ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/AbstractList.java
(Generate patch)

Comparing jsr166/src/main/java/util/AbstractList.java (file contents):
Revision 1.5 by jsr166, Mon Dec 5 02:56:59 2005 UTC vs.
Revision 1.13 by jsr166, Mon Jun 26 01:02:38 2006 UTC

# Line 8 | Line 8
8   package java.util;
9  
10   /**
11 < * This class provides a skeletal implementation of the <tt>List</tt>
11 > * This class provides a skeletal implementation of the {@link List}
12   * interface to minimize the effort required to implement this interface
13   * backed by a "random access" data store (such as an array).  For sequential
14 < * access data (such as a linked list), <tt>AbstractSequentialList</tt> should
15 < * be used in preference to this class.<p>
14 > * access data (such as a linked list), {@link AbstractSequentialList} should
15 > * be used in preference to this class.
16   *
17 < * To implement an unmodifiable list, the programmer needs only to extend this
18 < * class and provide implementations for the <tt>get(int index)</tt> and
19 < * <tt>size()</tt> methods.<p>
17 > * <p>To implement an unmodifiable list, the programmer needs only to extend
18 > * this class and provide implementations for the {@link #get(int)} and
19 > * {@link List#size() size()} methods.
20   *
21 < * To implement a modifiable list, the programmer must additionally override
22 < * the <tt>set(int index, Object element)</tt> method (which otherwise throws
23 < * an <tt>UnsupportedOperationException</tt>.  If the list is variable-size
24 < * the programmer must additionally override the <tt>add(int index, Object
25 < * element)</tt> and <tt>remove(int index)</tt> methods.<p>
21 > * <p>To implement a modifiable list, the programmer must additionally
22 > * override the {@link #set(int, Object) set(int, E)} method (which otherwise
23 > * throws an {@code UnsupportedOperationException}).  If the list is
24 > * variable-size the programmer must additionally override the
25 > * {@link #add(int, Object) add(int, E)} and {@link #remove(int)} methods.
26   *
27 < * The programmer should generally provide a void (no argument) and collection
28 < * constructor, as per the recommendation in the <tt>Collection</tt> interface
29 < * specification.<p>
27 > * <p>The programmer should generally provide a void (no argument) and collection
28 > * constructor, as per the recommendation in the {@link Collection} interface
29 > * specification.
30   *
31 < * Unlike the other abstract collection implementations, the programmer does
31 > * <p>Unlike the other abstract collection implementations, the programmer does
32   * <i>not</i> have to provide an iterator implementation; the iterator and
33   * list iterator are implemented by this class, on top of the "random access"
34 < * methods: <tt>get(int index)</tt>, <tt>set(int index, E element)</tt>,
35 < * <tt>add(int index, E element)</tt> and <tt>remove(int index)</tt>.<p>
34 > * methods:
35 > * {@link #get(int)},
36 > * {@link #set(int, Object) set(int, E)},
37 > * {@link #add(int, Object) add(int, E)} and
38 > * {@link #remove(int)}.
39   *
40 < * The documentation for each non-abstract methods in this class describes its
40 > * <p>The documentation for each non-abstract method in this class describes its
41   * implementation in detail.  Each of these methods may be overridden if the
42 < * collection being implemented admits a more efficient implementation.<p>
42 > * collection being implemented admits a more efficient implementation.
43   *
44 < * This class is a member of the
45 < * <a href="{@docRoot}/../guide/collections/index.html">
44 > * <p>This class is a member of the
45 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
46   * Java Collections Framework</a>.
47   *
48   * @author  Josh Bloch
49   * @author  Neal Gafter
50 < * @version 1.37, 01/18/03
48 < * @see Collection
49 < * @see List
50 < * @see AbstractSequentialList
51 < * @see AbstractCollection
50 > * @version %I%, %G%
51   * @since 1.2
52   */
53  
# Line 71 | Line 70 | public abstract class AbstractList<E> ex
70       * classes should clearly specify in their documentation any restrictions
71       * on what elements may be added.
72       *
73 <     * <p>This implementation calls <tt>add(size(), e)</tt>.
73 >     * <p>This implementation calls {@code add(size(), e)}.
74       *
75       * <p>Note that this implementation throws an
76 <     * <tt>UnsupportedOperationException</tt> unless <tt>add(int, Object)</tt>
77 <     * is overridden.
76 >     * {@code UnsupportedOperationException} unless
77 >     * {@link #add(int, Object) add(int, E)} is overridden.
78       *
79       * @param e element to be appended to this list
80 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
81 <     * @throws UnsupportedOperationException if the <tt>add</tt> operation
80 >     * @return {@code true} (as specified by {@link Collection#add})
81 >     * @throws UnsupportedOperationException if the {@code add} operation
82       *         is not supported by this list
83       * @throws ClassCastException if the class of the specified element
84       *         prevents it from being added to this list
# Line 104 | Line 103 | public abstract class AbstractList<E> ex
103       * {@inheritDoc}
104       *
105       * <p>This implementation always throws an
106 <     * <tt>UnsupportedOperationException</tt>.
106 >     * {@code UnsupportedOperationException}.
107       *
108       * @throws UnsupportedOperationException {@inheritDoc}
109       * @throws ClassCastException            {@inheritDoc}
# Line 120 | Line 119 | public abstract class AbstractList<E> ex
119       * {@inheritDoc}
120       *
121       * <p>This implementation always throws an
122 <     * <tt>UnsupportedOperationException</tt>.
122 >     * {@code UnsupportedOperationException}.
123       *
124       * @throws UnsupportedOperationException {@inheritDoc}
125       * @throws ClassCastException            {@inheritDoc}
# Line 136 | Line 135 | public abstract class AbstractList<E> ex
135       * {@inheritDoc}
136       *
137       * <p>This implementation always throws an
138 <     * <tt>UnsupportedOperationException</tt>.
138 >     * {@code UnsupportedOperationException}.
139       *
140       * @throws UnsupportedOperationException {@inheritDoc}
141       * @throws IndexOutOfBoundsException     {@inheritDoc}
# Line 152 | Line 151 | public abstract class AbstractList<E> ex
151       * {@inheritDoc}
152       *
153       * <p>This implementation first gets a list iterator (with
154 <     * <tt>listIterator()</tt>).  Then, it iterates over the list until the
154 >     * {@code listIterator()}).  Then, it iterates over the list until the
155       * specified element is found or the end of the list is reached.
156       *
157       * @throws ClassCastException   {@inheritDoc}
# Line 176 | Line 175 | public abstract class AbstractList<E> ex
175       * {@inheritDoc}
176       *
177       * <p>This implementation first gets a list iterator that points to the end
178 <     * of the list (with <tt>listIterator(size())</tt>).  Then, it iterates
178 >     * of the list (with {@code listIterator(size())}).  Then, it iterates
179       * backwards over the list until the specified element is found, or the
180       * beginning of the list is reached.
181       *
# Line 204 | Line 203 | public abstract class AbstractList<E> ex
203       * Removes all of the elements from this list (optional operation).
204       * The list will be empty after this call returns.
205       *
206 <     * <p>This implementation calls <tt>removeRange(0, size())</tt>.
206 >     * <p>This implementation calls {@code removeRange(0, size())}.
207       *
208       * <p>Note that this implementation throws an
209 <     * <tt>UnsupportedOperationException</tt> unless <tt>remove(int
210 <     * index)</tt> or <tt>removeRange(int fromIndex, int toIndex)</tt> is
209 >     * {@code UnsupportedOperationException} unless {@code remove(int
210 >     * index)} or {@code removeRange(int fromIndex, int toIndex)} is
211       * overridden.
212       *
213 <     * @throws UnsupportedOperationException if the <tt>clear</tt> operation
213 >     * @throws UnsupportedOperationException if the {@code clear} operation
214       *         is not supported by this list
215       */
216      public void clear() {
# Line 221 | Line 220 | public abstract class AbstractList<E> ex
220      /**
221       * {@inheritDoc}
222       *
223 <     * <p>This implementation gets an iterator over the specified collection and
224 <     * iterates over it, inserting the elements obtained from the iterator
225 <     * into this list at the appropriate position, one at a time, using
226 <     * <tt>add(int, Object)</tt>.  Many implementations will override this
227 <     * method for efficiency.
223 >     * <p>This implementation gets an iterator over the specified collection
224 >     * and iterates over it, inserting the elements obtained from the
225 >     * iterator into this list at the appropriate position, one at a time,
226 >     * using {@code add(int, E)}.
227 >     * Many implementations will override this method for efficiency.
228       *
229       * <p>Note that this implementation throws an
230 <     * <tt>UnsupportedOperationException</tt> unless <tt>add(int, Object)</tt>
231 <     * is overridden.
230 >     * {@code UnsupportedOperationException} unless
231 >     * {@link #add(int, Object) add(int, E)} is overridden.
232       *
233       * @throws UnsupportedOperationException {@inheritDoc}
234       * @throws ClassCastException            {@inheritDoc}
# Line 252 | Line 251 | public abstract class AbstractList<E> ex
251  
252      /**
253       * Returns an iterator over the elements in this list in proper
254 <     * sequence. <p>
254 >     * sequence.
255       *
256 <     * This implementation returns a straightforward implementation of the
257 <     * iterator interface, relying on the backing list's <tt>size()</tt>,
258 <     * <tt>get(int)</tt>, and <tt>remove(int)</tt> methods.<p>
259 <     *
260 <     * Note that the iterator returned by this method will throw an
261 <     * <tt>UnsupportedOperationException</tt> in response to its
262 <     * <tt>remove</tt> method unless the list's <tt>remove(int)</tt> method is
263 <     * overridden.<p>
264 <     *
265 <     * This implementation can be made to throw runtime exceptions in the face
266 <     * of concurrent modification, as described in the specification for the
267 <     * (protected) <tt>modCount</tt> field.
256 >     * <p>This implementation returns a straightforward implementation of the
257 >     * iterator interface, relying on the backing list's {@code size()},
258 >     * {@code get(int)}, and {@code remove(int)} methods.
259 >     *
260 >     * <p>Note that the iterator returned by this method will throw an
261 >     * {@code UnsupportedOperationException} in response to its
262 >     * {@code remove} method unless the list's {@code remove(int)} method is
263 >     * overridden.
264 >     *
265 >     * <p>This implementation can be made to throw runtime exceptions in the
266 >     * face of concurrent modification, as described in the specification
267 >     * for the (protected) {@code modCount} field.
268       *
269       * @return an iterator over the elements in this list in proper sequence
270       *
# Line 278 | Line 277 | public abstract class AbstractList<E> ex
277      /**
278       * {@inheritDoc}
279       *
280 <     * <p>This implementation returns <tt>listIterator(0)</tt>.
280 >     * <p>This implementation returns {@code listIterator(0)}.
281       *
282       * @see #listIterator(int)
283       */
# Line 290 | Line 289 | public abstract class AbstractList<E> ex
289       * {@inheritDoc}
290       *
291       * <p>This implementation returns a straightforward implementation of the
292 <     * <tt>ListIterator</tt> interface that extends the implementation of the
293 <     * <tt>Iterator</tt> interface returned by the <tt>iterator()</tt> method.
294 <     * The <tt>ListIterator</tt> implementation relies on the backing list's
295 <     * <tt>get(int)</tt>, <tt>set(int, Object)</tt>, <tt>add(int, Object)</tt>
296 <     * and <tt>remove(int)</tt> methods.
292 >     * {@code ListIterator} interface that extends the implementation of the
293 >     * {@code Iterator} interface returned by the {@code iterator()} method.
294 >     * The {@code ListIterator} implementation relies on the backing list's
295 >     * {@code get(int)}, {@code set(int, E)}, {@code add(int, Object)}
296 >     * and {@code remove(int)} methods.
297       *
298       * <p>Note that the list iterator returned by this implementation will
299 <     * throw an <tt>UnsupportedOperationException</tt> in response to its
300 <     * <tt>remove</tt>, <tt>set</tt> and <tt>add</tt> methods unless the
301 <     * list's <tt>remove(int)</tt>, <tt>set(int, Object)</tt>, and
302 <     * <tt>add(int, Object)</tt> methods are overridden.
299 >     * throw an {@code UnsupportedOperationException} in response to its
300 >     * {@code remove}, {@code set} and {@code add} methods unless the
301 >     * list's {@code remove(int)}, {@code set(int, E)}, and
302 >     * {@code add(int, E)} methods are overridden.
303       *
304       * <p>This implementation can be made to throw runtime exceptions in the
305       * face of concurrent modification, as described in the specification for
306 <     * the (protected) <tt>modCount</tt> field.
306 >     * the (protected) {@code modCount} field.
307       *
308       * @throws IndexOutOfBoundsException {@inheritDoc}
309       *
# Line 342 | Line 341 | public abstract class AbstractList<E> ex
341          }
342  
343          public E next() {
344 <            try {
345 <                int i = cursor;
346 <                E next = get(i);
347 <                lastRet = i;
348 <                cursor = i + 1;
349 <                return next;
350 <            } catch (IndexOutOfBoundsException ex) {
351 <                throw new NoSuchElementException();
352 <            } finally {
354 <                if (expectedModCount != modCount)
355 <                    throw new ConcurrentModificationException();
356 <            }
344 >            checkForComodification();
345 >            try {
346 >                E next = get(cursor);
347 >                lastRet = cursor++;
348 >                return next;
349 >            } catch (IndexOutOfBoundsException e) {
350 >                checkForComodification();
351 >                throw new NoSuchElementException();
352 >            }
353          }
354  
355          public void remove() {
356              if (lastRet == -1)
357                  throw new IllegalStateException();
358 <            if (expectedModCount != modCount)
359 <                throw new ConcurrentModificationException();
358 >            checkForComodification();
359 >
360              try {
361                  AbstractList.this.remove(lastRet);
362                  if (lastRet < cursor)
# Line 371 | Line 367 | public abstract class AbstractList<E> ex
367                  throw new ConcurrentModificationException();
368              }
369          }
370 +
371 +        final void checkForComodification() {
372 +            if (modCount != expectedModCount)
373 +                throw new ConcurrentModificationException();
374 +        }
375      }
376 <    
376 >
377      private class ListItr extends Itr implements ListIterator<E> {
378          ListItr(int index) {
379              cursor = index;
# Line 382 | Line 383 | public abstract class AbstractList<E> ex
383              return cursor != 0;
384          }
385  
385        public int nextIndex() {
386            return cursor;
387        }
388
389        public int previousIndex() {
390            return cursor - 1;
391        }
392
386          public E previous() {
387 +            checkForComodification();
388              try {
389                  int i = cursor - 1;
390 <                E prev = get(i);
391 <                lastRet = i;
392 <                cursor = i;
393 <                return prev;
394 <            } catch (IndexOutOfBoundsException ex) {
390 >                E previous = get(i);
391 >                lastRet = cursor = i;
392 >                return previous;
393 >            } catch (IndexOutOfBoundsException e) {
394 >                checkForComodification();
395                  throw new NoSuchElementException();
402            } finally {
403                if (expectedModCount != modCount)
404                    throw new ConcurrentModificationException();
396              }
397          }
398  
399 +        public int nextIndex() {
400 +            return cursor;
401 +        }
402 +
403 +        public int previousIndex() {
404 +            return cursor-1;
405 +        }
406 +
407          public void set(E e) {
408              if (lastRet == -1)
409                  throw new IllegalStateException();
410 <            if (expectedModCount != modCount)
411 <                throw new ConcurrentModificationException();
410 >            checkForComodification();
411 >
412              try {
413                  AbstractList.this.set(lastRet, e);
414                  expectedModCount = modCount;
# Line 419 | Line 418 | public abstract class AbstractList<E> ex
418          }
419  
420          public void add(E e) {
421 <            if (expectedModCount != modCount)
422 <                throw new ConcurrentModificationException();
421 >            checkForComodification();
422 >
423              try {
424                  int i = cursor;
425                  AbstractList.this.add(i, e);
# Line 437 | Line 436 | public abstract class AbstractList<E> ex
436       * {@inheritDoc}
437       *
438       * <p>This implementation returns a list that subclasses
439 <     * <tt>AbstractList</tt>.  The subclass stores, in private fields, the
439 >     * {@code AbstractList}.  The subclass stores, in private fields, the
440       * offset of the subList within the backing list, the size of the subList
441       * (which can change over its lifetime), and the expected
442 <     * <tt>modCount</tt> value of the backing list.  There are two variants
443 <     * of the subclass, one of which implements <tt>RandomAccess</tt>.
444 <     * If this list implements <tt>RandomAccess</tt> the returned list will
445 <     * be an instance of the subclass that implements <tt>RandomAccess</tt>.
446 <     *
447 <     * <p>The subclass's <tt>set(int, Object)</tt>, <tt>get(int)</tt>,
448 <     * <tt>add(int, Object)</tt>, <tt>remove(int)</tt>, <tt>addAll(int,
449 <     * Collection)</tt> and <tt>removeRange(int, int)</tt> methods all
442 >     * {@code modCount} value of the backing list.  There are two variants
443 >     * of the subclass, one of which implements {@code RandomAccess}.
444 >     * If this list implements {@code RandomAccess} the returned list will
445 >     * be an instance of the subclass that implements {@code RandomAccess}.
446 >     *
447 >     * <p>The subclass's {@code set(int, Object)}, {@code get(int)},
448 >     * {@code add(int, Object)}, {@code remove(int)}, {@code addAll(int,
449 >     * Collection)} and {@code removeRange(int, int)} methods all
450       * delegate to the corresponding methods on the backing abstract list,
451       * after bounds-checking the index and adjusting for the offset.  The
452 <     * <tt>addAll(Collection c)</tt> method merely returns <tt>addAll(size,
453 <     * c)</tt>.
452 >     * {@code addAll(Collection c)} method merely returns {@code addAll(size,
453 >     * c)}.
454       *
455 <     * <p>The <tt>listIterator(int)</tt> method returns a "wrapper object"
455 >     * <p>The {@code listIterator(int)} method returns a "wrapper object"
456       * over a list iterator on the backing list, which is created with the
457 <     * corresponding method on the backing list.  The <tt>iterator</tt> method
458 <     * merely returns <tt>listIterator()</tt>, and the <tt>size</tt> method
459 <     * merely returns the subclass's <tt>size</tt> field.
457 >     * corresponding method on the backing list.  The {@code iterator} method
458 >     * merely returns {@code listIterator()}, and the {@code size} method
459 >     * merely returns the subclass's {@code size} field.
460       *
461 <     * <p>All methods first check to see if the actual <tt>modCount</tt> of
461 >     * <p>All methods first check to see if the actual {@code modCount} of
462       * the backing list is equal to its expected value, and throw a
463 <     * <tt>ConcurrentModificationException</tt> if it is not.
463 >     * {@code ConcurrentModificationException} if it is not.
464       *
465       * @throws IndexOutOfBoundsException endpoint index value out of range
466 <     *         <tt>(fromIndex &lt; 0 || toIndex &gt; size)</tt>
466 >     *         {@code (fromIndex &lt; 0 || toIndex &gt; size)}
467       * @throws IllegalArgumentException if the endpoint indices are out of order
468 <     *         <tt>(fromIndex &gt; toIndex)</tt>
468 >     *         {@code (fromIndex &gt; toIndex)}
469       */
470      public List<E> subList(int fromIndex, int toIndex) {
471          return (this instanceof RandomAccess ?
472 <                new RandomAccessSubList<E>(this, fromIndex, toIndex) :
473 <                new SubList<E>(this, fromIndex, toIndex));
472 >                new RandomAccessSubList(this, this, fromIndex, fromIndex, toIndex) :
473 >                new SubList(this, this, fromIndex, fromIndex, toIndex));
474      }
475  
476      // Comparison and hashing
477  
478      /**
479       * Compares the specified object with this list for equality.  Returns
480 <     * <tt>true</tt> if and only if the specified object is also a list, both
480 >     * {@code true} if and only if the specified object is also a list, both
481       * lists have the same size, and all corresponding pairs of elements in
482 <     * the two lists are <i>equal</i>.  (Two elements <tt>e1</tt> and
483 <     * <tt>e2</tt> are <i>equal</i> if <tt>(e1==null ? e2==null :
484 <     * e1.equals(e2))</tt>.)  In other words, two lists are defined to be
485 <     * equal if they contain the same elements in the same order.<p>
486 <     *
487 <     * This implementation first checks if the specified object is this
488 <     * list. If so, it returns <tt>true</tt>; if not, it checks if the
489 <     * specified object is a list. If not, it returns <tt>false</tt>; if so,
482 >     * the two lists are <i>equal</i>.  (Two elements {@code e1} and
483 >     * {@code e2} are <i>equal</i> if {@code (e1==null ? e2==null :
484 >     * e1.equals(e2))}.)  In other words, two lists are defined to be
485 >     * equal if they contain the same elements in the same order.
486 >     *
487 >     * <p>This implementation first checks if the specified object is this
488 >     * list. If so, it returns {@code true}; if not, it checks if the
489 >     * specified object is a list. If not, it returns {@code false}; if so,
490       * it iterates over both lists, comparing corresponding pairs of elements.
491 <     * If any comparison returns <tt>false</tt>, this method returns
492 <     * <tt>false</tt>.  If either iterator runs out of elements before the
493 <     * other it returns <tt>false</tt> (as the lists are of unequal length);
494 <     * otherwise it returns <tt>true</tt> when the iterations complete.
491 >     * If any comparison returns {@code false}, this method returns
492 >     * {@code false}.  If either iterator runs out of elements before the
493 >     * other it returns {@code false} (as the lists are of unequal length);
494 >     * otherwise it returns {@code true} when the iterations complete.
495       *
496       * @param o the object to be compared for equality with this list
497 <     * @return <tt>true</tt> if the specified object is equal to this list
497 >     * @return {@code true} if the specified object is equal to this list
498       */
499      public boolean equals(Object o) {
500          if (o == this)
# Line 515 | Line 514 | public abstract class AbstractList<E> ex
514      }
515  
516      /**
517 <     * Returns the hash code value for this list. <p>
517 >     * Returns the hash code value for this list.
518       *
519 <     * This implementation uses exactly the code that is used to define the
519 >     * <p>This implementation uses exactly the code that is used to define the
520       * list hash function in the documentation for the {@link List#hashCode}
521       * method.
522       *
# Line 535 | Line 534 | public abstract class AbstractList<E> ex
534  
535      /**
536       * Removes from this list all of the elements whose index is between
537 <     * <tt>fromIndex</tt>, inclusive, and <tt>toIndex</tt>, exclusive.
537 >     * {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
538       * Shifts any succeeding elements to the left (reduces their index).
539 <     * This call shortens the ArrayList by <tt>(toIndex - fromIndex)</tt>
540 <     * elements.  (If <tt>toIndex==fromIndex</tt>, this operation has no
541 <     * effect.)<p>
539 >     * This call shortens the ArrayList by {@code (toIndex - fromIndex)}
540 >     * elements.  (If {@code toIndex==fromIndex}, this operation has no
541 >     * effect.)
542       *
543 <     * This method is called by the <tt>clear</tt> operation on this list
543 >     * <p>This method is called by the {@code clear} operation on this list
544       * and its subLists.  Overriding this method to take advantage of
545       * the internals of the list implementation can <i>substantially</i>
546 <     * improve the performance of the <tt>clear</tt> operation on this list
547 <     * and its subLists.<p>
546 >     * improve the performance of the {@code clear} operation on this list
547 >     * and its subLists.
548       *
549 <     * This implementation gets a list iterator positioned before
550 <     * <tt>fromIndex</tt>, and repeatedly calls <tt>ListIterator.next</tt>
551 <     * followed by <tt>ListIterator.remove</tt> until the entire range has
552 <     * been removed.  <b>Note: if <tt>ListIterator.remove</tt> requires linear
549 >     * <p>This implementation gets a list iterator positioned before
550 >     * {@code fromIndex}, and repeatedly calls {@code ListIterator.next}
551 >     * followed by {@code ListIterator.remove} until the entire range has
552 >     * been removed.  <b>Note: if {@code ListIterator.remove} requires linear
553       * time, this implementation requires quadratic time.</b>
554       *
555       * @param fromIndex index of first element to be removed
# Line 568 | Line 567 | public abstract class AbstractList<E> ex
567       * The number of times this list has been <i>structurally modified</i>.
568       * Structural modifications are those that change the size of the
569       * list, or otherwise perturb it in such a fashion that iterations in
570 <     * progress may yield incorrect results.<p>
570 >     * progress may yield incorrect results.
571       *
572 <     * This field is used by the iterator and list iterator implementation
573 <     * returned by the <tt>iterator</tt> and <tt>listIterator</tt> methods.
572 >     * <p>This field is used by the iterator and list iterator implementation
573 >     * returned by the {@code iterator} and {@code listIterator} methods.
574       * If the value of this field changes unexpectedly, the iterator (or list
575 <     * iterator) will throw a <tt>ConcurrentModificationException</tt> in
576 <     * response to the <tt>next</tt>, <tt>remove</tt>, <tt>previous</tt>,
577 <     * <tt>set</tt> or <tt>add</tt> operations.  This provides
575 >     * iterator) will throw a {@code ConcurrentModificationException} in
576 >     * response to the {@code next}, {@code remove}, {@code previous},
577 >     * {@code set} or {@code add} operations.  This provides
578       * <i>fail-fast</i> behavior, rather than non-deterministic behavior in
579 <     * the face of concurrent modification during iteration.<p>
579 >     * the face of concurrent modification during iteration.
580       *
581 <     * <b>Use of this field by subclasses is optional.</b> If a subclass
581 >     * <p><b>Use of this field by subclasses is optional.</b> If a subclass
582       * wishes to provide fail-fast iterators (and list iterators), then it
583 <     * merely has to increment this field in its <tt>add(int, Object)</tt> and
584 <     * <tt>remove(int)</tt> methods (and any other methods that it overrides
583 >     * merely has to increment this field in its {@code add(int, Object)} and
584 >     * {@code remove(int)} methods (and any other methods that it overrides
585       * that result in structural modifications to the list).  A single call to
586 <     * <tt>add(int, Object)</tt> or <tt>remove(int)</tt> must add no more than
586 >     * {@code add(int, Object)} or {@code remove(int)} must add no more than
587       * one to this field, or the iterators (and list iterators) will throw
588 <     * bogus <tt>ConcurrentModificationExceptions</tt>.  If an implementation
588 >     * bogus {@code ConcurrentModificationExceptions}.  If an implementation
589       * does not wish to provide fail-fast iterators, this field may be
590       * ignored.
591       */
592      protected transient int modCount = 0;
593   }
594  
595 + /**
596 + * Generic sublists. Non-nested to enable construction by other
597 + * classes in this package.
598 + */
599   class SubList<E> extends AbstractList<E> {
600 <    private AbstractList<E> l;
601 <    private int offset;
602 <    private int size;
603 <    private int expectedModCount;
604 <
605 <    SubList(AbstractList<E> list, int fromIndex, int toIndex) {
600 >    /*
601 >     * A SubList has both a "base", the ultimate backing list, as well
602 >     * as a "parent", which is the list or sublist creating this
603 >     * sublist. All methods that may cause structural modifications
604 >     * must propagate through the parent link, with O(k) performance
605 >     * where k is sublist depth. For example in the case of a
606 >     * sub-sub-list, invoking remove(x) will result in a chain of
607 >     * three remove calls. However, all other non-structurally
608 >     * modifying methods can bypass this chain, and relay directly to
609 >     * the base list. In particular, doing so signficantly speeds up
610 >     * the performance of iterators for deeply-nested sublists.
611 >     */
612 >    final AbstractList<E> base;   // Backing list
613 >    final AbstractList<E> parent; // Parent list
614 >    final int baseOffset;         // index wrt base
615 >    final int parentOffset;       // index wrt parent
616 >    int length;                   // Number of elements in this sublist
617 >
618 >    SubList(AbstractList<E> base,
619 >            AbstractList<E> parent,
620 >            int baseIndex,
621 >            int fromIndex,
622 >            int toIndex) {
623          if (fromIndex < 0)
624              throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
625 <        if (toIndex > list.size())
625 >        if (toIndex > parent.size())
626              throw new IndexOutOfBoundsException("toIndex = " + toIndex);
627          if (fromIndex > toIndex)
628              throw new IllegalArgumentException("fromIndex(" + fromIndex +
629                                                 ") > toIndex(" + toIndex + ")");
630 <        l = list;
631 <        offset = fromIndex;
632 <        size = toIndex - fromIndex;
633 <        expectedModCount = l.modCount;
630 >        this.base = base;
631 >        this.parent = parent;
632 >        this.baseOffset = baseIndex;
633 >        this.parentOffset = fromIndex;
634 >        this.length = toIndex - fromIndex;
635 >        this.modCount = base.modCount;
636 >    }
637 >
638 >    /**
639 >     * Returns an IndexOutOfBoundsException with nicer message
640 >     */
641 >    private IndexOutOfBoundsException indexError(int index) {
642 >        return new IndexOutOfBoundsException("Index: " + index +
643 >                                             ", Size: " + length);
644      }
645  
646      public E set(int index, E element) {
647 <        rangeCheck(index);
648 <        checkForComodification();
649 <        return l.set(index+offset, element);
647 >        if (index < 0 || index >= length)
648 >            throw indexError(index);
649 >        if (base.modCount != modCount)
650 >            throw new ConcurrentModificationException();
651 >        return base.set(index + baseOffset, element);
652      }
653  
654      public E get(int index) {
655 <        rangeCheck(index);
656 <        checkForComodification();
657 <        return l.get(index+offset);
655 >        if (index < 0 || index >= length)
656 >            throw indexError(index);
657 >        if (base.modCount != modCount)
658 >            throw new ConcurrentModificationException();
659 >        return base.get(index + baseOffset);
660      }
661  
662      public int size() {
663 <        checkForComodification();
664 <        return size;
663 >        if (base.modCount != modCount)
664 >            throw new ConcurrentModificationException();
665 >        return length;
666      }
667  
668      public void add(int index, E element) {
669 <        if (index<0 || index>size)
670 <            throw new IndexOutOfBoundsException();
671 <        checkForComodification();
672 <        l.add(index+offset, element);
673 <        expectedModCount = l.modCount;
674 <        size++;
675 <        modCount++;
669 >        if (index < 0 || index>length)
670 >            throw indexError(index);
671 >        if (base.modCount != modCount)
672 >            throw new ConcurrentModificationException();
673 >        parent.add(index + parentOffset, element);
674 >        length++;
675 >        modCount = base.modCount;
676      }
677  
678      public E remove(int index) {
679 <        rangeCheck(index);
680 <        checkForComodification();
681 <        E result = l.remove(index+offset);
682 <        expectedModCount = l.modCount;
683 <        size--;
684 <        modCount++;
679 >        if (index < 0 || index >= length)
680 >            throw indexError(index);
681 >        if (base.modCount != modCount)
682 >            throw new ConcurrentModificationException();
683 >        E result = parent.remove(index + parentOffset);
684 >        length--;
685 >        modCount = base.modCount;
686          return result;
687      }
688  
689      protected void removeRange(int fromIndex, int toIndex) {
690 <        checkForComodification();
691 <        l.removeRange(fromIndex+offset, toIndex+offset);
692 <        expectedModCount = l.modCount;
693 <        size -= (toIndex-fromIndex);
694 <        modCount++;
690 >        if (base.modCount != modCount)
691 >            throw new ConcurrentModificationException();
692 >        parent.removeRange(fromIndex + parentOffset, toIndex + parentOffset);
693 >        length -= (toIndex-fromIndex);
694 >        modCount = base.modCount;
695      }
696  
697      public boolean addAll(Collection<? extends E> c) {
698 <        return addAll(size, c);
698 >        return addAll(length, c);
699      }
700  
701      public boolean addAll(int index, Collection<? extends E> c) {
702 <        if (index<0 || index>size)
703 <            throw new IndexOutOfBoundsException(
668 <                "Index: "+index+", Size: "+size);
702 >        if (index < 0 || index > length)
703 >            throw indexError(index);
704          int cSize = c.size();
705          if (cSize==0)
706              return false;
707  
708 <        checkForComodification();
709 <        l.addAll(offset+index, c);
710 <        expectedModCount = l.modCount;
711 <        size += cSize;
712 <        modCount++;
708 >        if (base.modCount != modCount)
709 >            throw new ConcurrentModificationException();
710 >        parent.addAll(parentOffset + index, c);
711 >        length += cSize;
712 >        modCount = base.modCount;
713          return true;
714      }
715  
716 +    public List<E> subList(int fromIndex, int toIndex) {
717 +        return new SubList(base, this, fromIndex + baseOffset,
718 +                           fromIndex, toIndex);
719 +    }
720 +
721      public Iterator<E> iterator() {
722 <        return listIterator();
722 >        return new SubListIterator(this, 0);
723      }
724  
725 <    public ListIterator<E> listIterator(final int index) {
726 <        checkForComodification();
727 <        if (index<0 || index>size)
688 <            throw new IndexOutOfBoundsException(
689 <                "Index: "+index+", Size: "+size);
725 >    public ListIterator<E> listIterator() {
726 >        return new SubListIterator(this, 0);
727 >    }
728  
729 <        return new ListIterator<E>() {
730 <            private ListIterator<E> i = l.listIterator(index+offset);
729 >    public ListIterator<E> listIterator(int index) {
730 >        if (index < 0 || index>length)
731 >            throw indexError(index);
732 >        return new SubListIterator(this, index);
733 >    }
734  
735 <            public boolean hasNext() {
736 <                return nextIndex() < size;
737 <            }
735 >    /**
736 >     * Generic sublist iterator obeying fastfail semantics via
737 >     * modCount.  The hasNext and next methods locally check for
738 >     * in-range indices before relaying to backing list to get
739 >     * element. If this either encounters an unexpected modCount or
740 >     * fails, the backing list must have been concurrently modified,
741 >     * and is so reported.  The add and remove methods performing
742 >     * structural modifications instead relay them through the
743 >     * sublist.
744 >     */
745 >    private static final class SubListIterator<E> implements ListIterator<E> {
746 >        final SubList<E> outer;       // Sublist creating this iteraor
747 >        final AbstractList<E> base;   // base list
748 >        final int offset;             // Cursor offset wrt base
749 >        int cursor;                   // Current index
750 >        int fence;                    // Upper bound on cursor
751 >        int lastRet;                  // Index of returned element, or -1
752 >        int expectedModCount;         // Expected modCount of base
753 >
754 >        SubListIterator(SubList<E> list, int index) {
755 >            this.lastRet = -1;
756 >            this.cursor = index;
757 >            this.outer = list;
758 >            this.offset = list.baseOffset;
759 >            this.fence = list.length;
760 >            this.base = list.base;
761 >            this.expectedModCount = base.modCount;
762 >        }
763  
764 <            public E next() {
765 <                if (hasNext())
766 <                    return i.next();
701 <                else
702 <                    throw new NoSuchElementException();
703 <            }
764 >        public boolean hasNext() {
765 >            return cursor < fence;
766 >        }
767  
768 <            public boolean hasPrevious() {
769 <                return previousIndex() >= 0;
770 <            }
768 >        public boolean hasPrevious() {
769 >            return cursor > 0;
770 >        }
771  
772 <            public E previous() {
773 <                if (hasPrevious())
774 <                    return i.previous();
712 <                else
713 <                    throw new NoSuchElementException();
714 <            }
772 >        public int nextIndex() {
773 >            return cursor;
774 >        }
775  
776 <            public int nextIndex() {
777 <                return i.nextIndex() - offset;
778 <            }
776 >        public int previousIndex() {
777 >            return cursor - 1;
778 >        }
779  
780 <            public int previousIndex() {
781 <                return i.previousIndex() - offset;
780 >        public E next() {
781 >            int i = cursor;
782 >            if (cursor >= fence)
783 >                throw new NoSuchElementException();
784 >            if (expectedModCount == base.modCount) {
785 >                try {
786 >                    Object next = base.get(i + offset);
787 >                    lastRet = i;
788 >                    cursor = i + 1;
789 >                    return (E)next;
790 >                } catch (IndexOutOfBoundsException fallThrough) {
791 >                }
792              }
793 +            throw new ConcurrentModificationException();
794 +        }
795  
796 <            public void remove() {
797 <                i.remove();
798 <                expectedModCount = l.modCount;
799 <                size--;
800 <                modCount++;
796 >        public E previous() {
797 >            int i = cursor - 1;
798 >            if (i < 0)
799 >                throw new NoSuchElementException();
800 >            if (expectedModCount == base.modCount) {
801 >                try {
802 >                    Object prev = base.get(i + offset);
803 >                    lastRet = i;
804 >                    cursor = i;
805 >                    return (E)prev;
806 >                } catch (IndexOutOfBoundsException fallThrough) {
807 >                }
808              }
809 +            throw new ConcurrentModificationException();
810 +        }
811  
812 <            public void set(E e) {
813 <                i.set(e);
812 >        public void set(E e) {
813 >            if (lastRet < 0)
814 >                throw new IllegalStateException();
815 >            if (expectedModCount != base.modCount)
816 >                throw new ConcurrentModificationException();
817 >            try {
818 >                outer.set(lastRet, e);
819 >                expectedModCount = base.modCount;
820 >            } catch (IndexOutOfBoundsException ex) {
821 >                throw new ConcurrentModificationException();
822              }
823 +        }
824  
825 <            public void add(E e) {
826 <                i.add(e);
827 <                expectedModCount = l.modCount;
828 <                size++;
829 <                modCount++;
825 >        public void remove() {
826 >            int i = lastRet;
827 >            if (i < 0)
828 >                throw new IllegalStateException();
829 >            if (expectedModCount != base.modCount)
830 >                throw new ConcurrentModificationException();
831 >            try {
832 >                outer.remove(i);
833 >                if (i < cursor)
834 >                    cursor--;
835 >                lastRet = -1;
836 >                fence = outer.length;
837 >                expectedModCount = base.modCount;
838 >            } catch (IndexOutOfBoundsException ex) {
839 >                throw new ConcurrentModificationException();
840              }
841 <        };
742 <    }
743 <
744 <    public List<E> subList(int fromIndex, int toIndex) {
745 <        return new SubList<E>(this, fromIndex, toIndex);
746 <    }
841 >        }
842  
843 <    private void rangeCheck(int index) {
844 <        if (index<0 || index>=size)
845 <            throw new IndexOutOfBoundsException("Index: "+index+
846 <                                                ",Size: "+size);
843 >        public void add(E e) {
844 >            if (expectedModCount != base.modCount)
845 >                throw new ConcurrentModificationException();
846 >            try {
847 >                int i = cursor;
848 >                outer.add(i, e);
849 >                cursor = i + 1;
850 >                lastRet = -1;
851 >                fence = outer.length;
852 >                expectedModCount = base.modCount;
853 >            } catch (IndexOutOfBoundsException ex) {
854 >                throw new ConcurrentModificationException();
855 >            }
856 >        }
857      }
858  
754    private void checkForComodification() {
755        if (l.modCount != expectedModCount)
756            throw new ConcurrentModificationException();
757    }
859   }
860  
861   class RandomAccessSubList<E> extends SubList<E> implements RandomAccess {
862 <    RandomAccessSubList(AbstractList<E> list, int fromIndex, int toIndex) {
863 <        super(list, fromIndex, toIndex);
862 >    RandomAccessSubList(AbstractList<E> base,
863 >                        AbstractList<E> parent, int baseIndex,
864 >                        int fromIndex, int toIndex) {
865 >        super(base, parent, baseIndex, fromIndex, toIndex);
866      }
867  
868      public List<E> subList(int fromIndex, int toIndex) {
869 <        return new RandomAccessSubList<E>(this, fromIndex, toIndex);
869 >        return new RandomAccessSubList(base, this, fromIndex + baseOffset,
870 >                                       fromIndex, toIndex);
871      }
872   }
873 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines