ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.70
Committed: Wed Dec 8 15:27:25 2010 UTC (13 years, 5 months ago) by dl
Branch: MAIN
Changes since 1.69: +31 -28 lines
Log Message:
Weaken assumptions in reconcileState; improve specs

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p> <b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p> <b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p> <b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p> <b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four fields:
241 *
242 * * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * * parties -- the number of parties to wait (bits 16-31)
244 * * phase -- the generation of the barrier (bits 32-62)
245 * * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished with the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = 0x7fffffff;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final long PHASE_MASK = -1L << PHASE_SHIFT;
273 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
274 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
275 private static final long TERMINATION_BIT = 1L << 63;
276
277 // some special values
278 private static final int ONE_ARRIVAL = 1;
279 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280 private static final int EMPTY = 1;
281
282 // The following unpacking methods are usually manually inlined
283
284 private static int unarrivedOf(long s) {
285 int counts = (int)s;
286 return (counts == EMPTY) ? 0 : counts & UNARRIVED_MASK;
287 }
288
289 private static int partiesOf(long s) {
290 return (int)s >>> PARTIES_SHIFT;
291 }
292
293 private static int phaseOf(long s) {
294 return (int) (s >>> PHASE_SHIFT);
295 }
296
297 private static int arrivedOf(long s) {
298 int counts = (int)s;
299 return (counts == EMPTY) ? 0 :
300 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
301 }
302
303 /**
304 * The parent of this phaser, or null if none
305 */
306 private final Phaser parent;
307
308 /**
309 * The root of phaser tree. Equals this if not in a tree.
310 */
311 private final Phaser root;
312
313 /**
314 * Heads of Treiber stacks for waiting threads. To eliminate
315 * contention when releasing some threads while adding others, we
316 * use two of them, alternating across even and odd phases.
317 * Subphasers share queues with root to speed up releases.
318 */
319 private final AtomicReference<QNode> evenQ;
320 private final AtomicReference<QNode> oddQ;
321
322 private AtomicReference<QNode> queueFor(int phase) {
323 return ((phase & 1) == 0) ? evenQ : oddQ;
324 }
325
326 /**
327 * Returns message string for bounds exceptions on arrival.
328 */
329 private String badArrive(long s) {
330 return "Attempted arrival of unregistered party for " +
331 stateToString(s);
332 }
333
334 /**
335 * Returns message string for bounds exceptions on registration.
336 */
337 private String badRegister(long s) {
338 return "Attempt to register more than " +
339 MAX_PARTIES + " parties for " + stateToString(s);
340 }
341
342 /**
343 * Main implementation for methods arrive and arriveAndDeregister.
344 * Manually tuned to speed up and minimize race windows for the
345 * common case of just decrementing unarrived field.
346 *
347 * @param deregister false for arrive, true for arriveAndDeregister
348 */
349 private int doArrive(boolean deregister) {
350 int adj = deregister ? ONE_ARRIVAL|ONE_PARTY : ONE_ARRIVAL;
351 final Phaser root = this.root;
352 for (;;) {
353 long s = (root == this) ? state : reconcileState();
354 int phase = (int)(s >>> PHASE_SHIFT);
355 int counts = (int)s;
356 int unarrived = (counts & UNARRIVED_MASK) - 1;
357 if (phase < 0)
358 return phase;
359 else if (counts == EMPTY || unarrived < 0) {
360 if (root == this || reconcileState() == s)
361 throw new IllegalStateException(badArrive(s));
362 }
363 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adj)) {
364 if (unarrived == 0) {
365 long n = s & PARTIES_MASK; // base of next state
366 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
367 if (root != this)
368 return parent.doArrive(nextUnarrived == 0);
369 if (onAdvance(phase, nextUnarrived))
370 n |= TERMINATION_BIT;
371 else if (nextUnarrived == 0)
372 n |= EMPTY;
373 else
374 n |= nextUnarrived;
375 n |= ((long)((phase + 1) & MAX_PHASE)) << PHASE_SHIFT;
376 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 releaseWaiters(phase);
378 }
379 return phase;
380 }
381 }
382 }
383
384 /**
385 * Implementation of register, bulkRegister
386 *
387 * @param registrations number to add to both parties and
388 * unarrived fields. Must be greater than zero.
389 */
390 private int doRegister(int registrations) {
391 // adjustment to state
392 long adj = ((long)registrations << PARTIES_SHIFT) | registrations;
393 Phaser par = parent;
394 int phase;
395 for (;;) {
396 long s = state;
397 int counts = (int)s;
398 int parties = counts >>> PARTIES_SHIFT;
399 int unarrived = counts & UNARRIVED_MASK;
400 if (registrations > MAX_PARTIES - parties)
401 throw new IllegalStateException(badRegister(s));
402 else if ((phase = (int)(s >>> PHASE_SHIFT)) < 0)
403 break;
404 else if (counts != EMPTY) { // not 1st registration
405 if (par == null || reconcileState() == s) {
406 if (unarrived == 0) // wait out advance
407 root.internalAwaitAdvance(phase, null);
408 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
409 s, s + adj))
410 break;
411 }
412 }
413 else if (par == null) { // 1st root registration
414 long next = (((long) phase) << PHASE_SHIFT) | adj;
415 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
416 break;
417 }
418 else {
419 synchronized (this) { // 1st sub registration
420 if (state == s) { // recheck under lock
421 par.doRegister(1);
422 do { // force current phase
423 phase = (int)(root.state >>> PHASE_SHIFT);
424 // assert phase < 0 || (int)state == EMPTY;
425 } while (!UNSAFE.compareAndSwapLong
426 (this, stateOffset, state,
427 (((long) phase) << PHASE_SHIFT) | adj));
428 break;
429 }
430 }
431 }
432 }
433 return phase;
434 }
435
436 /**
437 * Resolves lagged phase propagation from root if necessary.
438 * Reconciliation normally occurs when root has advanced but
439 * subphasers have not yet done so, in which case they must finish
440 * their own advance by setting unarrived to parties (or if
441 * parties is zero, resetting to unregistered EMPTY state).
442 * However, this method may also be called when "floating"
443 * subphasers with possibly some unarrived parties are merely
444 * catching up to current phase, in which case counts are
445 * unaffected.
446 *
447 * @return reconciled state
448 */
449 private long reconcileState() {
450 final Phaser root = this.root;
451 long s = state;
452 if (root != this) {
453 int phase, u, p;
454 // CAS root phase with current parties; possibly trip unarrived
455 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
456 (int)(s >>> PHASE_SHIFT) &&
457 !UNSAFE.compareAndSwapLong
458 (this, stateOffset, s,
459 s = ((((long) phase) << PHASE_SHIFT) | (s & PARTIES_MASK) |
460 ((p = (int)s >>> PARTIES_SHIFT) == 0 ? EMPTY :
461 (u = (int)s & UNARRIVED_MASK) == 0 ? p : u))))
462 s = state;
463 }
464 return s;
465 }
466
467 /**
468 * Creates a new phaser with no initially registered parties, no
469 * parent, and initial phase number 0. Any thread using this
470 * phaser will need to first register for it.
471 */
472 public Phaser() {
473 this(null, 0);
474 }
475
476 /**
477 * Creates a new phaser with the given number of registered
478 * unarrived parties, no parent, and initial phase number 0.
479 *
480 * @param parties the number of parties required to advance to the
481 * next phase
482 * @throws IllegalArgumentException if parties less than zero
483 * or greater than the maximum number of parties supported
484 */
485 public Phaser(int parties) {
486 this(null, parties);
487 }
488
489 /**
490 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
491 *
492 * @param parent the parent phaser
493 */
494 public Phaser(Phaser parent) {
495 this(parent, 0);
496 }
497
498 /**
499 * Creates a new phaser with the given parent and number of
500 * registered unarrived parties. When the given parent is non-null
501 * and the given number of parties is greater than zero, this
502 * child phaser is registered with its parent.
503 *
504 * @param parent the parent phaser
505 * @param parties the number of parties required to advance to the
506 * next phase
507 * @throws IllegalArgumentException if parties less than zero
508 * or greater than the maximum number of parties supported
509 */
510 public Phaser(Phaser parent, int parties) {
511 if (parties >>> PARTIES_SHIFT != 0)
512 throw new IllegalArgumentException("Illegal number of parties");
513 int phase = 0;
514 this.parent = parent;
515 if (parent != null) {
516 final Phaser root = parent.root;
517 this.root = root;
518 this.evenQ = root.evenQ;
519 this.oddQ = root.oddQ;
520 if (parties != 0)
521 phase = parent.doRegister(1);
522 }
523 else {
524 this.root = this;
525 this.evenQ = new AtomicReference<QNode>();
526 this.oddQ = new AtomicReference<QNode>();
527 }
528 this.state = (parties == 0) ? (long) EMPTY :
529 ((((long) phase) << PHASE_SHIFT) |
530 (((long) parties) << PARTIES_SHIFT) |
531 ((long) parties));
532 }
533
534 /**
535 * Adds a new unarrived party to this phaser. If an ongoing
536 * invocation of {@link #onAdvance} is in progress, this method
537 * may await its completion before returning. If this phaser has
538 * a parent, and this phaser previously had no registered parties,
539 * this child phaser is also registered with its parent. If
540 * this phaser is terminated, the attempt to register has
541 * no effect, and a negative value is returned.
542 *
543 * @return the arrival phase number to which this registration
544 * applied. If this value is negative, then this phaser has
545 * terminated, in which case registration has no effect.
546 * @throws IllegalStateException if attempting to register more
547 * than the maximum supported number of parties
548 */
549 public int register() {
550 return doRegister(1);
551 }
552
553 /**
554 * Adds the given number of new unarrived parties to this phaser.
555 * If an ongoing invocation of {@link #onAdvance} is in progress,
556 * this method may await its completion before returning. If this
557 * phaser has a parent, and the given number of parties is greater
558 * than zero, and this phaser previously had no registered
559 * parties, this child phaser is also registered with its parent.
560 * If this phaser is terminated, the attempt to register has no
561 * effect, and a negative value is returned.
562 *
563 * @param parties the number of additional parties required to
564 * advance to the next phase
565 * @return the arrival phase number to which this registration
566 * applied. If this value is negative, then this phaser has
567 * terminated, in which case registration has no effect.
568 * @throws IllegalStateException if attempting to register more
569 * than the maximum supported number of parties
570 * @throws IllegalArgumentException if {@code parties < 0}
571 */
572 public int bulkRegister(int parties) {
573 if (parties < 0)
574 throw new IllegalArgumentException();
575 if (parties == 0)
576 return getPhase();
577 return doRegister(parties);
578 }
579
580 /**
581 * Arrives at this phaser, without waiting for others to arrive.
582 *
583 * <p>It is a usage error for an unregistered party to invoke this
584 * method. However, this error may result in an {@code
585 * IllegalStateException} only upon some subsequent operation on
586 * this phaser, if ever.
587 *
588 * @return the arrival phase number, or a negative value if terminated
589 * @throws IllegalStateException if not terminated and the number
590 * of unarrived parties would become negative
591 */
592 public int arrive() {
593 return doArrive(false);
594 }
595
596 /**
597 * Arrives at this phaser and deregisters from it without waiting
598 * for others to arrive. Deregistration reduces the number of
599 * parties required to advance in future phases. If this phaser
600 * has a parent, and deregistration causes this phaser to have
601 * zero parties, this phaser is also deregistered from its parent.
602 *
603 * <p>It is a usage error for an unregistered party to invoke this
604 * method. However, this error may result in an {@code
605 * IllegalStateException} only upon some subsequent operation on
606 * this phaser, if ever.
607 *
608 * @return the arrival phase number, or a negative value if terminated
609 * @throws IllegalStateException if not terminated and the number
610 * of registered or unarrived parties would become negative
611 */
612 public int arriveAndDeregister() {
613 return doArrive(true);
614 }
615
616 /**
617 * Arrives at this phaser and awaits others. Equivalent in effect
618 * to {@code awaitAdvance(arrive())}. If you need to await with
619 * interruption or timeout, you can arrange this with an analogous
620 * construction using one of the other forms of the {@code
621 * awaitAdvance} method. If instead you need to deregister upon
622 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
623 *
624 * <p>It is a usage error for an unregistered party to invoke this
625 * method. However, this error may result in an {@code
626 * IllegalStateException} only upon some subsequent operation on
627 * this phaser, if ever.
628 *
629 * @return the arrival phase number, or the (negative)
630 * {@linkplain #getPhase() current phase} if terminated
631 * @throws IllegalStateException if not terminated and the number
632 * of unarrived parties would become negative
633 */
634 public int arriveAndAwaitAdvance() {
635 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
636 final Phaser root = this.root;
637 for (;;) {
638 long s = (root == this) ? state : reconcileState();
639 int phase = (int)(s >>> PHASE_SHIFT);
640 int counts = (int)s;
641 int unarrived = (counts & UNARRIVED_MASK) - 1;
642 if (phase < 0)
643 return phase;
644 else if (counts == EMPTY || unarrived < 0) {
645 if (reconcileState() == s)
646 throw new IllegalStateException(badArrive(s));
647 }
648 else if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
649 s -= ONE_ARRIVAL)) {
650 if (unarrived != 0)
651 return root.internalAwaitAdvance(phase, null);
652 if (root != this)
653 return parent.arriveAndAwaitAdvance();
654 long n = s & PARTIES_MASK; // base of next state
655 int nextUnarrived = ((int)n) >>> PARTIES_SHIFT;
656 if (onAdvance(phase, nextUnarrived))
657 n |= TERMINATION_BIT;
658 else if (nextUnarrived == 0)
659 n |= EMPTY;
660 else
661 n |= nextUnarrived;
662 int nextPhase = (phase + 1) & MAX_PHASE;
663 n |= (long)nextPhase << PHASE_SHIFT;
664 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
665 return (int)(state >>> PHASE_SHIFT); // terminated
666 releaseWaiters(phase);
667 return nextPhase;
668 }
669 }
670 }
671
672 /**
673 * Awaits the phase of this phaser to advance from the given phase
674 * value, returning immediately if the current phase is not equal
675 * to the given phase value or this phaser is terminated.
676 *
677 * @param phase an arrival phase number, or negative value if
678 * terminated; this argument is normally the value returned by a
679 * previous call to {@code arrive} or {@code arriveAndDeregister}.
680 * @return the next arrival phase number, or the argument if it is
681 * negative, or the (negative) {@linkplain #getPhase() current phase}
682 * if terminated
683 */
684 public int awaitAdvance(int phase) {
685 final Phaser root = this.root;
686 long s = (root == this) ? state : reconcileState();
687 int p = (int)(s >>> PHASE_SHIFT);
688 if (phase < 0)
689 return phase;
690 if (p == phase)
691 return root.internalAwaitAdvance(phase, null);
692 return p;
693 }
694
695 /**
696 * Awaits the phase of this phaser to advance from the given phase
697 * value, throwing {@code InterruptedException} if interrupted
698 * while waiting, or returning immediately if the current phase is
699 * not equal to the given phase value or this phaser is
700 * terminated.
701 *
702 * @param phase an arrival phase number, or negative value if
703 * terminated; this argument is normally the value returned by a
704 * previous call to {@code arrive} or {@code arriveAndDeregister}.
705 * @return the next arrival phase number, or the argument if it is
706 * negative, or the (negative) {@linkplain #getPhase() current phase}
707 * if terminated
708 * @throws InterruptedException if thread interrupted while waiting
709 */
710 public int awaitAdvanceInterruptibly(int phase)
711 throws InterruptedException {
712 final Phaser root = this.root;
713 long s = (root == this) ? state : reconcileState();
714 int p = (int)(s >>> PHASE_SHIFT);
715 if (phase < 0)
716 return phase;
717 if (p == phase) {
718 QNode node = new QNode(this, phase, true, false, 0L);
719 p = root.internalAwaitAdvance(phase, node);
720 if (node.wasInterrupted)
721 throw new InterruptedException();
722 }
723 return p;
724 }
725
726 /**
727 * Awaits the phase of this phaser to advance from the given phase
728 * value or the given timeout to elapse, throwing {@code
729 * InterruptedException} if interrupted while waiting, or
730 * returning immediately if the current phase is not equal to the
731 * given phase value or this phaser is terminated.
732 *
733 * @param phase an arrival phase number, or negative value if
734 * terminated; this argument is normally the value returned by a
735 * previous call to {@code arrive} or {@code arriveAndDeregister}.
736 * @param timeout how long to wait before giving up, in units of
737 * {@code unit}
738 * @param unit a {@code TimeUnit} determining how to interpret the
739 * {@code timeout} parameter
740 * @return the next arrival phase number, or the argument if it is
741 * negative, or the (negative) {@linkplain #getPhase() current phase}
742 * if terminated
743 * @throws InterruptedException if thread interrupted while waiting
744 * @throws TimeoutException if timed out while waiting
745 */
746 public int awaitAdvanceInterruptibly(int phase,
747 long timeout, TimeUnit unit)
748 throws InterruptedException, TimeoutException {
749 long nanos = unit.toNanos(timeout);
750 final Phaser root = this.root;
751 long s = (root == this) ? state : reconcileState();
752 int p = (int)(s >>> PHASE_SHIFT);
753 if (phase < 0)
754 return phase;
755 if (p == phase) {
756 QNode node = new QNode(this, phase, true, true, nanos);
757 p = root.internalAwaitAdvance(phase, node);
758 if (node.wasInterrupted)
759 throw new InterruptedException();
760 else if (p == phase)
761 throw new TimeoutException();
762 }
763 return p;
764 }
765
766 /**
767 * Forces this phaser to enter termination state. Counts of
768 * registered parties are unaffected. If this phaser is a member
769 * of a tiered set of phasers, then all of the phasers in the set
770 * are terminated. If this phaser is already terminated, this
771 * method has no effect. This method may be useful for
772 * coordinating recovery after one or more tasks encounter
773 * unexpected exceptions.
774 */
775 public void forceTermination() {
776 // Only need to change root state
777 final Phaser root = this.root;
778 long s;
779 while ((s = root.state) >= 0) {
780 if (UNSAFE.compareAndSwapLong(root, stateOffset,
781 s, s | TERMINATION_BIT)) {
782 // signal all threads
783 releaseWaiters(0);
784 releaseWaiters(1);
785 return;
786 }
787 }
788 }
789
790 /**
791 * Returns the current phase number. The maximum phase number is
792 * {@code Integer.MAX_VALUE}, after which it restarts at
793 * zero. Upon termination, the phase number is negative,
794 * in which case the prevailing phase prior to termination
795 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
796 *
797 * @return the phase number, or a negative value if terminated
798 */
799 public final int getPhase() {
800 return (int)(root.state >>> PHASE_SHIFT);
801 }
802
803 /**
804 * Returns the number of parties registered at this phaser.
805 *
806 * @return the number of parties
807 */
808 public int getRegisteredParties() {
809 return partiesOf(state);
810 }
811
812 /**
813 * Returns the number of registered parties that have arrived at
814 * the current phase of this phaser. If this phaser has terminated,
815 * the returned value is meaningless and arbitrary.
816 *
817 * @return the number of arrived parties
818 */
819 public int getArrivedParties() {
820 return arrivedOf(reconcileState());
821 }
822
823 /**
824 * Returns the number of registered parties that have not yet
825 * arrived at the current phase of this phaser. If this phaser has
826 * terminated, the returned value is meaningless and arbitrary.
827 *
828 * @return the number of unarrived parties
829 */
830 public int getUnarrivedParties() {
831 return unarrivedOf(reconcileState());
832 }
833
834 /**
835 * Returns the parent of this phaser, or {@code null} if none.
836 *
837 * @return the parent of this phaser, or {@code null} if none
838 */
839 public Phaser getParent() {
840 return parent;
841 }
842
843 /**
844 * Returns the root ancestor of this phaser, which is the same as
845 * this phaser if it has no parent.
846 *
847 * @return the root ancestor of this phaser
848 */
849 public Phaser getRoot() {
850 return root;
851 }
852
853 /**
854 * Returns {@code true} if this phaser has been terminated.
855 *
856 * @return {@code true} if this phaser has been terminated
857 */
858 public boolean isTerminated() {
859 return root.state < 0L;
860 }
861
862 /**
863 * Overridable method to perform an action upon impending phase
864 * advance, and to control termination. This method is invoked
865 * upon arrival of the party advancing this phaser (when all other
866 * waiting parties are dormant). If this method returns {@code
867 * true}, this phaser will be set to a final termination state
868 * upon advance, and subsequent calls to {@link #isTerminated}
869 * will return true. Any (unchecked) Exception or Error thrown by
870 * an invocation of this method is propagated to the party
871 * attempting to advance this phaser, in which case no advance
872 * occurs.
873 *
874 * <p>The arguments to this method provide the state of the phaser
875 * prevailing for the current transition. The effects of invoking
876 * arrival, registration, and waiting methods on this phaser from
877 * within {@code onAdvance} are unspecified and should not be
878 * relied on.
879 *
880 * <p>If this phaser is a member of a tiered set of phasers, then
881 * {@code onAdvance} is invoked only for its root phaser on each
882 * advance.
883 *
884 * <p>To support the most common use cases, the default
885 * implementation of this method returns {@code true} when the
886 * number of registered parties has become zero as the result of a
887 * party invoking {@code arriveAndDeregister}. You can disable
888 * this behavior, thus enabling continuation upon future
889 * registrations, by overriding this method to always return
890 * {@code false}:
891 *
892 * <pre> {@code
893 * Phaser phaser = new Phaser() {
894 * protected boolean onAdvance(int phase, int parties) { return false; }
895 * }}</pre>
896 *
897 * @param phase the current phase number on entry to this method,
898 * before this phaser is advanced
899 * @param registeredParties the current number of registered parties
900 * @return {@code true} if this phaser should terminate
901 */
902 protected boolean onAdvance(int phase, int registeredParties) {
903 return registeredParties == 0;
904 }
905
906 /**
907 * Returns a string identifying this phaser, as well as its
908 * state. The state, in brackets, includes the String {@code
909 * "phase = "} followed by the phase number, {@code "parties = "}
910 * followed by the number of registered parties, and {@code
911 * "arrived = "} followed by the number of arrived parties.
912 *
913 * @return a string identifying this phaser, as well as its state
914 */
915 public String toString() {
916 return stateToString(reconcileState());
917 }
918
919 /**
920 * Implementation of toString and string-based error messages
921 */
922 private String stateToString(long s) {
923 return super.toString() +
924 "[phase = " + phaseOf(s) +
925 " parties = " + partiesOf(s) +
926 " arrived = " + arrivedOf(s) + "]";
927 }
928
929 // Waiting mechanics
930
931 /**
932 * Removes and signals threads from queue for phase.
933 */
934 private void releaseWaiters(int phase) {
935 QNode q; // first element of queue
936 Thread t; // its thread
937 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
938 while ((q = head.get()) != null &&
939 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
940 if (head.compareAndSet(q, q.next) &&
941 (t = q.thread) != null) {
942 q.thread = null;
943 LockSupport.unpark(t);
944 }
945 }
946 }
947
948 /**
949 * Variant of releaseWaiters that additionally tries to remove any
950 * nodes no longer waiting for advance due to timeout or
951 * interrupt. Currently, nodes are removed only if they are at
952 * head of queue, which suffices to reduce memory footprint in
953 * most usages.
954 *
955 * @return current phase on exit
956 */
957 private int abortWait(int phase) {
958 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
959 for (;;) {
960 Thread t;
961 QNode q = head.get();
962 int p = (int)(root.state >>> PHASE_SHIFT);
963 if (q == null || ((t = q.thread) != null && q.phase == p))
964 return p;
965 if (head.compareAndSet(q, q.next) && t != null) {
966 q.thread = null;
967 LockSupport.unpark(t);
968 }
969 }
970 }
971
972 /** The number of CPUs, for spin control */
973 private static final int NCPU = Runtime.getRuntime().availableProcessors();
974
975 /**
976 * The number of times to spin before blocking while waiting for
977 * advance, per arrival while waiting. On multiprocessors, fully
978 * blocking and waking up a large number of threads all at once is
979 * usually a very slow process, so we use rechargeable spins to
980 * avoid it when threads regularly arrive: When a thread in
981 * internalAwaitAdvance notices another arrival before blocking,
982 * and there appear to be enough CPUs available, it spins
983 * SPINS_PER_ARRIVAL more times before blocking. The value trades
984 * off good-citizenship vs big unnecessary slowdowns.
985 */
986 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
987
988 /**
989 * Possibly blocks and waits for phase to advance unless aborted.
990 * Call only from root node.
991 *
992 * @param phase current phase
993 * @param node if non-null, the wait node to track interrupt and timeout;
994 * if null, denotes noninterruptible wait
995 * @return current phase
996 */
997 private int internalAwaitAdvance(int phase, QNode node) {
998 releaseWaiters(phase-1); // ensure old queue clean
999 boolean queued = false; // true when node is enqueued
1000 int lastUnarrived = 0; // to increase spins upon change
1001 int spins = SPINS_PER_ARRIVAL;
1002 long s;
1003 int p;
1004 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1005 if (node == null) { // spinning in noninterruptible mode
1006 int unarrived = (int)s & UNARRIVED_MASK;
1007 if (unarrived != lastUnarrived &&
1008 (lastUnarrived = unarrived) < NCPU)
1009 spins += SPINS_PER_ARRIVAL;
1010 boolean interrupted = Thread.interrupted();
1011 if (interrupted || --spins < 0) { // need node to record intr
1012 node = new QNode(this, phase, false, false, 0L);
1013 node.wasInterrupted = interrupted;
1014 }
1015 }
1016 else if (node.isReleasable()) // done or aborted
1017 break;
1018 else if (!queued) { // push onto queue
1019 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1020 QNode q = node.next = head.get();
1021 if ((q == null || q.phase == phase) &&
1022 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1023 queued = head.compareAndSet(q, node);
1024 }
1025 else {
1026 try {
1027 ForkJoinPool.managedBlock(node);
1028 } catch (InterruptedException ie) {
1029 node.wasInterrupted = true;
1030 }
1031 }
1032 }
1033
1034 if (node != null) {
1035 if (node.thread != null)
1036 node.thread = null; // avoid need for unpark()
1037 if (node.wasInterrupted && !node.interruptible)
1038 Thread.currentThread().interrupt();
1039 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1040 return abortWait(phase); // possibly clean up on abort
1041 }
1042 releaseWaiters(phase);
1043 return p;
1044 }
1045
1046 /**
1047 * Wait nodes for Treiber stack representing wait queue
1048 */
1049 static final class QNode implements ForkJoinPool.ManagedBlocker {
1050 final Phaser phaser;
1051 final int phase;
1052 final boolean interruptible;
1053 final boolean timed;
1054 boolean wasInterrupted;
1055 long nanos;
1056 long lastTime;
1057 volatile Thread thread; // nulled to cancel wait
1058 QNode next;
1059
1060 QNode(Phaser phaser, int phase, boolean interruptible,
1061 boolean timed, long nanos) {
1062 this.phaser = phaser;
1063 this.phase = phase;
1064 this.interruptible = interruptible;
1065 this.nanos = nanos;
1066 this.timed = timed;
1067 this.lastTime = timed ? System.nanoTime() : 0L;
1068 thread = Thread.currentThread();
1069 }
1070
1071 public boolean isReleasable() {
1072 if (thread == null)
1073 return true;
1074 if (phaser.getPhase() != phase) {
1075 thread = null;
1076 return true;
1077 }
1078 if (Thread.interrupted())
1079 wasInterrupted = true;
1080 if (wasInterrupted && interruptible) {
1081 thread = null;
1082 return true;
1083 }
1084 if (timed) {
1085 if (nanos > 0L) {
1086 long now = System.nanoTime();
1087 nanos -= now - lastTime;
1088 lastTime = now;
1089 }
1090 if (nanos <= 0L) {
1091 thread = null;
1092 return true;
1093 }
1094 }
1095 return false;
1096 }
1097
1098 public boolean block() {
1099 if (isReleasable())
1100 return true;
1101 else if (!timed)
1102 LockSupport.park(this);
1103 else if (nanos > 0)
1104 LockSupport.parkNanos(this, nanos);
1105 return isReleasable();
1106 }
1107 }
1108
1109 // Unsafe mechanics
1110
1111 private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1112 private static final long stateOffset =
1113 objectFieldOffset("state", Phaser.class);
1114
1115 private static long objectFieldOffset(String field, Class<?> klazz) {
1116 try {
1117 return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1118 } catch (NoSuchFieldException e) {
1119 // Convert Exception to corresponding Error
1120 NoSuchFieldError error = new NoSuchFieldError(field);
1121 error.initCause(e);
1122 throw error;
1123 }
1124 }
1125
1126 /**
1127 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1128 * Replace with a simple call to Unsafe.getUnsafe when integrating
1129 * into a jdk.
1130 *
1131 * @return a sun.misc.Unsafe
1132 */
1133 private static sun.misc.Unsafe getUnsafe() {
1134 try {
1135 return sun.misc.Unsafe.getUnsafe();
1136 } catch (SecurityException se) {
1137 try {
1138 return java.security.AccessController.doPrivileged
1139 (new java.security
1140 .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1141 public sun.misc.Unsafe run() throws Exception {
1142 java.lang.reflect.Field f = sun.misc
1143 .Unsafe.class.getDeclaredField("theUnsafe");
1144 f.setAccessible(true);
1145 return (sun.misc.Unsafe) f.get(null);
1146 }});
1147 } catch (java.security.PrivilegedActionException e) {
1148 throw new RuntimeException("Could not initialize intrinsics",
1149 e.getCause());
1150 }
1151 }
1152 }
1153 }