ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/Phaser.java
Revision: 1.9
Committed: Mon Jan 5 09:11:26 2009 UTC (15 years, 4 months ago) by jsr166
Branch: MAIN
Changes since 1.8: +19 -16 lines
Log Message:
minor doc fixes

File Contents

# Content
1 /*
2 * Written by Doug Lea with assistance from members of JCP JSR-166
3 * Expert Group and released to the public domain, as explained at
4 * http://creativecommons.org/licenses/publicdomain
5 */
6
7 package jsr166y;
8
9 import java.util.concurrent.*;
10 import java.util.concurrent.atomic.*;
11 import java.util.concurrent.locks.LockSupport;
12 import sun.misc.Unsafe;
13 import java.lang.reflect.*;
14
15 /**
16 * A reusable synchronization barrier, similar in functionality to a
17 * {@link java.util.concurrent.CyclicBarrier CyclicBarrier} and
18 * {@link java.util.concurrent.CountDownLatch CountDownLatch}
19 * but supporting more flexible usage.
20 *
21 * <ul>
22 *
23 * <li> The number of parties synchronizing on a phaser may vary over
24 * time. A task may register to be a party at any time, and may
25 * deregister upon arriving at the barrier. As is the case with most
26 * basic synchronization constructs, registration and deregistration
27 * affect only internal counts; they do not establish any further
28 * internal bookkeeping, so tasks cannot query whether they are
29 * registered. (However, you can introduce such bookkeeping by
30 * subclassing this class.)
31 *
32 * <li> Each generation has an associated phase value, starting at
33 * zero, and advancing when all parties reach the barrier (wrapping
34 * around to zero after reaching {@code Integer.MAX_VALUE}).
35 *
36 * <li> Like a CyclicBarrier, a Phaser may be repeatedly awaited.
37 * Method {@code arriveAndAwaitAdvance} has effect analogous to
38 * {@code CyclicBarrier.await}. However, Phasers separate two
39 * aspects of coordination, that may also be invoked independently:
40 *
41 * <ul>
42 *
43 * <li> Arriving at a barrier. Methods {@code arrive} and
44 * {@code arriveAndDeregister} do not block, but return
45 * the phase value current upon entry to the method.
46 *
47 * <li> Awaiting others. Method {@code awaitAdvance} requires an
48 * argument indicating the entry phase, and returns when the
49 * barrier advances to a new phase.
50 * </ul>
51 *
52 *
53 * <li> Barrier actions, performed by the task triggering a phase
54 * advance while others may be waiting, are arranged by overriding
55 * method {@code onAdvance}, that also controls termination.
56 * Overriding this method may be used to similar but more flexible
57 * effect as providing a barrier action to a CyclicBarrier.
58 *
59 * <li> Phasers may enter a <em>termination</em> state in which all
60 * await actions immediately return, indicating (via a negative phase
61 * value) that execution is complete. Termination is triggered by
62 * executing the overridable {@code onAdvance} method that is invoked
63 * each time the barrier is about to be tripped. When a Phaser is
64 * controlling an action with a fixed number of iterations, it is
65 * often convenient to override this method to cause termination when
66 * the current phase number reaches a threshold. Method
67 * {@code forceTermination} is also available to abruptly release
68 * waiting threads and allow them to terminate.
69 *
70 * <li> Phasers may be tiered to reduce contention. Phasers with large
71 * numbers of parties that would otherwise experience heavy
72 * synchronization contention costs may instead be arranged in trees.
73 * This will typically greatly increase throughput even though it
74 * incurs somewhat greater per-operation overhead.
75 *
76 * <li> By default, {@code awaitAdvance} continues to wait even if
77 * the waiting thread is interrupted. And unlike the case in
78 * CyclicBarriers, exceptions encountered while tasks wait
79 * interruptibly or with timeout do not change the state of the
80 * barrier. If necessary, you can perform any associated recovery
81 * within handlers of those exceptions, often after invoking
82 * {@code forceTermination}.
83 *
84 * </ul>
85 *
86 * <p><b>Sample usages:</b>
87 *
88 * <p>A Phaser may be used instead of a {@code CountDownLatch} to control
89 * a one-shot action serving a variable number of parties. The typical
90 * idiom is for the method setting this up to first register, then
91 * start the actions, then deregister, as in:
92 *
93 * <pre>
94 * void runTasks(List&lt;Runnable&gt; list) {
95 * final Phaser phaser = new Phaser(1); // "1" to register self
96 * for (Runnable r : list) {
97 * phaser.register();
98 * new Thread() {
99 * public void run() {
100 * phaser.arriveAndAwaitAdvance(); // await all creation
101 * r.run();
102 * phaser.arriveAndDeregister(); // signal completion
103 * }
104 * }.start();
105 * }
106 *
107 * doSomethingOnBehalfOfWorkers();
108 * phaser.arrive(); // allow threads to start
109 * int p = phaser.arriveAndDeregister(); // deregister self ...
110 * p = phaser.awaitAdvance(p); // ... and await arrival
111 * otherActions(); // do other things while tasks execute
112 * phaser.awaitAdvance(p); // await final completion
113 * }
114 * </pre>
115 *
116 * <p>One way to cause a set of threads to repeatedly perform actions
117 * for a given number of iterations is to override {@code onAdvance}:
118 *
119 * <pre>
120 * void startTasks(List&lt;Runnable&gt; list, final int iterations) {
121 * final Phaser phaser = new Phaser() {
122 * public boolean onAdvance(int phase, int registeredParties) {
123 * return phase &gt;= iterations || registeredParties == 0;
124 * }
125 * };
126 * phaser.register();
127 * for (Runnable r : list) {
128 * phaser.register();
129 * new Thread() {
130 * public void run() {
131 * do {
132 * r.run();
133 * phaser.arriveAndAwaitAdvance();
134 * } while(!phaser.isTerminated();
135 * }
136 * }.start();
137 * }
138 * phaser.arriveAndDeregister(); // deregister self, don't wait
139 * }
140 * </pre>
141 *
142 * <p> To create a set of tasks using a tree of Phasers,
143 * you could use code of the following form, assuming a
144 * Task class with a constructor accepting a Phaser that
145 * it registers for upon construction:
146 * <pre>
147 * void build(Task[] actions, int lo, int hi, Phaser b) {
148 * int step = (hi - lo) / TASKS_PER_PHASER;
149 * if (step &gt; 1) {
150 * int i = lo;
151 * while (i &lt; hi) {
152 * int r = Math.min(i + step, hi);
153 * build(actions, i, r, new Phaser(b));
154 * i = r;
155 * }
156 * }
157 * else {
158 * for (int i = lo; i &lt; hi; ++i)
159 * actions[i] = new Task(b);
160 * // assumes new Task(b) performs b.register()
161 * }
162 * }
163 * // .. initially called, for n tasks via
164 * build(new Task[n], 0, n, new Phaser());
165 * </pre>
166 *
167 * The best value of {@code TASKS_PER_PHASER} depends mainly on
168 * expected barrier synchronization rates. A value as low as four may
169 * be appropriate for extremely small per-barrier task bodies (thus
170 * high rates), or up to hundreds for extremely large ones.
171 *
172 * </pre>
173 *
174 * <p><b>Implementation notes</b>: This implementation restricts the
175 * maximum number of parties to 65535. Attempts to register additional
176 * parties result in IllegalStateExceptions. However, you can and
177 * should create tiered phasers to accommodate arbitrarily large sets
178 * of participants.
179 */
180 public class Phaser {
181 /*
182 * This class implements an extension of X10 "clocks". Thanks to
183 * Vijay Saraswat for the idea, and to Vivek Sarkar for
184 * enhancements to extend functionality.
185 */
186
187 /**
188 * Barrier state representation. Conceptually, a barrier contains
189 * four values:
190 *
191 * * parties -- the number of parties to wait (16 bits)
192 * * unarrived -- the number of parties yet to hit barrier (16 bits)
193 * * phase -- the generation of the barrier (31 bits)
194 * * terminated -- set if barrier is terminated (1 bit)
195 *
196 * However, to efficiently maintain atomicity, these values are
197 * packed into a single (atomic) long. Termination uses the sign
198 * bit of 32 bit representation of phase, so phase is set to -1 on
199 * termination. Good performance relies on keeping state decoding
200 * and encoding simple, and keeping race windows short.
201 *
202 * Note: there are some cheats in arrive() that rely on unarrived
203 * being lowest 16 bits.
204 */
205 private volatile long state;
206
207 private static final int ushortBits = 16;
208 private static final int ushortMask = (1 << ushortBits) - 1;
209 private static final int phaseMask = 0x7fffffff;
210
211 private static int unarrivedOf(long s) {
212 return (int)(s & ushortMask);
213 }
214
215 private static int partiesOf(long s) {
216 return (int)(s & (ushortMask << 16)) >>> 16;
217 }
218
219 private static int phaseOf(long s) {
220 return (int)(s >>> 32);
221 }
222
223 private static int arrivedOf(long s) {
224 return partiesOf(s) - unarrivedOf(s);
225 }
226
227 private static long stateFor(int phase, int parties, int unarrived) {
228 return (((long)phase) << 32) | ((parties << 16) | unarrived);
229 }
230
231 private static long trippedStateFor(int phase, int parties) {
232 return (((long)phase) << 32) | ((parties << 16) | parties);
233 }
234
235 private static IllegalStateException badBounds(int parties, int unarrived) {
236 return new IllegalStateException
237 ("Attempt to set " + unarrived +
238 " unarrived of " + parties + " parties");
239 }
240
241 /**
242 * The parent of this phaser, or null if none
243 */
244 private final Phaser parent;
245
246 /**
247 * The root of Phaser tree. Equals this if not in a tree. Used to
248 * support faster state push-down.
249 */
250 private final Phaser root;
251
252 // Wait queues
253
254 /**
255 * Heads of Treiber stacks waiting for nonFJ threads. To eliminate
256 * contention while releasing some threads while adding others, we
257 * use two of them, alternating across even and odd phases.
258 */
259 private final AtomicReference<QNode> evenQ = new AtomicReference<QNode>();
260 private final AtomicReference<QNode> oddQ = new AtomicReference<QNode>();
261
262 private AtomicReference<QNode> queueFor(int phase) {
263 return (phase & 1) == 0? evenQ : oddQ;
264 }
265
266 /**
267 * Returns current state, first resolving lagged propagation from
268 * root if necessary.
269 */
270 private long getReconciledState() {
271 return parent == null? state : reconcileState();
272 }
273
274 /**
275 * Recursively resolves state.
276 */
277 private long reconcileState() {
278 Phaser p = parent;
279 long s = state;
280 if (p != null) {
281 while (unarrivedOf(s) == 0 && phaseOf(s) != phaseOf(root.state)) {
282 long parentState = p.getReconciledState();
283 int parentPhase = phaseOf(parentState);
284 int phase = phaseOf(s = state);
285 if (phase != parentPhase) {
286 long next = trippedStateFor(parentPhase, partiesOf(s));
287 if (casState(s, next)) {
288 releaseWaiters(phase);
289 s = next;
290 }
291 }
292 }
293 }
294 return s;
295 }
296
297 /**
298 * Creates a new Phaser without any initially registered parties,
299 * initial phase number 0, and no parent.
300 */
301 public Phaser() {
302 this(null);
303 }
304
305 /**
306 * Creates a new Phaser with the given numbers of registered
307 * unarrived parties, initial phase number 0, and no parent.
308 * @param parties the number of parties required to trip barrier.
309 * @throws IllegalArgumentException if parties less than zero
310 * or greater than the maximum number of parties supported.
311 */
312 public Phaser(int parties) {
313 this(null, parties);
314 }
315
316 /**
317 * Creates a new Phaser with the given parent, without any
318 * initially registered parties. If parent is non-null this phaser
319 * is registered with the parent and its initial phase number is
320 * the same as that of parent phaser.
321 * @param parent the parent phaser.
322 */
323 public Phaser(Phaser parent) {
324 int phase = 0;
325 this.parent = parent;
326 if (parent != null) {
327 this.root = parent.root;
328 phase = parent.register();
329 }
330 else
331 this.root = this;
332 this.state = trippedStateFor(phase, 0);
333 }
334
335 /**
336 * Creates a new Phaser with the given parent and numbers of
337 * registered unarrived parties. If parent is non-null this phaser
338 * is registered with the parent and its initial phase number is
339 * the same as that of parent phaser.
340 * @param parent the parent phaser.
341 * @param parties the number of parties required to trip barrier.
342 * @throws IllegalArgumentException if parties less than zero
343 * or greater than the maximum number of parties supported.
344 */
345 public Phaser(Phaser parent, int parties) {
346 if (parties < 0 || parties > ushortMask)
347 throw new IllegalArgumentException("Illegal number of parties");
348 int phase = 0;
349 this.parent = parent;
350 if (parent != null) {
351 this.root = parent.root;
352 phase = parent.register();
353 }
354 else
355 this.root = this;
356 this.state = trippedStateFor(phase, parties);
357 }
358
359 /**
360 * Adds a new unarrived party to this phaser.
361 * @return the current barrier phase number upon registration
362 * @throws IllegalStateException if attempting to register more
363 * than the maximum supported number of parties.
364 */
365 public int register() {
366 return doRegister(1);
367 }
368
369 /**
370 * Adds the given number of new unarrived parties to this phaser.
371 * @param parties the number of parties required to trip barrier.
372 * @return the current barrier phase number upon registration
373 * @throws IllegalStateException if attempting to register more
374 * than the maximum supported number of parties.
375 */
376 public int bulkRegister(int parties) {
377 if (parties < 0)
378 throw new IllegalArgumentException();
379 if (parties == 0)
380 return getPhase();
381 return doRegister(parties);
382 }
383
384 /**
385 * Shared code for register, bulkRegister
386 */
387 private int doRegister(int registrations) {
388 int phase;
389 for (;;) {
390 long s = getReconciledState();
391 phase = phaseOf(s);
392 int unarrived = unarrivedOf(s) + registrations;
393 int parties = partiesOf(s) + registrations;
394 if (phase < 0)
395 break;
396 if (parties > ushortMask || unarrived > ushortMask)
397 throw badBounds(parties, unarrived);
398 if (phase == phaseOf(root.state) &&
399 casState(s, stateFor(phase, parties, unarrived)))
400 break;
401 }
402 return phase;
403 }
404
405 /**
406 * Arrives at the barrier, but does not wait for others. (You can
407 * in turn wait for others via {@link #awaitAdvance}).
408 *
409 * @return the barrier phase number upon entry to this method, or a
410 * negative value if terminated;
411 * @throws IllegalStateException if not terminated and the number
412 * of unarrived parties would become negative.
413 */
414 public int arrive() {
415 int phase;
416 for (;;) {
417 long s = state;
418 phase = phaseOf(s);
419 int parties = partiesOf(s);
420 int unarrived = unarrivedOf(s) - 1;
421 if (unarrived > 0) { // Not the last arrival
422 if (casState(s, s - 1)) // s-1 adds one arrival
423 break;
424 }
425 else if (unarrived == 0) { // the last arrival
426 Phaser par = parent;
427 if (par == null) { // directly trip
428 if (casState
429 (s,
430 trippedStateFor(onAdvance(phase, parties)? -1 :
431 ((phase + 1) & phaseMask), parties))) {
432 releaseWaiters(phase);
433 break;
434 }
435 }
436 else { // cascade to parent
437 if (casState(s, s - 1)) { // zeroes unarrived
438 par.arrive();
439 reconcileState();
440 break;
441 }
442 }
443 }
444 else if (phase < 0) // Don't throw exception if terminated
445 break;
446 else if (phase != phaseOf(root.state)) // or if unreconciled
447 reconcileState();
448 else
449 throw badBounds(parties, unarrived);
450 }
451 return phase;
452 }
453
454 /**
455 * Arrives at the barrier, and deregisters from it, without
456 * waiting for others. Deregistration reduces number of parties
457 * required to trip the barrier in future phases. If this phaser
458 * has a parent, and deregistration causes this phaser to have
459 * zero parties, this phaser is also deregistered from its parent.
460 *
461 * @return the current barrier phase number upon entry to
462 * this method, or a negative value if terminated;
463 * @throws IllegalStateException if not terminated and the number
464 * of registered or unarrived parties would become negative.
465 */
466 public int arriveAndDeregister() {
467 // similar code to arrive, but too different to merge
468 Phaser par = parent;
469 int phase;
470 for (;;) {
471 long s = state;
472 phase = phaseOf(s);
473 int parties = partiesOf(s) - 1;
474 int unarrived = unarrivedOf(s) - 1;
475 if (parties >= 0) {
476 if (unarrived > 0 || (unarrived == 0 && par != null)) {
477 if (casState
478 (s,
479 stateFor(phase, parties, unarrived))) {
480 if (unarrived == 0) {
481 par.arriveAndDeregister();
482 reconcileState();
483 }
484 break;
485 }
486 continue;
487 }
488 if (unarrived == 0) {
489 if (casState
490 (s,
491 trippedStateFor(onAdvance(phase, parties)? -1 :
492 ((phase + 1) & phaseMask), parties))) {
493 releaseWaiters(phase);
494 break;
495 }
496 continue;
497 }
498 if (phase < 0)
499 break;
500 if (par != null && phase != phaseOf(root.state)) {
501 reconcileState();
502 continue;
503 }
504 }
505 throw badBounds(parties, unarrived);
506 }
507 return phase;
508 }
509
510 /**
511 * Arrives at the barrier and awaits others. Equivalent in effect
512 * to {@code awaitAdvance(arrive())}. If you instead need to
513 * await with interruption of timeout, and/or deregister upon
514 * arrival, you can arrange them using analogous constructions.
515 * @return the phase on entry to this method
516 * @throws IllegalStateException if not terminated and the number
517 * of unarrived parties would become negative.
518 */
519 public int arriveAndAwaitAdvance() {
520 return awaitAdvance(arrive());
521 }
522
523 /**
524 * Awaits the phase of the barrier to advance from the given
525 * value, or returns immediately if argument is negative or this
526 * barrier is terminated.
527 * @param phase the phase on entry to this method
528 * @return the phase on exit from this method
529 */
530 public int awaitAdvance(int phase) {
531 if (phase < 0)
532 return phase;
533 long s = getReconciledState();
534 int p = phaseOf(s);
535 if (p != phase)
536 return p;
537 if (unarrivedOf(s) == 0)
538 parent.awaitAdvance(phase);
539 // Fall here even if parent waited, to reconcile and help release
540 return untimedWait(phase);
541 }
542
543 /**
544 * Awaits the phase of the barrier to advance from the given
545 * value, or returns immediately if argument is negative or this
546 * barrier is terminated, or throws InterruptedException if
547 * interrupted while waiting.
548 * @param phase the phase on entry to this method
549 * @return the phase on exit from this method
550 * @throws InterruptedException if thread interrupted while waiting
551 */
552 public int awaitAdvanceInterruptibly(int phase) throws InterruptedException {
553 if (phase < 0)
554 return phase;
555 long s = getReconciledState();
556 int p = phaseOf(s);
557 if (p != phase)
558 return p;
559 if (unarrivedOf(s) != 0)
560 parent.awaitAdvanceInterruptibly(phase);
561 return interruptibleWait(phase);
562 }
563
564 /**
565 * Awaits the phase of the barrier to advance from the given value
566 * or the given timeout elapses, or returns immediately if
567 * argument is negative or this barrier is terminated.
568 * @param phase the phase on entry to this method
569 * @return the phase on exit from this method
570 * @throws InterruptedException if thread interrupted while waiting
571 * @throws TimeoutException if timed out while waiting
572 */
573 public int awaitAdvanceInterruptibly(int phase, long timeout, TimeUnit unit)
574 throws InterruptedException, TimeoutException {
575 if (phase < 0)
576 return phase;
577 long s = getReconciledState();
578 int p = phaseOf(s);
579 if (p != phase)
580 return p;
581 if (unarrivedOf(s) == 0)
582 parent.awaitAdvanceInterruptibly(phase, timeout, unit);
583 return timedWait(phase, unit.toNanos(timeout));
584 }
585
586 /**
587 * Forces this barrier to enter termination state. Counts of
588 * arrived and registered parties are unaffected. If this phaser
589 * has a parent, it too is terminated. This method may be useful
590 * for coordinating recovery after one or more tasks encounter
591 * unexpected exceptions.
592 */
593 public void forceTermination() {
594 for (;;) {
595 long s = getReconciledState();
596 int phase = phaseOf(s);
597 int parties = partiesOf(s);
598 int unarrived = unarrivedOf(s);
599 if (phase < 0 ||
600 casState(s, stateFor(-1, parties, unarrived))) {
601 releaseWaiters(0);
602 releaseWaiters(1);
603 if (parent != null)
604 parent.forceTermination();
605 return;
606 }
607 }
608 }
609
610 /**
611 * Returns the current phase number. The maximum phase number is
612 * {@code Integer.MAX_VALUE}, after which it restarts at
613 * zero. Upon termination, the phase number is negative.
614 * @return the phase number, or a negative value if terminated
615 */
616 public final int getPhase() {
617 return phaseOf(getReconciledState());
618 }
619
620 /**
621 * Returns {@code true} if the current phase number equals the given phase.
622 * @param phase the phase
623 * @return {@code true} if the current phase number equals the given phase
624 */
625 public final boolean hasPhase(int phase) {
626 return phaseOf(getReconciledState()) == phase;
627 }
628
629 /**
630 * Returns the number of parties registered at this barrier.
631 * @return the number of parties
632 */
633 public int getRegisteredParties() {
634 return partiesOf(state);
635 }
636
637 /**
638 * Returns the number of parties that have arrived at the current
639 * phase of this barrier.
640 * @return the number of arrived parties
641 */
642 public int getArrivedParties() {
643 return arrivedOf(state);
644 }
645
646 /**
647 * Returns the number of registered parties that have not yet
648 * arrived at the current phase of this barrier.
649 * @return the number of unarrived parties
650 */
651 public int getUnarrivedParties() {
652 return unarrivedOf(state);
653 }
654
655 /**
656 * Returns the parent of this phaser, or null if none.
657 * @return the parent of this phaser, or null if none
658 */
659 public Phaser getParent() {
660 return parent;
661 }
662
663 /**
664 * Returns the root ancestor of this phaser, which is the same as
665 * this phaser if it has no parent.
666 * @return the root ancestor of this phaser
667 */
668 public Phaser getRoot() {
669 return root;
670 }
671
672 /**
673 * Returns {@code true} if this barrier has been terminated.
674 * @return {@code true} if this barrier has been terminated
675 */
676 public boolean isTerminated() {
677 return getPhase() < 0;
678 }
679
680 /**
681 * Overridable method to perform an action upon phase advance, and
682 * to control termination. This method is invoked whenever the
683 * barrier is tripped (and thus all other waiting parties are
684 * dormant). If it returns true, then, rather than advance the
685 * phase number, this barrier will be set to a final termination
686 * state, and subsequent calls to {@code isTerminated} will
687 * return true.
688 *
689 * <p> The default version returns true when the number of
690 * registered parties is zero. Normally, overrides that arrange
691 * termination for other reasons should also preserve this
692 * property.
693 *
694 * <p> You may override this method to perform an action with side
695 * effects visible to participating tasks, but it is in general
696 * only sensible to do so in designs where all parties register
697 * before any arrive, and all {@code awaitAdvance} at each phase.
698 * Otherwise, you cannot ensure lack of interference. In
699 * particular, this method may be invoked more than once per
700 * transition if other parties successfully register while the
701 * invocation of this method is in progress, thus postponing the
702 * transition until those parties also arrive, re-triggering this
703 * method.
704 *
705 * @param phase the phase number on entering the barrier
706 * @param registeredParties the current number of registered parties
707 * @return {@code true} if this barrier should terminate
708 */
709 protected boolean onAdvance(int phase, int registeredParties) {
710 return registeredParties <= 0;
711 }
712
713 /**
714 * Returns a string identifying this phaser, as well as its
715 * state. The state, in brackets, includes the String {@code
716 * "phase = "} followed by the phase number, {@code "parties = "}
717 * followed by the number of registered parties, and {@code
718 * "arrived = "} followed by the number of arrived parties.
719 *
720 * @return a string identifying this barrier, as well as its state
721 */
722 public String toString() {
723 long s = getReconciledState();
724 return super.toString() +
725 "[phase = " + phaseOf(s) +
726 " parties = " + partiesOf(s) +
727 " arrived = " + arrivedOf(s) + "]";
728 }
729
730 // methods for waiting
731
732 /** The number of CPUs, for spin control */
733 static final int NCPUS = Runtime.getRuntime().availableProcessors();
734
735 /**
736 * The number of times to spin before blocking in timed waits.
737 * The value is empirically derived.
738 */
739 static final int maxTimedSpins = (NCPUS < 2)? 0 : 32;
740
741 /**
742 * The number of times to spin before blocking in untimed waits.
743 * This is greater than timed value because untimed waits spin
744 * faster since they don't need to check times on each spin.
745 */
746 static final int maxUntimedSpins = maxTimedSpins * 32;
747
748 /**
749 * The number of nanoseconds for which it is faster to spin
750 * rather than to use timed park. A rough estimate suffices.
751 */
752 static final long spinForTimeoutThreshold = 1000L;
753
754 /**
755 * Wait nodes for Treiber stack representing wait queue for non-FJ
756 * tasks.
757 */
758 static final class QNode {
759 QNode next;
760 volatile Thread thread; // nulled to cancel wait
761 QNode() {
762 thread = Thread.currentThread();
763 }
764 void signal() {
765 Thread t = thread;
766 if (t != null) {
767 thread = null;
768 LockSupport.unpark(t);
769 }
770 }
771 }
772
773 /**
774 * Removes and signals waiting threads from wait queue
775 */
776 private void releaseWaiters(int phase) {
777 AtomicReference<QNode> head = queueFor(phase);
778 QNode q;
779 while ((q = head.get()) != null) {
780 if (head.compareAndSet(q, q.next))
781 q.signal();
782 }
783 }
784
785 /**
786 * Enqueues node and waits unless aborted or signalled.
787 */
788 private int untimedWait(int phase) {
789 int spins = maxUntimedSpins;
790 QNode node = null;
791 boolean interrupted = false;
792 boolean queued = false;
793 int p;
794 while ((p = getPhase()) == phase) {
795 interrupted = Thread.interrupted();
796 if (node != null) {
797 if (!queued) {
798 AtomicReference<QNode> head = queueFor(phase);
799 queued = head.compareAndSet(node.next = head.get(), node);
800 }
801 else if (node.thread != null)
802 LockSupport.park(this);
803 }
804 else if (spins <= 0)
805 node = new QNode();
806 else
807 --spins;
808 }
809 if (node != null)
810 node.thread = null;
811 if (interrupted)
812 Thread.currentThread().interrupt();
813 releaseWaiters(phase);
814 return p;
815 }
816
817 /**
818 * Messier interruptible version
819 */
820 private int interruptibleWait(int phase) throws InterruptedException {
821 int spins = maxUntimedSpins;
822 QNode node = null;
823 boolean queued = false;
824 boolean interrupted = false;
825 int p;
826 while ((p = getPhase()) == phase) {
827 if (interrupted = Thread.interrupted())
828 break;
829 if (node != null) {
830 if (!queued) {
831 AtomicReference<QNode> head = queueFor(phase);
832 queued = head.compareAndSet(node.next = head.get(), node);
833 }
834 else if (node.thread != null)
835 LockSupport.park(this);
836 }
837 else if (spins <= 0)
838 node = new QNode();
839 else
840 --spins;
841 }
842 if (node != null)
843 node.thread = null;
844 if (interrupted)
845 throw new InterruptedException();
846 releaseWaiters(phase);
847 return p;
848 }
849
850 /**
851 * Even messier timeout version.
852 */
853 private int timedWait(int phase, long nanos)
854 throws InterruptedException, TimeoutException {
855 int p;
856 if ((p = getPhase()) == phase) {
857 long lastTime = System.nanoTime();
858 int spins = maxTimedSpins;
859 QNode node = null;
860 boolean queued = false;
861 boolean interrupted = false;
862 while ((p = getPhase()) == phase) {
863 if (interrupted = Thread.interrupted())
864 break;
865 long now = System.nanoTime();
866 if ((nanos -= now - lastTime) <= 0)
867 break;
868 lastTime = now;
869 if (node != null) {
870 if (!queued) {
871 AtomicReference<QNode> head = queueFor(phase);
872 queued = head.compareAndSet(node.next = head.get(), node);
873 }
874 else if (node.thread != null &&
875 nanos > spinForTimeoutThreshold) {
876 LockSupport.parkNanos(this, nanos);
877 }
878 }
879 else if (spins <= 0)
880 node = new QNode();
881 else
882 --spins;
883 }
884 if (node != null)
885 node.thread = null;
886 if (interrupted)
887 throw new InterruptedException();
888 if (p == phase && (p = getPhase()) == phase)
889 throw new TimeoutException();
890 }
891 releaseWaiters(phase);
892 return p;
893 }
894
895 // Temporary Unsafe mechanics for preliminary release
896
897 static final Unsafe _unsafe;
898 static final long stateOffset;
899
900 static {
901 try {
902 if (Phaser.class.getClassLoader() != null) {
903 Field f = Unsafe.class.getDeclaredField("theUnsafe");
904 f.setAccessible(true);
905 _unsafe = (Unsafe)f.get(null);
906 }
907 else
908 _unsafe = Unsafe.getUnsafe();
909 stateOffset = _unsafe.objectFieldOffset
910 (Phaser.class.getDeclaredField("state"));
911 } catch (Exception e) {
912 throw new RuntimeException("Could not initialize intrinsics", e);
913 }
914 }
915
916 final boolean casState(long cmp, long val) {
917 return _unsafe.compareAndSwapLong(this, stateOffset, cmp, val);
918 }
919 }