ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.79
Committed: Wed Jan 9 02:51:37 2013 UTC (11 years, 3 months ago) by jsr166
Branch: MAIN
Changes since 1.78: +17 -15 lines
Log Message:
more portable getUnsafe()

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/publicdomain/zero/1.0/
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.TimeUnit;
10 import java.util.concurrent.TimeoutException;
11 import java.util.concurrent.atomic.AtomicReference;
12 import java.util.concurrent.locks.LockSupport;
13
14 /**
15 * A reusable synchronization barrier, similar in functionality to
16 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
17 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
18 * but supporting more flexible usage.
19 *
20 * <p><b>Registration.</b> Unlike the case for other barriers, the
21 * number of parties <em>registered</em> to synchronize on a phaser
22 * may vary over time. Tasks may be registered at any time (using
23 * methods {@link #register}, {@link #bulkRegister}, or forms of
24 * constructors establishing initial numbers of parties), and
25 * optionally deregistered upon any arrival (using {@link
26 * #arriveAndDeregister}). As is the case with most basic
27 * synchronization constructs, registration and deregistration affect
28 * only internal counts; they do not establish any further internal
29 * bookkeeping, so tasks cannot query whether they are registered.
30 * (However, you can introduce such bookkeeping by subclassing this
31 * class.)
32 *
33 * <p><b>Synchronization.</b> Like a {@code CyclicBarrier}, a {@code
34 * Phaser} may be repeatedly awaited. Method {@link
35 * #arriveAndAwaitAdvance} has effect analogous to {@link
36 * java.util.concurrent.CyclicBarrier#await CyclicBarrier.await}. Each
37 * generation of a phaser has an associated phase number. The phase
38 * number starts at zero, and advances when all parties arrive at the
39 * phaser, wrapping around to zero after reaching {@code
40 * Integer.MAX_VALUE}. The use of phase numbers enables independent
41 * control of actions upon arrival at a phaser and upon awaiting
42 * others, via two kinds of methods that may be invoked by any
43 * registered party:
44 *
45 * <ul>
46 *
47 * <li> <b>Arrival.</b> Methods {@link #arrive} and
48 * {@link #arriveAndDeregister} record arrival. These methods
49 * do not block, but return an associated <em>arrival phase
50 * number</em>; that is, the phase number of the phaser to which
51 * the arrival applied. When the final party for a given phase
52 * arrives, an optional action is performed and the phase
53 * advances. These actions are performed by the party
54 * triggering a phase advance, and are arranged by overriding
55 * method {@link #onAdvance(int, int)}, which also controls
56 * termination. Overriding this method is similar to, but more
57 * flexible than, providing a barrier action to a {@code
58 * CyclicBarrier}.
59 *
60 * <li> <b>Waiting.</b> Method {@link #awaitAdvance} requires an
61 * argument indicating an arrival phase number, and returns when
62 * the phaser advances to (or is already at) a different phase.
63 * Unlike similar constructions using {@code CyclicBarrier},
64 * method {@code awaitAdvance} continues to wait even if the
65 * waiting thread is interrupted. Interruptible and timeout
66 * versions are also available, but exceptions encountered while
67 * tasks wait interruptibly or with timeout do not change the
68 * state of the phaser. If necessary, you can perform any
69 * associated recovery within handlers of those exceptions,
70 * often after invoking {@code forceTermination}. Phasers may
71 * also be used by tasks executing in a {@link ForkJoinPool},
72 * which will ensure sufficient parallelism to execute tasks
73 * when others are blocked waiting for a phase to advance.
74 *
75 * </ul>
76 *
77 * <p><b>Termination.</b> A phaser may enter a <em>termination</em>
78 * state, that may be checked using method {@link #isTerminated}. Upon
79 * termination, all synchronization methods immediately return without
80 * waiting for advance, as indicated by a negative return value.
81 * Similarly, attempts to register upon termination have no effect.
82 * Termination is triggered when an invocation of {@code onAdvance}
83 * returns {@code true}. The default implementation returns {@code
84 * true} if a deregistration has caused the number of registered
85 * parties to become zero. As illustrated below, when phasers control
86 * actions with a fixed number of iterations, it is often convenient
87 * to override this method to cause termination when the current phase
88 * number reaches a threshold. Method {@link #forceTermination} is
89 * also available to abruptly release waiting threads and allow them
90 * to terminate.
91 *
92 * <p><b>Tiering.</b> Phasers may be <em>tiered</em> (i.e.,
93 * constructed in tree structures) to reduce contention. Phasers with
94 * large numbers of parties that would otherwise experience heavy
95 * synchronization contention costs may instead be set up so that
96 * groups of sub-phasers share a common parent. This may greatly
97 * increase throughput even though it incurs greater per-operation
98 * overhead.
99 *
100 * <p>In a tree of tiered phasers, registration and deregistration of
101 * child phasers with their parent are managed automatically.
102 * Whenever the number of registered parties of a child phaser becomes
103 * non-zero (as established in the {@link #Phaser(Phaser,int)}
104 * constructor, {@link #register}, or {@link #bulkRegister}), the
105 * child phaser is registered with its parent. Whenever the number of
106 * registered parties becomes zero as the result of an invocation of
107 * {@link #arriveAndDeregister}, the child phaser is deregistered
108 * from its parent.
109 *
110 * <p><b>Monitoring.</b> While synchronization methods may be invoked
111 * only by registered parties, the current state of a phaser may be
112 * monitored by any caller. At any given moment there are {@link
113 * #getRegisteredParties} parties in total, of which {@link
114 * #getArrivedParties} have arrived at the current phase ({@link
115 * #getPhase}). When the remaining ({@link #getUnarrivedParties})
116 * parties arrive, the phase advances. The values returned by these
117 * methods may reflect transient states and so are not in general
118 * useful for synchronization control. Method {@link #toString}
119 * returns snapshots of these state queries in a form convenient for
120 * informal monitoring.
121 *
122 * <p><b>Sample usages:</b>
123 *
124 * <p>A {@code Phaser} may be used instead of a {@code CountDownLatch}
125 * to control a one-shot action serving a variable number of parties.
126 * The typical idiom is for the method setting this up to first
127 * register, then start the actions, then deregister, as in:
128 *
129 * <pre> {@code
130 * void runTasks(List<Runnable> tasks) {
131 * final Phaser phaser = new Phaser(1); // "1" to register self
132 * // create and start threads
133 * for (final Runnable task : tasks) {
134 * phaser.register();
135 * new Thread() {
136 * public void run() {
137 * phaser.arriveAndAwaitAdvance(); // await all creation
138 * task.run();
139 * }
140 * }.start();
141 * }
142 *
143 * // allow threads to start and deregister self
144 * phaser.arriveAndDeregister();
145 * }}</pre>
146 *
147 * <p>One way to cause a set of threads to repeatedly perform actions
148 * for a given number of iterations is to override {@code onAdvance}:
149 *
150 * <pre> {@code
151 * void startTasks(List<Runnable> tasks, final int iterations) {
152 * final Phaser phaser = new Phaser() {
153 * protected boolean onAdvance(int phase, int registeredParties) {
154 * return phase >= iterations || registeredParties == 0;
155 * }
156 * };
157 * phaser.register();
158 * for (final Runnable task : tasks) {
159 * phaser.register();
160 * new Thread() {
161 * public void run() {
162 * do {
163 * task.run();
164 * phaser.arriveAndAwaitAdvance();
165 * } while (!phaser.isTerminated());
166 * }
167 * }.start();
168 * }
169 * phaser.arriveAndDeregister(); // deregister self, don't wait
170 * }}</pre>
171 *
172 * If the main task must later await termination, it
173 * may re-register and then execute a similar loop:
174 * <pre> {@code
175 * // ...
176 * phaser.register();
177 * while (!phaser.isTerminated())
178 * phaser.arriveAndAwaitAdvance();}</pre>
179 *
180 * <p>Related constructions may be used to await particular phase numbers
181 * in contexts where you are sure that the phase will never wrap around
182 * {@code Integer.MAX_VALUE}. For example:
183 *
184 * <pre> {@code
185 * void awaitPhase(Phaser phaser, int phase) {
186 * int p = phaser.register(); // assumes caller not already registered
187 * while (p < phase) {
188 * if (phaser.isTerminated())
189 * // ... deal with unexpected termination
190 * else
191 * p = phaser.arriveAndAwaitAdvance();
192 * }
193 * phaser.arriveAndDeregister();
194 * }}</pre>
195 *
196 *
197 * <p>To create a set of {@code n} tasks using a tree of phasers, you
198 * could use code of the following form, assuming a Task class with a
199 * constructor accepting a {@code Phaser} that it registers with upon
200 * construction. After invocation of {@code build(new Task[n], 0, n,
201 * new Phaser())}, these tasks could then be started, for example by
202 * submitting to a pool:
203 *
204 * <pre> {@code
205 * void build(Task[] tasks, int lo, int hi, Phaser ph) {
206 * if (hi - lo > TASKS_PER_PHASER) {
207 * for (int i = lo; i < hi; i += TASKS_PER_PHASER) {
208 * int j = Math.min(i + TASKS_PER_PHASER, hi);
209 * build(tasks, i, j, new Phaser(ph));
210 * }
211 * } else {
212 * for (int i = lo; i < hi; ++i)
213 * tasks[i] = new Task(ph);
214 * // assumes new Task(ph) performs ph.register()
215 * }
216 * }}</pre>
217 *
218 * The best value of {@code TASKS_PER_PHASER} depends mainly on
219 * expected synchronization rates. A value as low as four may
220 * be appropriate for extremely small per-phase task bodies (thus
221 * high rates), or up to hundreds for extremely large ones.
222 *
223 * <p><b>Implementation notes</b>: This implementation restricts the
224 * maximum number of parties to 65535. Attempts to register additional
225 * parties result in {@code IllegalStateException}. However, you can and
226 * should create tiered phasers to accommodate arbitrarily large sets
227 * of participants.
228 *
229 * @since 1.7
230 * @author Doug Lea
231 */
232 public class Phaser {
233 /*
234 * This class implements an extension of X10 "clocks". Thanks to
235 * Vijay Saraswat for the idea, and to Vivek Sarkar for
236 * enhancements to extend functionality.
237 */
238
239 /**
240 * Primary state representation, holding four bit-fields:
241 *
242 * unarrived -- the number of parties yet to hit barrier (bits 0-15)
243 * parties -- the number of parties to wait (bits 16-31)
244 * phase -- the generation of the barrier (bits 32-62)
245 * terminated -- set if barrier is terminated (bit 63 / sign)
246 *
247 * Except that a phaser with no registered parties is
248 * distinguished by the otherwise illegal state of having zero
249 * parties and one unarrived parties (encoded as EMPTY below).
250 *
251 * To efficiently maintain atomicity, these values are packed into
252 * a single (atomic) long. Good performance relies on keeping
253 * state decoding and encoding simple, and keeping race windows
254 * short.
255 *
256 * All state updates are performed via CAS except initial
257 * registration of a sub-phaser (i.e., one with a non-null
258 * parent). In this (relatively rare) case, we use built-in
259 * synchronization to lock while first registering with its
260 * parent.
261 *
262 * The phase of a subphaser is allowed to lag that of its
263 * ancestors until it is actually accessed -- see method
264 * reconcileState.
265 */
266 private volatile long state;
267
268 private static final int MAX_PARTIES = 0xffff;
269 private static final int MAX_PHASE = Integer.MAX_VALUE;
270 private static final int PARTIES_SHIFT = 16;
271 private static final int PHASE_SHIFT = 32;
272 private static final int UNARRIVED_MASK = 0xffff; // to mask ints
273 private static final long PARTIES_MASK = 0xffff0000L; // to mask longs
274 private static final long COUNTS_MASK = 0xffffffffL;
275 private static final long TERMINATION_BIT = 1L << 63;
276
277 // some special values
278 private static final int ONE_ARRIVAL = 1;
279 private static final int ONE_PARTY = 1 << PARTIES_SHIFT;
280 private static final int ONE_DEREGISTER = ONE_ARRIVAL|ONE_PARTY;
281 private static final int EMPTY = 1;
282
283 // The following unpacking methods are usually manually inlined
284
285 private static int unarrivedOf(long s) {
286 int counts = (int)s;
287 return (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
288 }
289
290 private static int partiesOf(long s) {
291 return (int)s >>> PARTIES_SHIFT;
292 }
293
294 private static int phaseOf(long s) {
295 return (int)(s >>> PHASE_SHIFT);
296 }
297
298 private static int arrivedOf(long s) {
299 int counts = (int)s;
300 return (counts == EMPTY) ? 0 :
301 (counts >>> PARTIES_SHIFT) - (counts & UNARRIVED_MASK);
302 }
303
304 /**
305 * The parent of this phaser, or null if none
306 */
307 private final Phaser parent;
308
309 /**
310 * The root of phaser tree. Equals this if not in a tree.
311 */
312 private final Phaser root;
313
314 /**
315 * Heads of Treiber stacks for waiting threads. To eliminate
316 * contention when releasing some threads while adding others, we
317 * use two of them, alternating across even and odd phases.
318 * Subphasers share queues with root to speed up releases.
319 */
320 private final AtomicReference<QNode> evenQ;
321 private final AtomicReference<QNode> oddQ;
322
323 private AtomicReference<QNode> queueFor(int phase) {
324 return ((phase & 1) == 0) ? evenQ : oddQ;
325 }
326
327 /**
328 * Returns message string for bounds exceptions on arrival.
329 */
330 private String badArrive(long s) {
331 return "Attempted arrival of unregistered party for " +
332 stateToString(s);
333 }
334
335 /**
336 * Returns message string for bounds exceptions on registration.
337 */
338 private String badRegister(long s) {
339 return "Attempt to register more than " +
340 MAX_PARTIES + " parties for " + stateToString(s);
341 }
342
343 /**
344 * Main implementation for methods arrive and arriveAndDeregister.
345 * Manually tuned to speed up and minimize race windows for the
346 * common case of just decrementing unarrived field.
347 *
348 * @param adjust value to subtract from state;
349 * ONE_ARRIVAL for arrive,
350 * ONE_DEREGISTER for arriveAndDeregister
351 */
352 private int doArrive(int adjust) {
353 final Phaser root = this.root;
354 for (;;) {
355 long s = (root == this) ? state : reconcileState();
356 int phase = (int)(s >>> PHASE_SHIFT);
357 if (phase < 0)
358 return phase;
359 int counts = (int)s;
360 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
361 if (unarrived <= 0)
362 throw new IllegalStateException(badArrive(s));
363 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, s-=adjust)) {
364 if (unarrived == 1) {
365 long n = s & PARTIES_MASK; // base of next state
366 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
367 if (root == this) {
368 if (onAdvance(phase, nextUnarrived))
369 n |= TERMINATION_BIT;
370 else if (nextUnarrived == 0)
371 n |= EMPTY;
372 else
373 n |= nextUnarrived;
374 int nextPhase = (phase + 1) & MAX_PHASE;
375 n |= (long)nextPhase << PHASE_SHIFT;
376 UNSAFE.compareAndSwapLong(this, stateOffset, s, n);
377 releaseWaiters(phase);
378 }
379 else if (nextUnarrived == 0) { // propagate deregistration
380 phase = parent.doArrive(ONE_DEREGISTER);
381 UNSAFE.compareAndSwapLong(this, stateOffset,
382 s, s | EMPTY);
383 }
384 else
385 phase = parent.doArrive(ONE_ARRIVAL);
386 }
387 return phase;
388 }
389 }
390 }
391
392 /**
393 * Implementation of register, bulkRegister
394 *
395 * @param registrations number to add to both parties and
396 * unarrived fields. Must be greater than zero.
397 */
398 private int doRegister(int registrations) {
399 // adjustment to state
400 long adjust = ((long)registrations << PARTIES_SHIFT) | registrations;
401 final Phaser parent = this.parent;
402 int phase;
403 for (;;) {
404 long s = (parent == null) ? state : reconcileState();
405 int counts = (int)s;
406 int parties = counts >>> PARTIES_SHIFT;
407 int unarrived = counts & UNARRIVED_MASK;
408 if (registrations > MAX_PARTIES - parties)
409 throw new IllegalStateException(badRegister(s));
410 phase = (int)(s >>> PHASE_SHIFT);
411 if (phase < 0)
412 break;
413 if (counts != EMPTY) { // not 1st registration
414 if (parent == null || reconcileState() == s) {
415 if (unarrived == 0) // wait out advance
416 root.internalAwaitAdvance(phase, null);
417 else if (UNSAFE.compareAndSwapLong(this, stateOffset,
418 s, s + adjust))
419 break;
420 }
421 }
422 else if (parent == null) { // 1st root registration
423 long next = ((long)phase << PHASE_SHIFT) | adjust;
424 if (UNSAFE.compareAndSwapLong(this, stateOffset, s, next))
425 break;
426 }
427 else {
428 synchronized (this) { // 1st sub registration
429 if (state == s) { // recheck under lock
430 phase = parent.doRegister(1);
431 if (phase < 0)
432 break;
433 // finish registration whenever parent registration
434 // succeeded, even when racing with termination,
435 // since these are part of the same "transaction".
436 while (!UNSAFE.compareAndSwapLong
437 (this, stateOffset, s,
438 ((long)phase << PHASE_SHIFT) | adjust)) {
439 s = state;
440 phase = (int)(root.state >>> PHASE_SHIFT);
441 // assert (int)s == EMPTY;
442 }
443 break;
444 }
445 }
446 }
447 }
448 return phase;
449 }
450
451 /**
452 * Resolves lagged phase propagation from root if necessary.
453 * Reconciliation normally occurs when root has advanced but
454 * subphasers have not yet done so, in which case they must finish
455 * their own advance by setting unarrived to parties (or if
456 * parties is zero, resetting to unregistered EMPTY state).
457 *
458 * @return reconciled state
459 */
460 private long reconcileState() {
461 final Phaser root = this.root;
462 long s = state;
463 if (root != this) {
464 int phase, p;
465 // CAS to root phase with current parties, tripping unarrived
466 while ((phase = (int)(root.state >>> PHASE_SHIFT)) !=
467 (int)(s >>> PHASE_SHIFT) &&
468 !UNSAFE.compareAndSwapLong
469 (this, stateOffset, s,
470 s = (((long)phase << PHASE_SHIFT) |
471 ((phase < 0) ? (s & COUNTS_MASK) :
472 (((p = (int)s >>> PARTIES_SHIFT) == 0) ? EMPTY :
473 ((s & PARTIES_MASK) | p))))))
474 s = state;
475 }
476 return s;
477 }
478
479 /**
480 * Creates a new phaser with no initially registered parties, no
481 * parent, and initial phase number 0. Any thread using this
482 * phaser will need to first register for it.
483 */
484 public Phaser() {
485 this(null, 0);
486 }
487
488 /**
489 * Creates a new phaser with the given number of registered
490 * unarrived parties, no parent, and initial phase number 0.
491 *
492 * @param parties the number of parties required to advance to the
493 * next phase
494 * @throws IllegalArgumentException if parties less than zero
495 * or greater than the maximum number of parties supported
496 */
497 public Phaser(int parties) {
498 this(null, parties);
499 }
500
501 /**
502 * Equivalent to {@link #Phaser(Phaser, int) Phaser(parent, 0)}.
503 *
504 * @param parent the parent phaser
505 */
506 public Phaser(Phaser parent) {
507 this(parent, 0);
508 }
509
510 /**
511 * Creates a new phaser with the given parent and number of
512 * registered unarrived parties. When the given parent is non-null
513 * and the given number of parties is greater than zero, this
514 * child phaser is registered with its parent.
515 *
516 * @param parent the parent phaser
517 * @param parties the number of parties required to advance to the
518 * next phase
519 * @throws IllegalArgumentException if parties less than zero
520 * or greater than the maximum number of parties supported
521 */
522 public Phaser(Phaser parent, int parties) {
523 if (parties >>> PARTIES_SHIFT != 0)
524 throw new IllegalArgumentException("Illegal number of parties");
525 int phase = 0;
526 this.parent = parent;
527 if (parent != null) {
528 final Phaser root = parent.root;
529 this.root = root;
530 this.evenQ = root.evenQ;
531 this.oddQ = root.oddQ;
532 if (parties != 0)
533 phase = parent.doRegister(1);
534 }
535 else {
536 this.root = this;
537 this.evenQ = new AtomicReference<QNode>();
538 this.oddQ = new AtomicReference<QNode>();
539 }
540 this.state = (parties == 0) ? (long)EMPTY :
541 ((long)phase << PHASE_SHIFT) |
542 ((long)parties << PARTIES_SHIFT) |
543 ((long)parties);
544 }
545
546 /**
547 * Adds a new unarrived party to this phaser. If an ongoing
548 * invocation of {@link #onAdvance} is in progress, this method
549 * may await its completion before returning. If this phaser has
550 * a parent, and this phaser previously had no registered parties,
551 * this child phaser is also registered with its parent. If
552 * this phaser is terminated, the attempt to register has
553 * no effect, and a negative value is returned.
554 *
555 * @return the arrival phase number to which this registration
556 * applied. If this value is negative, then this phaser has
557 * terminated, in which case registration has no effect.
558 * @throws IllegalStateException if attempting to register more
559 * than the maximum supported number of parties
560 */
561 public int register() {
562 return doRegister(1);
563 }
564
565 /**
566 * Adds the given number of new unarrived parties to this phaser.
567 * If an ongoing invocation of {@link #onAdvance} is in progress,
568 * this method may await its completion before returning. If this
569 * phaser has a parent, and the given number of parties is greater
570 * than zero, and this phaser previously had no registered
571 * parties, this child phaser is also registered with its parent.
572 * If this phaser is terminated, the attempt to register has no
573 * effect, and a negative value is returned.
574 *
575 * @param parties the number of additional parties required to
576 * advance to the next phase
577 * @return the arrival phase number to which this registration
578 * applied. If this value is negative, then this phaser has
579 * terminated, in which case registration has no effect.
580 * @throws IllegalStateException if attempting to register more
581 * than the maximum supported number of parties
582 * @throws IllegalArgumentException if {@code parties < 0}
583 */
584 public int bulkRegister(int parties) {
585 if (parties < 0)
586 throw new IllegalArgumentException();
587 if (parties == 0)
588 return getPhase();
589 return doRegister(parties);
590 }
591
592 /**
593 * Arrives at this phaser, without waiting for others to arrive.
594 *
595 * <p>It is a usage error for an unregistered party to invoke this
596 * method. However, this error may result in an {@code
597 * IllegalStateException} only upon some subsequent operation on
598 * this phaser, if ever.
599 *
600 * @return the arrival phase number, or a negative value if terminated
601 * @throws IllegalStateException if not terminated and the number
602 * of unarrived parties would become negative
603 */
604 public int arrive() {
605 return doArrive(ONE_ARRIVAL);
606 }
607
608 /**
609 * Arrives at this phaser and deregisters from it without waiting
610 * for others to arrive. Deregistration reduces the number of
611 * parties required to advance in future phases. If this phaser
612 * has a parent, and deregistration causes this phaser to have
613 * zero parties, this phaser is also deregistered from its parent.
614 *
615 * <p>It is a usage error for an unregistered party to invoke this
616 * method. However, this error may result in an {@code
617 * IllegalStateException} only upon some subsequent operation on
618 * this phaser, if ever.
619 *
620 * @return the arrival phase number, or a negative value if terminated
621 * @throws IllegalStateException if not terminated and the number
622 * of registered or unarrived parties would become negative
623 */
624 public int arriveAndDeregister() {
625 return doArrive(ONE_DEREGISTER);
626 }
627
628 /**
629 * Arrives at this phaser and awaits others. Equivalent in effect
630 * to {@code awaitAdvance(arrive())}. If you need to await with
631 * interruption or timeout, you can arrange this with an analogous
632 * construction using one of the other forms of the {@code
633 * awaitAdvance} method. If instead you need to deregister upon
634 * arrival, use {@code awaitAdvance(arriveAndDeregister())}.
635 *
636 * <p>It is a usage error for an unregistered party to invoke this
637 * method. However, this error may result in an {@code
638 * IllegalStateException} only upon some subsequent operation on
639 * this phaser, if ever.
640 *
641 * @return the arrival phase number, or the (negative)
642 * {@linkplain #getPhase() current phase} if terminated
643 * @throws IllegalStateException if not terminated and the number
644 * of unarrived parties would become negative
645 */
646 public int arriveAndAwaitAdvance() {
647 // Specialization of doArrive+awaitAdvance eliminating some reads/paths
648 final Phaser root = this.root;
649 for (;;) {
650 long s = (root == this) ? state : reconcileState();
651 int phase = (int)(s >>> PHASE_SHIFT);
652 if (phase < 0)
653 return phase;
654 int counts = (int)s;
655 int unarrived = (counts == EMPTY) ? 0 : (counts & UNARRIVED_MASK);
656 if (unarrived <= 0)
657 throw new IllegalStateException(badArrive(s));
658 if (UNSAFE.compareAndSwapLong(this, stateOffset, s,
659 s -= ONE_ARRIVAL)) {
660 if (unarrived > 1)
661 return root.internalAwaitAdvance(phase, null);
662 if (root != this)
663 return parent.arriveAndAwaitAdvance();
664 long n = s & PARTIES_MASK; // base of next state
665 int nextUnarrived = (int)n >>> PARTIES_SHIFT;
666 if (onAdvance(phase, nextUnarrived))
667 n |= TERMINATION_BIT;
668 else if (nextUnarrived == 0)
669 n |= EMPTY;
670 else
671 n |= nextUnarrived;
672 int nextPhase = (phase + 1) & MAX_PHASE;
673 n |= (long)nextPhase << PHASE_SHIFT;
674 if (!UNSAFE.compareAndSwapLong(this, stateOffset, s, n))
675 return (int)(state >>> PHASE_SHIFT); // terminated
676 releaseWaiters(phase);
677 return nextPhase;
678 }
679 }
680 }
681
682 /**
683 * Awaits the phase of this phaser to advance from the given phase
684 * value, returning immediately if the current phase is not equal
685 * to the given phase value or this phaser is terminated.
686 *
687 * @param phase an arrival phase number, or negative value if
688 * terminated; this argument is normally the value returned by a
689 * previous call to {@code arrive} or {@code arriveAndDeregister}.
690 * @return the next arrival phase number, or the argument if it is
691 * negative, or the (negative) {@linkplain #getPhase() current phase}
692 * if terminated
693 */
694 public int awaitAdvance(int phase) {
695 final Phaser root = this.root;
696 long s = (root == this) ? state : reconcileState();
697 int p = (int)(s >>> PHASE_SHIFT);
698 if (phase < 0)
699 return phase;
700 if (p == phase)
701 return root.internalAwaitAdvance(phase, null);
702 return p;
703 }
704
705 /**
706 * Awaits the phase of this phaser to advance from the given phase
707 * value, throwing {@code InterruptedException} if interrupted
708 * while waiting, or returning immediately if the current phase is
709 * not equal to the given phase value or this phaser is
710 * terminated.
711 *
712 * @param phase an arrival phase number, or negative value if
713 * terminated; this argument is normally the value returned by a
714 * previous call to {@code arrive} or {@code arriveAndDeregister}.
715 * @return the next arrival phase number, or the argument if it is
716 * negative, or the (negative) {@linkplain #getPhase() current phase}
717 * if terminated
718 * @throws InterruptedException if thread interrupted while waiting
719 */
720 public int awaitAdvanceInterruptibly(int phase)
721 throws InterruptedException {
722 final Phaser root = this.root;
723 long s = (root == this) ? state : reconcileState();
724 int p = (int)(s >>> PHASE_SHIFT);
725 if (phase < 0)
726 return phase;
727 if (p == phase) {
728 QNode node = new QNode(this, phase, true, false, 0L);
729 p = root.internalAwaitAdvance(phase, node);
730 if (node.wasInterrupted)
731 throw new InterruptedException();
732 }
733 return p;
734 }
735
736 /**
737 * Awaits the phase of this phaser to advance from the given phase
738 * value or the given timeout to elapse, throwing {@code
739 * InterruptedException} if interrupted while waiting, or
740 * returning immediately if the current phase is not equal to the
741 * given phase value or this phaser is terminated.
742 *
743 * @param phase an arrival phase number, or negative value if
744 * terminated; this argument is normally the value returned by a
745 * previous call to {@code arrive} or {@code arriveAndDeregister}.
746 * @param timeout how long to wait before giving up, in units of
747 * {@code unit}
748 * @param unit a {@code TimeUnit} determining how to interpret the
749 * {@code timeout} parameter
750 * @return the next arrival phase number, or the argument if it is
751 * negative, or the (negative) {@linkplain #getPhase() current phase}
752 * if terminated
753 * @throws InterruptedException if thread interrupted while waiting
754 * @throws TimeoutException if timed out while waiting
755 */
756 public int awaitAdvanceInterruptibly(int phase,
757 long timeout, TimeUnit unit)
758 throws InterruptedException, TimeoutException {
759 long nanos = unit.toNanos(timeout);
760 final Phaser root = this.root;
761 long s = (root == this) ? state : reconcileState();
762 int p = (int)(s >>> PHASE_SHIFT);
763 if (phase < 0)
764 return phase;
765 if (p == phase) {
766 QNode node = new QNode(this, phase, true, true, nanos);
767 p = root.internalAwaitAdvance(phase, node);
768 if (node.wasInterrupted)
769 throw new InterruptedException();
770 else if (p == phase)
771 throw new TimeoutException();
772 }
773 return p;
774 }
775
776 /**
777 * Forces this phaser to enter termination state. Counts of
778 * registered parties are unaffected. If this phaser is a member
779 * of a tiered set of phasers, then all of the phasers in the set
780 * are terminated. If this phaser is already terminated, this
781 * method has no effect. This method may be useful for
782 * coordinating recovery after one or more tasks encounter
783 * unexpected exceptions.
784 */
785 public void forceTermination() {
786 // Only need to change root state
787 final Phaser root = this.root;
788 long s;
789 while ((s = root.state) >= 0) {
790 if (UNSAFE.compareAndSwapLong(root, stateOffset,
791 s, s | TERMINATION_BIT)) {
792 // signal all threads
793 releaseWaiters(0); // Waiters on evenQ
794 releaseWaiters(1); // Waiters on oddQ
795 return;
796 }
797 }
798 }
799
800 /**
801 * Returns the current phase number. The maximum phase number is
802 * {@code Integer.MAX_VALUE}, after which it restarts at
803 * zero. Upon termination, the phase number is negative,
804 * in which case the prevailing phase prior to termination
805 * may be obtained via {@code getPhase() + Integer.MIN_VALUE}.
806 *
807 * @return the phase number, or a negative value if terminated
808 */
809 public final int getPhase() {
810 return (int)(root.state >>> PHASE_SHIFT);
811 }
812
813 /**
814 * Returns the number of parties registered at this phaser.
815 *
816 * @return the number of parties
817 */
818 public int getRegisteredParties() {
819 return partiesOf(state);
820 }
821
822 /**
823 * Returns the number of registered parties that have arrived at
824 * the current phase of this phaser. If this phaser has terminated,
825 * the returned value is meaningless and arbitrary.
826 *
827 * @return the number of arrived parties
828 */
829 public int getArrivedParties() {
830 return arrivedOf(reconcileState());
831 }
832
833 /**
834 * Returns the number of registered parties that have not yet
835 * arrived at the current phase of this phaser. If this phaser has
836 * terminated, the returned value is meaningless and arbitrary.
837 *
838 * @return the number of unarrived parties
839 */
840 public int getUnarrivedParties() {
841 return unarrivedOf(reconcileState());
842 }
843
844 /**
845 * Returns the parent of this phaser, or {@code null} if none.
846 *
847 * @return the parent of this phaser, or {@code null} if none
848 */
849 public Phaser getParent() {
850 return parent;
851 }
852
853 /**
854 * Returns the root ancestor of this phaser, which is the same as
855 * this phaser if it has no parent.
856 *
857 * @return the root ancestor of this phaser
858 */
859 public Phaser getRoot() {
860 return root;
861 }
862
863 /**
864 * Returns {@code true} if this phaser has been terminated.
865 *
866 * @return {@code true} if this phaser has been terminated
867 */
868 public boolean isTerminated() {
869 return root.state < 0L;
870 }
871
872 /**
873 * Overridable method to perform an action upon impending phase
874 * advance, and to control termination. This method is invoked
875 * upon arrival of the party advancing this phaser (when all other
876 * waiting parties are dormant). If this method returns {@code
877 * true}, this phaser will be set to a final termination state
878 * upon advance, and subsequent calls to {@link #isTerminated}
879 * will return true. Any (unchecked) Exception or Error thrown by
880 * an invocation of this method is propagated to the party
881 * attempting to advance this phaser, in which case no advance
882 * occurs.
883 *
884 * <p>The arguments to this method provide the state of the phaser
885 * prevailing for the current transition. The effects of invoking
886 * arrival, registration, and waiting methods on this phaser from
887 * within {@code onAdvance} are unspecified and should not be
888 * relied on.
889 *
890 * <p>If this phaser is a member of a tiered set of phasers, then
891 * {@code onAdvance} is invoked only for its root phaser on each
892 * advance.
893 *
894 * <p>To support the most common use cases, the default
895 * implementation of this method returns {@code true} when the
896 * number of registered parties has become zero as the result of a
897 * party invoking {@code arriveAndDeregister}. You can disable
898 * this behavior, thus enabling continuation upon future
899 * registrations, by overriding this method to always return
900 * {@code false}:
901 *
902 * <pre> {@code
903 * Phaser phaser = new Phaser() {
904 * protected boolean onAdvance(int phase, int parties) { return false; }
905 * }}</pre>
906 *
907 * @param phase the current phase number on entry to this method,
908 * before this phaser is advanced
909 * @param registeredParties the current number of registered parties
910 * @return {@code true} if this phaser should terminate
911 */
912 protected boolean onAdvance(int phase, int registeredParties) {
913 return registeredParties == 0;
914 }
915
916 /**
917 * Returns a string identifying this phaser, as well as its
918 * state. The state, in brackets, includes the String {@code
919 * "phase = "} followed by the phase number, {@code "parties = "}
920 * followed by the number of registered parties, and {@code
921 * "arrived = "} followed by the number of arrived parties.
922 *
923 * @return a string identifying this phaser, as well as its state
924 */
925 public String toString() {
926 return stateToString(reconcileState());
927 }
928
929 /**
930 * Implementation of toString and string-based error messages
931 */
932 private String stateToString(long s) {
933 return super.toString() +
934 "[phase = " + phaseOf(s) +
935 " parties = " + partiesOf(s) +
936 " arrived = " + arrivedOf(s) + "]";
937 }
938
939 // Waiting mechanics
940
941 /**
942 * Removes and signals threads from queue for phase.
943 */
944 private void releaseWaiters(int phase) {
945 QNode q; // first element of queue
946 Thread t; // its thread
947 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
948 while ((q = head.get()) != null &&
949 q.phase != (int)(root.state >>> PHASE_SHIFT)) {
950 if (head.compareAndSet(q, q.next) &&
951 (t = q.thread) != null) {
952 q.thread = null;
953 LockSupport.unpark(t);
954 }
955 }
956 }
957
958 /**
959 * Variant of releaseWaiters that additionally tries to remove any
960 * nodes no longer waiting for advance due to timeout or
961 * interrupt. Currently, nodes are removed only if they are at
962 * head of queue, which suffices to reduce memory footprint in
963 * most usages.
964 *
965 * @return current phase on exit
966 */
967 private int abortWait(int phase) {
968 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
969 for (;;) {
970 Thread t;
971 QNode q = head.get();
972 int p = (int)(root.state >>> PHASE_SHIFT);
973 if (q == null || ((t = q.thread) != null && q.phase == p))
974 return p;
975 if (head.compareAndSet(q, q.next) && t != null) {
976 q.thread = null;
977 LockSupport.unpark(t);
978 }
979 }
980 }
981
982 /** The number of CPUs, for spin control */
983 private static final int NCPU = Runtime.getRuntime().availableProcessors();
984
985 /**
986 * The number of times to spin before blocking while waiting for
987 * advance, per arrival while waiting. On multiprocessors, fully
988 * blocking and waking up a large number of threads all at once is
989 * usually a very slow process, so we use rechargeable spins to
990 * avoid it when threads regularly arrive: When a thread in
991 * internalAwaitAdvance notices another arrival before blocking,
992 * and there appear to be enough CPUs available, it spins
993 * SPINS_PER_ARRIVAL more times before blocking. The value trades
994 * off good-citizenship vs big unnecessary slowdowns.
995 */
996 static final int SPINS_PER_ARRIVAL = (NCPU < 2) ? 1 : 1 << 8;
997
998 /**
999 * Possibly blocks and waits for phase to advance unless aborted.
1000 * Call only on root phaser.
1001 *
1002 * @param phase current phase
1003 * @param node if non-null, the wait node to track interrupt and timeout;
1004 * if null, denotes noninterruptible wait
1005 * @return current phase
1006 */
1007 private int internalAwaitAdvance(int phase, QNode node) {
1008 // assert root == this;
1009 releaseWaiters(phase-1); // ensure old queue clean
1010 boolean queued = false; // true when node is enqueued
1011 int lastUnarrived = 0; // to increase spins upon change
1012 int spins = SPINS_PER_ARRIVAL;
1013 long s;
1014 int p;
1015 while ((p = (int)((s = state) >>> PHASE_SHIFT)) == phase) {
1016 if (node == null) { // spinning in noninterruptible mode
1017 int unarrived = (int)s & UNARRIVED_MASK;
1018 if (unarrived != lastUnarrived &&
1019 (lastUnarrived = unarrived) < NCPU)
1020 spins += SPINS_PER_ARRIVAL;
1021 boolean interrupted = Thread.interrupted();
1022 if (interrupted || --spins < 0) { // need node to record intr
1023 node = new QNode(this, phase, false, false, 0L);
1024 node.wasInterrupted = interrupted;
1025 }
1026 }
1027 else if (node.isReleasable()) // done or aborted
1028 break;
1029 else if (!queued) { // push onto queue
1030 AtomicReference<QNode> head = (phase & 1) == 0 ? evenQ : oddQ;
1031 QNode q = node.next = head.get();
1032 if ((q == null || q.phase == phase) &&
1033 (int)(state >>> PHASE_SHIFT) == phase) // avoid stale enq
1034 queued = head.compareAndSet(q, node);
1035 }
1036 else {
1037 try {
1038 ForkJoinPool.managedBlock(node);
1039 } catch (InterruptedException ie) {
1040 node.wasInterrupted = true;
1041 }
1042 }
1043 }
1044
1045 if (node != null) {
1046 if (node.thread != null)
1047 node.thread = null; // avoid need for unpark()
1048 if (node.wasInterrupted && !node.interruptible)
1049 Thread.currentThread().interrupt();
1050 if (p == phase && (p = (int)(state >>> PHASE_SHIFT)) == phase)
1051 return abortWait(phase); // possibly clean up on abort
1052 }
1053 releaseWaiters(phase);
1054 return p;
1055 }
1056
1057 /**
1058 * Wait nodes for Treiber stack representing wait queue
1059 */
1060 static final class QNode implements ForkJoinPool.ManagedBlocker {
1061 final Phaser phaser;
1062 final int phase;
1063 final boolean interruptible;
1064 final boolean timed;
1065 boolean wasInterrupted;
1066 long nanos;
1067 long lastTime;
1068 volatile Thread thread; // nulled to cancel wait
1069 QNode next;
1070
1071 QNode(Phaser phaser, int phase, boolean interruptible,
1072 boolean timed, long nanos) {
1073 this.phaser = phaser;
1074 this.phase = phase;
1075 this.interruptible = interruptible;
1076 this.nanos = nanos;
1077 this.timed = timed;
1078 this.lastTime = timed ? System.nanoTime() : 0L;
1079 thread = Thread.currentThread();
1080 }
1081
1082 public boolean isReleasable() {
1083 if (thread == null)
1084 return true;
1085 if (phaser.getPhase() != phase) {
1086 thread = null;
1087 return true;
1088 }
1089 if (Thread.interrupted())
1090 wasInterrupted = true;
1091 if (wasInterrupted && interruptible) {
1092 thread = null;
1093 return true;
1094 }
1095 if (timed) {
1096 if (nanos > 0L) {
1097 long now = System.nanoTime();
1098 nanos -= now - lastTime;
1099 lastTime = now;
1100 }
1101 if (nanos <= 0L) {
1102 thread = null;
1103 return true;
1104 }
1105 }
1106 return false;
1107 }
1108
1109 public boolean block() {
1110 if (isReleasable())
1111 return true;
1112 else if (!timed)
1113 LockSupport.park(this);
1114 else if (nanos > 0)
1115 LockSupport.parkNanos(this, nanos);
1116 return isReleasable();
1117 }
1118 }
1119
1120 // Unsafe mechanics
1121
1122 private static final sun.misc.Unsafe UNSAFE;
1123 private static final long stateOffset;
1124 static {
1125 try {
1126 UNSAFE = getUnsafe();
1127 Class<?> k = Phaser.class;
1128 stateOffset = UNSAFE.objectFieldOffset
1129 (k.getDeclaredField("state"));
1130 } catch (Exception e) {
1131 throw new Error(e);
1132 }
1133 }
1134
1135 /**
1136 * Returns a sun.misc.Unsafe. Suitable for use in a 3rd party package.
1137 * Replace with a simple call to Unsafe.getUnsafe when integrating
1138 * into a jdk.
1139 *
1140 * @return a sun.misc.Unsafe
1141 */
1142 private static sun.misc.Unsafe getUnsafe() {
1143 try {
1144 return sun.misc.Unsafe.getUnsafe();
1145 } catch (SecurityException tryReflectionInstead) {}
1146 try {
1147 return java.security.AccessController.doPrivileged
1148 (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1149 public sun.misc.Unsafe run() throws Exception {
1150 Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
1151 for (java.lang.reflect.Field f : k.getDeclaredFields()) {
1152 f.setAccessible(true);
1153 Object x = f.get(null);
1154 if (k.isInstance(x))
1155 return k.cast(x);
1156 }
1157 throw new NoSuchFieldError("the Unsafe");
1158 }});
1159 } catch (java.security.PrivilegedActionException e) {
1160 throw new RuntimeException("Could not initialize intrinsics",
1161 e.getCause());
1162 }
1163 }
1164 }