitAdvance() {
519 return awaitAdvance(arrive());
520 }
521
522 /**
523 * Awaits the phase of the barrier to advance from the given
524 * value, or returns immediately if argument is negative or this
525 * barrier is terminated.
526 * @param phase the phase on entry to this method
527 * @return the phase on exit from this method
528 */
529 public int awaitAdvance(int phase) {
530 if (phase < 0)
531 return phase;
532 long s = getReconciledState();
533 int p = phaseOf(s);
534 if (p != phase)
535 return p;
536 if (unarrivedOf(s) == 0)
537 parent.awaitAdvance(phase);
538 // Fall here even if parent waited, to reconcile and help release
539 return untimedWait(phase);
540 }
541
542 /**
543 * Awaits the phase of the barrier to advance from the given
544 * value, or returns immediately if argumet is negative or this
545 * barrier is terminated, or throws InterruptedException if
546 * interrupted while waiting.
547 * @param phase the phase on entry to this method
548 * @return the phase on exit from this method
549 * @throws InterruptedException if thread interrupted while waiting
550 */
551 public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
552 if (phase < 0)
553 return phase;
554 long s = getReconciledState();
555 int p = phaseOf(s);
556 if (p != phase)
557 return p;
558 if (unarrivedOf(s) != 0)
559 parent.awaitAdvanceInterruptibly(phase);
560 return interruptibleWait(phase);
561 }
562
563 /**
564 * Awaits the phase of the barrier to advance from the given value
565 * or the given timeout elapses, or returns immediately if
566 * argument is negative or this barrier is terminated.
567 * @param phase the phase on entry to this method
568 * @return the phase on exit from this method
569 * @throws InterruptedException if thread interrupted while waiting
570 * @throws TimeoutException if timed out while waiting
571 */
572 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
573 throws InterruptedException, TimeoutException {
574 if (phase < 0)
575 return phase;
576 long s = getReconciledState();
577 int p = phaseOf(s);
578 if (p != phase)
579 return p;
580 if (unarrivedOf(s) == 0)
581 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
582 return timedWait(phase, unit.toNanos(timeout));
583 }
584
585 /**
586 * Forces this barrier to enter termination state. Counts of
587 * arrived and registered parties are unaffected. If this phaser
588 * has a parent, it too is terminated. This method may be useful
589 * for coordinating recovery after one or more tasks encounter
590 * unexpected exceptions.
591 */
592 public void forceTermination() {
593 for (;;) {
594 long s = getReconciledState();
595 int phase = phaseOf(s);
596 int parties = partiesOf(s);
597 int unarrived = unarrivedOf(s);
598 if (phase < 0 ||
599 casState(s, stateFor(-1, parties, unarrived))) {
600 releaseWaiters(0);
601 releaseWaiters(1);
602 if (parent != null)
603 parent.forceTermination();
604 return;
605 }
606 }
607 }
608
609 /**
610 * Returns the current phase number. The maximum phase number is
611 * {@code Integer.MAX_VALUE}, after which it restarts at
612 * zero. Upon termination, the phase number is negative.
613 * @return the phase number, or a negative value if terminated
614 */
615 public final int getPhase() {
616 return phaseOf(getReconciledState());
617 }
618
619 /**
620 * Returns true if the current phase number equals the given phase.
621 * @param phase the phase
622 * @return true if the current phase number equals the given phase.
623 */
624 public final boolean hasPhase(int phase) {
625 return phaseOf(getReconciledState()) == phase;
626 }
627
628 /**
629 * Returns the number of parties registered at this barrier.
630 * @return the number of parties
631 */
632 public int getRegisteredParties() {
633 return partiesOf(state);
634 }
635
636 /**
637 * Returns the number of parties that have arrived at the current
638 * phase of this barrier.
639 * @return the number of arrived parties
640 */
641 public int getArrivedParties() {
642 return arrivedOf(state);
643 }
644
645 /**
646 * Returns the number of registered parties that have not yet
647 * arrived at the current phase of this barrier.
648 * @return the number of unarrived parties
649 */
650 public int getUnarrivedParties() {
651 return unarrivedOf(state);
652 }
653
654 /**
655 * Returns the parent of this phaser, or null if none.
656 * @return the parent of this phaser, or null if none.
657 */
658 public Phaser getParent() {
659 return parent;
660 }
661
662 /**
663 * Returns the root ancestor of this phaser, which is the same as
664 * this phaser if it has no parent.
665 * @return the root ancestor of this phaser.
666 */
667 public Phaser getRoot() {
668 return root;
669 }
670
671 /**
672 * Returns true if this barrier has been terminated.
673 * @return true if this barrier has been terminated
674 */
675 public boolean isTerminated() {
676 return getPhase() < 0;
677 }
678
679 /**
680 * Overridable method to perform an action upon phase advance, and
681 * to control termination. This method is invoked whenever the
682 * barrier is tripped (and thus all other waiting parties are
683 * dormant). If it returns true, then, rather than advance the
684 * phase number, this barrier will be set to a final termination
685 * state, and subsequent calls to {@code isTerminated} will
686 * return true.
687 *
688 * <p> The default version returns true when the number of
689 * registered parties is zero. Normally, overrides that arrange
690 * termination for other reasons should also preserve this
691 * property.
692 *
693 * <p> You may override this method to perform an action with side
694 * effects visible to participating tasks, but it is in general
695 * only sensible to do so in designs where all parties register
696 * before any arrive, and all {@code awaitAdvance} at each phase.
697 * Otherwise, you cannot ensure lack of interference. In
698 * particular, this method may be invoked more than once per
699 * transition if other parties successfully register while the
700 * invocation of this method is in progress, thus postponing the
701 * transition until those parties also arrive, re-triggering this
702 * method.
703 *
704 * @param phase the phase number on entering the barrier
705 * @param registeredParties the current number of registered
706 * parties.
707 * @return true if this barrier should terminate
708 */
709 protected boolean onAdvance(int phase, int registeredParties) {
710 return registeredParties <= 0;
711 }
712
713 /**
714 * Returns a string identifying this phaser, as well as its
715 * state. The state, in brackets, includes the String {@code
716 * "phase ="} followed by the phase number, {@code "parties ="}
717 * followed by the number of registered parties, and {@code
718 * "arrived ="} followed by the number of arrived parties
719 *
720 * @return a string identifying this barrier, as well as its state
721 */
722 public String toString() {
723 long s = getReconciledState();
724 return super.toString() + "[phase = " + phaseOf(s) + " parties = " + partiesOf(s) + " arrived = " + arrivedOf(s) + "]";
725 }
726
727 // methods for waiting
728
729 /** The number of CPUs, for spin control */
730 static final int NCPUS = Runtime.getRuntime().availableProcessors();
731
732 /**
733 * The number of times to spin before blocking in timed waits.
734 * The value is empirically derived.
735 */
736 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
737
738 /**
739 * The number of times to spin before blocking in untimed waits.
740 * This is greater than timed value because untimed waits spin
741 * faster since they don't need to check times on each spin.
742 */
743 static final int maxUntimedSpins = maxTimedSpins * 32;
744
745 /**
746 * The number of nanoseconds for which it is faster to spin
747 * rather than to use timed park. A rough estimate suffices.
748 */
749 static final long spinForTimeoutThreshold = 1000L;
750
751 /**
752 * Wait nodes for Treiber stack representing wait queue for non-FJ
753 * tasks.
754 */
755 static final class QNode {
756 QNode next;
757 volatile Thread thread; // nulled to cancel wait
758 QNode() {
759 thread = Thread.currentThread();
760 }
761 void signal() {
762 Thread t = thread;
763 if (t != null) {
764 thread = null;
765 LockSupport.unpark(t);
766 }
767 }
768 }
769
770 /**
771 * Removes and signals waiting threads from wait queue
772 */
773 private void releaseWaiters(int phase) {
774 AtomicReference<QNode> head = queueFor(phase);
775 QNode q;
776 while ((q = head.get()) != null) {
777 if (head.compareAndSet(q, q.next))
778 q.signal();
779 }
780 }
781
782 /**
783 * Enqueues node and waits unless aborted or signalled.
784 */
785 private int untimedWait(int phase) {
786 int spins = maxUntimedSpins;
787 QNode node = null;
788 boolean interrupted = false;
789 boolean queued = false;
790 int p;
791 while ((p = getPhase()) == phase) {
792 interrupted = Thread.interrupted();
793 if (node != null) {
794 if (!queued) {
795 AtomicReference<QNode> head = queueFor(phase);
796 queued = head.compareAndSet(node.next = head.get(), node);
797 }
798 else if (node.thread != null)
799 LockSupport.park(this);
800 }
801 else if (spins <= 0)
802 node = new QNode();
803 else
804 --spins;
805 }
806 if (node != null)
807 node.thread = null;
808 if (interrupted)
809 Thread.currentThread().interrupt();
810 releaseWaiters(phase);
811 return p;
812 }
813
814 /**
815 * Messier interruptible version
816 */
817 private int interruptibleWait(int phase) throws InterruptedException {
818 int spins = maxUntimedSpins;
819 QNode node = null;
820 boolean queued = false;
821 boolean interrupted = false;
822 int p;
823 while ((p = getPhase()) == phase) {
824 if (interrupted = Thread.interrupted())
825 break;
826 if (node != null) {
827 if (!queued) {
828 AtomicReference<QNode> head = queueFor(phase);
829 queued = head.compareAndSet(node.next = head.get(), node);
830 }
831 else if (node.thread != null)
832 LockSupport.park(this);
833 }
834 else if (spins <= 0)
835 node = new QNode();
836 else
837 --spins;
838 }
839 if (node != null)
840 node.thread = null;
841 if (interrupted)
842 throw new InterruptedException();
843 releaseWaiters(phase);
844 return p;
845 }
846
847 /**
848 * Even messier timeout version.
849 */
850 private int timedWait(int phase, long nanos)
851 throws InterruptedException, TimeoutException {
852 int p;
853 if ((p = getPhase()) == phase) {
854 long lastTime = System.nanoTime();
855 int spins = maxTimedSpins;
856 QNode node = null;
857 boolean queued = false;
858 boolean interrupted = false;
859 while ((p = getPhase()) == phase) {
860 if (interrupted = Thread.interrupted())
861 break;
862 long now = System.nanoTime();
863 if ((nanos -= now - lastTime) <= 0)
864 break;
865 lastTime = now;
866 if (node != null) {
867 if (!queued) {
868 AtomicReference<QNode> head = queueFor(phase);
869 queued = head.compareAndSet(node.next = head.get(), node);
870 }
871 else if (node.thread != null &&
872 nanos > spinForTimeoutThreshold) {
873 LockSupport.parkNanos(this, nanos);
874 }
875 }
876 else if (spins <= 0)
877 node = new QNode();
878 else
879 --spins;
880 }
881 if (node != null)
882 node.thread = null;
883 if (interrupted)
884 throw new InterruptedException();
885 if (p == phase && (p = getPhase()) == phase)
886 throw new TimeoutException();
887 }
888 releaseWaiters(phase);
889 return p;
890 }
891
892 // Temporary Unsafe mechanics for preliminary release
893
894 static final Unsafe _unsafe;
895 static final long stateOffset;
896
897 static {
898 try {
899 if (Phaser.class.getClassLoader() != null) {
900 Field f = Unsafe.class.getDeclaredField("theUnsafe");
901 f.setAccessible(true);
902 _unsafe = (Unsafe)f.get(null);
903 }
904 else
905 _unsafe = Unsafe.getUnsafe();
906 stateOffset = _unsafe.objectFieldOffset
907 (Phaser.class.getDeclaredField("state"));
908 } catch (Exception e) {
909 throw new RuntimeException("Could not initialize intrinsics", e);
910 }
911 }
912
913 final boolean casState(long cmp, long val) {
914 return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
915 }
916 }