ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.108 by jsr166, Sat Nov 5 14:41:14 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 12 | Line 16 | import java.io.*;
16   * usage.  They are not thread-safe; in the absence of external
17   * synchronization, they do not support concurrent access by multiple threads.
18   * Null elements are prohibited.  This class is likely to be faster than
19 < * {@link Stack} when used as as a stack, and faster than {@link LinkedList}
19 > * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75 <     * The array in which the elements of in the deque are stored.
76 <     * The capacity of the deque is the length of this array, which is
77 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
75 >     * The array in which the elements of the deque are stored.
76 >     * We guarantee that all array cells not holding deque elements
77 >     * are always null.
78       */
79 <    private transient E[] elements;
79 >    transient Object[] elements;
80  
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number equal to tail if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87 <    private transient int head;
87 >    transient int head;
88  
89      /**
90       * The index at which the next element would be added to the tail
91       * of the deque (via addLast(E), add(E), or push(E)).
92       */
93 <    private transient int tail;
93 >    transient int tail;
94  
95      /**
96 <     * The minimum capacity that we'll use for a newly created deque.
97 <     * Must be a power of 2.
98 <     */
99 <    private static final int MIN_INITIAL_CAPACITY = 8;
100 <
101 <    // ******  Array allocation and resizing utilities ******
102 <
103 <    /**
104 <     * Allocate empty array to hold the given number of elements.
105 <     *
106 <     * @param numElements  the number of elements to hold.
107 <     */
108 <    private void allocateElements(int numElements) {  
109 <        int initialCapacity = MIN_INITIAL_CAPACITY;
110 <        // Find the best power of two to hold elements.
111 <        // Tests "<=" because arrays aren't kept full.
112 <        if (numElements >= initialCapacity) {
113 <            initialCapacity = numElements;
114 <            initialCapacity |= (initialCapacity >>>  1);
115 <            initialCapacity |= (initialCapacity >>>  2);
116 <            initialCapacity |= (initialCapacity >>>  4);
117 <            initialCapacity |= (initialCapacity >>>  8);
118 <            initialCapacity |= (initialCapacity >>> 16);
119 <            initialCapacity++;
96 >     * The maximum size of array to allocate.
97 >     * Some VMs reserve some header words in an array.
98 >     * Attempts to allocate larger arrays may result in
99 >     * OutOfMemoryError: Requested array size exceeds VM limit
100 >     */
101 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102 >
103 >    /**
104 >     * Increases the capacity of this deque by at least the given amount.
105 >     *
106 >     * @param needed the required minimum extra capacity; must be positive
107 >     */
108 >    private void grow(int needed) {
109 >        // overflow-conscious code
110 >        final int oldCapacity = elements.length;
111 >        int newCapacity;
112 >        // Double capacity if small; else grow by 50%
113 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 >        if (jump < needed
115 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 >            newCapacity = newCapacity(needed, jump);
117 >        elements = Arrays.copyOf(elements, newCapacity);
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120 >            // wrap around; slide first leg forward to end of array
121 >            int newSpace = newCapacity - oldCapacity;
122 >            System.arraycopy(elements, head,
123 >                             elements, head + newSpace,
124 >                             oldCapacity - head);
125 >            Arrays.fill(elements, head, head + newSpace, null);
126 >            head += newSpace;
127 >        }
128 >        // checkInvariants();
129 >    }
130  
131 <            if (initialCapacity < 0)   // Too many elements, must back off
132 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
131 >    /** Capacity calculation for edge conditions, especially overflow. */
132 >    private int newCapacity(int needed, int jump) {
133 >        final int oldCapacity = elements.length, minCapacity;
134 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 >            if (minCapacity < 0)
136 >                throw new IllegalStateException("Sorry, deque too big");
137 >            return Integer.MAX_VALUE;
138          }
139 <        elements = (E[]) new Object[initialCapacity];
139 >        if (needed > jump)
140 >            return minCapacity;
141 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 >            ? oldCapacity + jump
143 >            : MAX_ARRAY_SIZE;
144      }
145  
146      /**
147 <     * Double the capacity of this deque.  Call only when full, i.e.,
148 <     * when head and tail have wrapped around to become equal.
147 >     * Increases the internal storage of this collection, if necessary,
148 >     * to ensure that it can hold at least the given number of elements.
149 >     *
150 >     * @param minCapacity the desired minimum capacity
151 >     * @since TBD
152       */
153 <    private void doubleCapacity() {
154 <        assert head == tail;
155 <        int p = head;
156 <        int n = elements.length;
157 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157 >        // checkInvariants();
158      }
159  
160      /**
161 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
161 >     * Minimizes the internal storage of this collection.
162       *
163 <     * @return its argument
163 >     * @since TBD
164       */
165 <    private <T> T[] copyElements(T[] a) {
166 <        if (head < tail) {
167 <            System.arraycopy(elements, head, a, 0, size());
168 <        } else if (head > tail) {
169 <            int headPortionLen = elements.length - head;
170 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169 >            head = 0;
170 >            tail = size;
171          }
172 <        return a;
172 >        // checkInvariants();
173      }
174  
175      /**
176 <     * Constructs an empty array deque with the an initial capacity
176 >     * Constructs an empty array deque with an initial capacity
177       * sufficient to hold 16 elements.
178       */
179      public ArrayDeque() {
180 <        elements = (E[]) new Object[16];
180 >        elements = new Object[16];
181      }
182  
183      /**
184       * Constructs an empty array deque with an initial capacity
185       * sufficient to hold the specified number of elements.
186       *
187 <     * @param numElements  lower bound on initial capacity of the deque
187 >     * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        allocateElements(numElements);
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 175 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        allocateElements(c.size());
204 >        elements = new Object[c.size() + 1];
205          addAll(c);
206      }
207  
208 +    /**
209 +     * Increments i, mod modulus.
210 +     * Precondition and postcondition: 0 <= i < modulus.
211 +     */
212 +    static final int inc(int i, int modulus) {
213 +        if (++i >= modulus) i = 0;
214 +        return i;
215 +    }
216 +
217 +    /**
218 +     * Decrements i, mod modulus.
219 +     * Precondition and postcondition: 0 <= i < modulus.
220 +     */
221 +    static final int dec(int i, int modulus) {
222 +        if (--i < 0) i = modulus - 1;
223 +        return i;
224 +    }
225 +
226 +    /**
227 +     * Adds i and j, mod modulus.
228 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 +     */
230 +    static final int add(int i, int j, int modulus) {
231 +        if ((i += j) - modulus >= 0) i -= modulus;
232 +        return i;
233 +    }
234 +
235 +    /**
236 +     * Subtracts j from i, mod modulus.
237 +     * Index i must be logically ahead of j.
238 +     * Returns the "circular distance" from j to i.
239 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 +     */
241 +    static final int sub(int i, int j, int modulus) {
242 +        if ((i -= j) < 0) i += modulus;
243 +        return i;
244 +    }
245 +
246 +    /**
247 +     * Returns the array index of the last element.
248 +     * May return invalid index -1 if there are no elements.
249 +     */
250 +    final int last() {
251 +        return dec(tail, elements.length);
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
278  
279      /**
280 <     * Inserts the specified element to the front this deque.
280 >     * Inserts the specified element at the front of this deque.
281       *
282 <     * @param e the element to insert
283 <     * @throws NullPointerException if <tt>e</tt> is null
282 >     * @param e the element to add
283 >     * @throws NullPointerException if the specified element is null
284       */
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 <        if (head == tail)
290 <            doubleCapacity();
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290 >        if (head == tail)
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
296 <     * Inserts the specified element to the end this deque.
297 <     * This method is equivalent to {@link Collection#add} and
298 <     * {@link #push}.
296 >     * Inserts the specified element at the end of this deque.
297 >     *
298 >     * <p>This method is equivalent to {@link #add}.
299       *
300 <     * @param e the element to insert
301 <     * @throws NullPointerException if <tt>e</tt> is null
300 >     * @param e the element to add
301 >     * @throws NullPointerException if the specified element is null
302       */
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
309 <    }
310 <
216 <    /**
217 <     * Retrieves and removes the first element of this deque, or
218 <     * <tt>null</tt> if this deque is empty.
219 <     *
220 <     * @return the first element of this deque, or <tt>null</tt> if
221 <     *     this deque is empty
222 <     */
223 <    public E pollFirst() {
224 <        int h = head;
225 <        E result = elements[h]; // Element is null if deque empty
226 <        if (result == null)
227 <            return null;
228 <        elements[h] = null;     // Must null out slot
229 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311      }
312  
313      /**
314 <     * Retrieves and removes the last element of this deque, or
315 <     * <tt>null</tt> if this deque is empty.
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318       *
319 <     * @return the last element of this deque, or <tt>null</tt> if
320 <     *     this deque is empty
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323       */
324 <    public E pollLast() {
325 <        int t = (tail - 1) & (elements.length - 1);
326 <        E result = elements[t];
327 <        if (result == null)
328 <            return null;
329 <        elements[t] = null;
330 <        tail = t;
247 <        return result;
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s = size(), needed;
326 >        if ((needed = s + c.size() - elements.length + 1) > 0)
327 >            grow(needed);
328 >        c.forEach((e) -> addLast(e));
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
334 <     * Inserts the specified element to the front this deque.
334 >     * Inserts the specified element at the front of this deque.
335       *
336 <     * @param e the element to insert
337 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
338 <     * @throws NullPointerException if <tt>e</tt> is null
336 >     * @param e the element to add
337 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
338 >     * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerFirst(E e) {
341          addFirst(e);
# Line 260 | Line 343 | public class ArrayDeque<E> extends Abstr
343      }
344  
345      /**
346 <     * Inserts the specified element to the end this deque.
346 >     * Inserts the specified element at the end of this deque.
347       *
348 <     * @param e the element to insert
349 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
350 <     * @throws NullPointerException if <tt>e</tt> is null
348 >     * @param e the element to add
349 >     * @return {@code true} (as specified by {@link Deque#offerLast})
350 >     * @throws NullPointerException if the specified element is null
351       */
352      public boolean offerLast(E e) {
353          addLast(e);
# Line 272 | Line 355 | public class ArrayDeque<E> extends Abstr
355      }
356  
357      /**
358 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
358 >     * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
369 >     * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379 <    /**
380 <     * Retrieves, but does not remove, the first element of this deque,
381 <     * returning <tt>null</tt> if this deque is empty.
382 <     *
383 <     * @return the first element of this deque, or <tt>null</tt> if
384 <     *     this deque is empty
385 <     */
386 <    public E peekFirst() {
387 <        return elements[head]; // elements[head] is null if deque empty
379 >    public E pollFirst() {
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391 <    /**
392 <     * Retrieves, but does not remove, the last element of this deque,
393 <     * returning <tt>null</tt> if this deque is empty.
394 <     *
395 <     * @return the last element of this deque, or <tt>null</tt> if this deque
396 <     *     is empty
397 <     */
398 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
391 >    public E pollLast() {
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
402 >     * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return x;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
413 >     * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        E x = elements[(tail - 1) & (elements.length - 1)];
417 <        if (x == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return x;
420 >        // checkInvariants();
421 >        return e;
422 >    }
423 >
424 >    public E peekFirst() {
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427 >    }
428 >
429 >    public E peekLast() {
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
436       * Removes the first occurrence of the specified element in this
437 <     * deque (when traversing the deque from head to tail).  If the deque
438 <     * does not contain the element, it is unchanged.
439 <     *
440 <     * @param e element to be removed from this deque, if present
441 <     * @return <tt>true</tt> if the deque contained the specified element
442 <     */
443 <    public boolean removeFirstOccurrence(Object e) {
444 <        if (e == null)
445 <            return false;
446 <        int mask = elements.length - 1;
447 <        int i = head;
448 <        E x;
449 <        while ( (x = elements[i]) != null) {
450 <            if (e.equals(x)) {
451 <                delete(i);
452 <                return true;
437 >     * deque (when traversing the deque from head to tail).
438 >     * If the deque does not contain the element, it is unchanged.
439 >     * More formally, removes the first element {@code e} such that
440 >     * {@code o.equals(e)} (if such an element exists).
441 >     * Returns {@code true} if this deque contained the specified element
442 >     * (or equivalently, if this deque changed as a result of the call).
443 >     *
444 >     * @param o element to be removed from this deque, if present
445 >     * @return {@code true} if the deque contained the specified element
446 >     */
447 >    public boolean removeFirstOccurrence(Object o) {
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
375            i = (i + 1) & mask;
459          }
460          return false;
461      }
462  
463      /**
464       * Removes the last occurrence of the specified element in this
465 <     * deque (when traversing the deque from head to tail).  If the deque
466 <     * does not contain the element, it is unchanged.
467 <     *
468 <     * @param e element to be removed from this deque, if present
469 <     * @return <tt>true</tt> if the deque contained the specified element
470 <     */
471 <    public boolean removeLastOccurrence(Object e) {
472 <        if (e == null)
473 <            return false;
474 <        int mask = elements.length - 1;
475 <        int i = (tail - 1) & mask;
476 <        E x;
477 <        while ( (x = elements[i]) != null) {
478 <            if (e.equals(x)) {
479 <                delete(i);
480 <                return true;
465 >     * deque (when traversing the deque from head to tail).
466 >     * If the deque does not contain the element, it is unchanged.
467 >     * More formally, removes the last element {@code e} such that
468 >     * {@code o.equals(e)} (if such an element exists).
469 >     * Returns {@code true} if this deque contained the specified element
470 >     * (or equivalently, if this deque changed as a result of the call).
471 >     *
472 >     * @param o element to be removed from this deque, if present
473 >     * @return {@code true} if the deque contained the specified element
474 >     */
475 >    public boolean removeLastOccurrence(Object o) {
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                while (--i >= to)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
399            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 404 | Line 491 | public class ArrayDeque<E> extends Abstr
491      // *** Queue methods ***
492  
493      /**
494 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
494 >     * Inserts the specified element at the end of this deque.
495       *
496       * <p>This method is equivalent to {@link #addLast}.
497       *
498 <     * @param e the element to insert
499 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
500 <     * @throws NullPointerException if <tt>e</tt> is null
498 >     * @param e the element to add
499 >     * @return {@code true} (as specified by {@link Collection#add})
500 >     * @throws NullPointerException if the specified element is null
501       */
502      public boolean add(E e) {
503          addLast(e);
# Line 431 | Line 505 | public class ArrayDeque<E> extends Abstr
505      }
506  
507      /**
508 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
508 >     * Inserts the specified element at the end of this deque.
509       *
510 <     * <p>This method is equivalent to {@link #pollFirst}.
510 >     * <p>This method is equivalent to {@link #offerLast}.
511       *
512 <     * @return the first element of this deque, or <tt>null</tt> if
513 <     *     this deque is empty
512 >     * @param e the element to add
513 >     * @return {@code true} (as specified by {@link Queue#offer})
514 >     * @throws NullPointerException if the specified element is null
515       */
516 <    public E poll() {
517 <        return pollFirst();
516 >    public boolean offer(E e) {
517 >        return offerLast(e);
518      }
519  
520      /**
521       * Retrieves and removes the head of the queue represented by this deque.
522 <     * This method differs from the <tt>poll</tt> method in that it throws an
522 >     *
523 >     * This method differs from {@link #poll poll} only in that it throws an
524       * exception if this deque is empty.
525       *
526       * <p>This method is equivalent to {@link #removeFirst}.
527       *
528       * @return the head of the queue represented by this deque
529 <     * @throws NoSuchElementException if this deque is empty
529 >     * @throws NoSuchElementException {@inheritDoc}
530       */
531      public E remove() {
532          return removeFirst();
533      }
534  
535      /**
536 <     * Retrieves, but does not remove, the head of the queue represented by
537 <     * this deque, returning <tt>null</tt> if this deque is empty.
536 >     * Retrieves and removes the head of the queue represented by this deque
537 >     * (in other words, the first element of this deque), or returns
538 >     * {@code null} if this deque is empty.
539       *
540 <     * <p>This method is equivalent to {@link #peekFirst}
540 >     * <p>This method is equivalent to {@link #pollFirst}.
541       *
542       * @return the head of the queue represented by this deque, or
543 <     *     <tt>null</tt> if this deque is empty
543 >     *         {@code null} if this deque is empty
544       */
545 <    public E peek() {
546 <        return peekFirst();
545 >    public E poll() {
546 >        return pollFirst();
547      }
548  
549      /**
550       * Retrieves, but does not remove, the head of the queue represented by
551 <     * this deque.  This method differs from the <tt>peek</tt> method only in
551 >     * this deque.  This method differs from {@link #peek peek} only in
552       * that it throws an exception if this deque is empty.
553       *
554 <     * <p>This method is equivalent to {@link #getFirst}
554 >     * <p>This method is equivalent to {@link #getFirst}.
555       *
556       * @return the head of the queue represented by this deque
557 <     * @throws NoSuchElementException if this deque is empty
557 >     * @throws NoSuchElementException {@inheritDoc}
558       */
559      public E element() {
560          return getFirst();
561      }
562  
563 +    /**
564 +     * Retrieves, but does not remove, the head of the queue represented by
565 +     * this deque, or returns {@code null} if this deque is empty.
566 +     *
567 +     * <p>This method is equivalent to {@link #peekFirst}.
568 +     *
569 +     * @return the head of the queue represented by this deque, or
570 +     *         {@code null} if this deque is empty
571 +     */
572 +    public E peek() {
573 +        return peekFirst();
574 +    }
575 +
576      // *** Stack methods ***
577  
578      /**
579       * Pushes an element onto the stack represented by this deque.  In other
580 <     * words, inserts the element to the front this deque.
580 >     * words, inserts the element at the front of this deque.
581       *
582       * <p>This method is equivalent to {@link #addFirst}.
583       *
584       * @param e the element to push
585 <     * @throws NullPointerException if <tt>e</tt> is null
585 >     * @throws NullPointerException if the specified element is null
586       */
587      public void push(E e) {
588          addFirst(e);
# Line 503 | Line 590 | public class ArrayDeque<E> extends Abstr
590  
591      /**
592       * Pops an element from the stack represented by this deque.  In other
593 <     * words, removes and returns the the first element of this deque.
593 >     * words, removes and returns the first element of this deque.
594       *
595       * <p>This method is equivalent to {@link #removeFirst()}.
596       *
597       * @return the element at the front of this deque (which is the top
598 <     *     of the stack represented by this deque)
599 <     * @throws NoSuchElementException if this deque is empty
598 >     *         of the stack represented by this deque)
599 >     * @throws NoSuchElementException {@inheritDoc}
600       */
601      public E pop() {
602          return removeFirst();
603      }
604  
605      /**
606 <     * Remove the element at the specified position in the elements array,
607 <     * adjusting head, tail, and size as necessary.  This can result in
608 <     * motion of elements backwards or forwards in the array.
609 <     *
610 <     * <p>This method is called delete rather than remove to emphasize the
611 <     * that that its semantics differ from those of List.remove(int).
612 <     *
613 <     * @return true if elements moved backwards
614 <     */
615 <    private boolean delete(int i) {
616 <        // Case 1: Deque doesn't wrap
617 <        // Case 2: Deque does wrap and removed element is in the head portion
618 <        if ((head < tail || tail == 0) || i >= head) {
619 <            System.arraycopy(elements, head, elements, head + 1, i - head);
620 <            elements[head] = null;
621 <            head = (head + 1) & (elements.length - 1);
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609 >     *
610 >     * <p>This method is called delete rather than remove to emphasize
611 >     * that its semantics differ from those of {@link List#remove(int)}.
612 >     *
613 >     * @return true if elements near tail moved backwards
614 >     */
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h = head;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h, capacity);
622 >        final int back = size() - front - 1; // number of elements after
623 >        if (front < back) {
624 >            // move front elements forwards
625 >            if (h <= i) {
626 >                System.arraycopy(es, h, es, h + 1, front);
627 >            } else { // Wrap around
628 >                System.arraycopy(es, 0, es, 1, i);
629 >                es[0] = es[capacity - 1];
630 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
631 >            }
632 >            es[h] = null;
633 >            head = inc(h, capacity);
634 >            // checkInvariants();
635              return false;
636 +        } else {
637 +            // move back elements backwards
638 +            tail = dec(tail, capacity);
639 +            if (i <= tail) {
640 +                System.arraycopy(es, i + 1, es, i, back);
641 +            } else { // Wrap around
642 +                int firstLeg = capacity - (i + 1);
643 +                System.arraycopy(es, i + 1, es, i, firstLeg);
644 +                es[capacity - 1] = es[0];
645 +                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
646 +            }
647 +            es[tail] = null;
648 +            // checkInvariants();
649 +            return true;
650          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
651      }
652  
653      // *** Collection Methods ***
# Line 550 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this collection contains no elements.
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670          return head == tail;
# Line 567 | Line 675 | public class ArrayDeque<E> extends Abstr
675       * will be ordered from first (head) to last (tail).  This is the same
676       * order that elements would be dequeued (via successive calls to
677       * {@link #remove} or popped (via successive calls to {@link #pop}).
678 <     *
679 <     * @return an <tt>Iterator</tt> over the elements in this deque
678 >     *
679 >     * @return an iterator over the elements in this deque
680       */
681      public Iterator<E> iterator() {
682          return new DeqIterator();
683      }
684  
685 +    public Iterator<E> descendingIterator() {
686 +        return new DescendingIterator();
687 +    }
688 +
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701  
702 <        public boolean hasNext() {
703 <            return cursor != fence;
702 >        DeqIterator() { cursor = head; }
703 >
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            E result;
601 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            // This check doesn't catch all possible comodifications,
712 <            // but does catch the ones that corrupt traversal
605 <            if (tail != fence || (result = elements[cursor]) == null)
606 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            cursor = inc(cursor, es.length);
715 >            remaining--;
716 >            return e;
717          }
718  
719 <        public void remove() {
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                cursor = dec(cursor, elements.length);
722 >        }
723 >
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet))
616 <                cursor--;
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729 <            fence = tail;
729 >        }
730 >
731 >        public void forEachRemaining(Consumer<? super E> action) {
732 >            Objects.requireNonNull(action);
733 >            int r;
734 >            if ((r = remaining) <= 0)
735 >                return;
736 >            remaining = 0;
737 >            final Object[] es = elements;
738 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 >                throw new ConcurrentModificationException();
740 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 >                 ; i = 0, to = end) {
742 >                for (; i < to; i++)
743 >                    action.accept(elementAt(es, i));
744 >                if (to == end) {
745 >                    if (end != tail)
746 >                        throw new ConcurrentModificationException();
747 >                    lastRet = dec(end, es.length);
748 >                    break;
749 >                }
750 >            }
751 >        }
752 >    }
753 >
754 >    private class DescendingIterator extends DeqIterator {
755 >        DescendingIterator() { cursor = last(); }
756 >
757 >        public final E next() {
758 >            if (remaining <= 0)
759 >                throw new NoSuchElementException();
760 >            final Object[] es = elements;
761 >            E e = nonNullElementAt(es, cursor);
762 >            lastRet = cursor;
763 >            cursor = dec(cursor, es.length);
764 >            remaining--;
765 >            return e;
766 >        }
767 >
768 >        void postDelete(boolean leftShifted) {
769 >            if (!leftShifted)
770 >                cursor = inc(cursor, elements.length);
771 >        }
772 >
773 >        public final void forEachRemaining(Consumer<? super E> action) {
774 >            Objects.requireNonNull(action);
775 >            int r;
776 >            if ((r = remaining) <= 0)
777 >                return;
778 >            remaining = 0;
779 >            final Object[] es = elements;
780 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 >                throw new ConcurrentModificationException();
782 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
783 >                 ; i = es.length - 1, to = end) {
784 >                for (; i >= to; i--)
785 >                    action.accept(elementAt(es, i));
786 >                if (to == end) {
787 >                    if (end != head)
788 >                        throw new ConcurrentModificationException();
789 >                    lastRet = head;
790 >                    break;
791 >                }
792 >            }
793 >        }
794 >    }
795 >
796 >    /**
797 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
798 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
799 >     * deque.
800 >     *
801 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
802 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
803 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
804 >     * the reporting of additional characteristic values.
805 >     *
806 >     * @return a {@code Spliterator} over the elements in this deque
807 >     * @since 1.8
808 >     */
809 >    public Spliterator<E> spliterator() {
810 >        return new DeqSpliterator();
811 >    }
812 >
813 >    final class DeqSpliterator implements Spliterator<E> {
814 >        private int fence;      // -1 until first use
815 >        private int cursor;     // current index, modified on traverse/split
816 >
817 >        /** Constructs late-binding spliterator over all elements. */
818 >        DeqSpliterator() {
819 >            this.fence = -1;
820 >        }
821 >
822 >        /** Constructs spliterator over the given range. */
823 >        DeqSpliterator(int origin, int fence) {
824 >            this.cursor = origin;
825 >            this.fence = fence;
826 >        }
827 >
828 >        /** Ensures late-binding initialization; then returns fence. */
829 >        private int getFence() { // force initialization
830 >            int t;
831 >            if ((t = fence) < 0) {
832 >                t = fence = tail;
833 >                cursor = head;
834 >            }
835 >            return t;
836 >        }
837 >
838 >        public DeqSpliterator trySplit() {
839 >            final Object[] es = elements;
840 >            final int i, n;
841 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 >                ? null
843 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
844 >        }
845 >
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848 >                throw new NullPointerException();
849 >            final int end = getFence(), cursor = this.cursor;
850 >            final Object[] es = elements;
851 >            if (cursor != end) {
852 >                this.cursor = end;
853 >                // null check at both ends of range is sufficient
854 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
855 >                    throw new ConcurrentModificationException();
856 >                for (int i = cursor, to = (i <= end) ? end : es.length;
857 >                     ; i = 0, to = end) {
858 >                    for (; i < to; i++)
859 >                        action.accept(elementAt(es, i));
860 >                    if (to == end) break;
861 >                }
862 >            }
863 >        }
864 >
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            if (action == null)
867 >                throw new NullPointerException();
868 >            int t, i;
869 >            if ((t = fence) < 0) t = getFence();
870 >            if (t == (i = cursor))
871 >                return false;
872 >            final Object[] es;
873 >            action.accept(nonNullElementAt(es = elements, i));
874 >            cursor = inc(i, es.length);
875 >            return true;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return sub(getFence(), cursor, elements.length);
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.NONNULL
884 >                | Spliterator.ORDERED
885 >                | Spliterator.SIZED
886 >                | Spliterator.SUBSIZED;
887 >        }
888 >    }
889 >
890 >    public void forEach(Consumer<? super E> action) {
891 >        Objects.requireNonNull(action);
892 >        final Object[] es = elements;
893 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
894 >             ; i = 0, to = end) {
895 >            for (; i < to; i++)
896 >                action.accept(elementAt(es, i));
897 >            if (to == end) {
898 >                if (end != tail) throw new ConcurrentModificationException();
899 >                break;
900 >            }
901 >        }
902 >        // checkInvariants();
903 >    }
904 >
905 >    /**
906 >     * Replaces each element of this deque with the result of applying the
907 >     * operator to that element, as specified by {@link List#replaceAll}.
908 >     *
909 >     * @param operator the operator to apply to each element
910 >     * @since TBD
911 >     */
912 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
913 >        Objects.requireNonNull(operator);
914 >        final Object[] es = elements;
915 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
916 >             ; i = 0, to = end) {
917 >            for (; i < to; i++)
918 >                es[i] = operator.apply(elementAt(es, i));
919 >            if (to == end) {
920 >                if (end != tail) throw new ConcurrentModificationException();
921 >                break;
922 >            }
923 >        }
924 >        // checkInvariants();
925 >    }
926 >
927 >    /**
928 >     * @throws NullPointerException {@inheritDoc}
929 >     */
930 >    public boolean removeIf(Predicate<? super E> filter) {
931 >        Objects.requireNonNull(filter);
932 >        return bulkRemove(filter);
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean removeAll(Collection<?> c) {
939 >        Objects.requireNonNull(c);
940 >        return bulkRemove(e -> c.contains(e));
941 >    }
942 >
943 >    /**
944 >     * @throws NullPointerException {@inheritDoc}
945 >     */
946 >    public boolean retainAll(Collection<?> c) {
947 >        Objects.requireNonNull(c);
948 >        return bulkRemove(e -> !c.contains(e));
949 >    }
950 >
951 >    /** Implementation of bulk remove methods. */
952 >    private boolean bulkRemove(Predicate<? super E> filter) {
953 >        // checkInvariants();
954 >        final Object[] es = elements;
955 >        // Optimize for initial run of survivors
956 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
957 >             ; i = 0, to = end) {
958 >            for (; i < to; i++)
959 >                if (filter.test(elementAt(es, i)))
960 >                    return bulkRemoveModified(filter, i, to);
961 >            if (to == end) {
962 >                if (end != tail) throw new ConcurrentModificationException();
963 >                break;
964 >            }
965 >        }
966 >        return false;
967 >    }
968 >
969 >    /**
970 >     * Helper for bulkRemove, in case of at least one deletion.
971 >     * @param i valid index of first element to be deleted
972 >     */
973 >    private boolean bulkRemoveModified(
974 >        Predicate<? super E> filter, int i, int to) {
975 >        final Object[] es = elements;
976 >        final int capacity = es.length;
977 >        // a two-finger algorithm, with hare i reading, tortoise j writing
978 >        int j = i++;
979 >        final int end = tail;
980 >        try {
981 >            for (;; j = 0) {    // j rejoins i on second leg
982 >                E e;
983 >                // In this loop, i and j are on the same leg, with i > j
984 >                for (; i < to; i++)
985 >                    if (!filter.test(e = elementAt(es, i)))
986 >                        es[j++] = e;
987 >                if (to == end) break;
988 >                // In this loop, j is on the first leg, i on the second
989 >                for (i = 0, to = end; i < to && j < capacity; i++)
990 >                    if (!filter.test(e = elementAt(es, i)))
991 >                        es[j++] = e;
992 >                if (i >= to) {
993 >                    if (j == capacity) j = 0; // "corner" case
994 >                    break;
995 >                }
996 >            }
997 >            return true;
998 >        } catch (Throwable ex) {
999 >            // copy remaining elements
1000 >            for (; i != end; i = inc(i, capacity), j = inc(j, capacity))
1001 >                es[j] = es[i];
1002 >            throw ex;
1003 >        } finally {
1004 >            if (end != tail) throw new ConcurrentModificationException();
1005 >            circularClear(es, tail = j, end);
1006 >            // checkInvariants();
1007          }
1008      }
1009  
1010      /**
1011 <     * Returns <tt>true</tt> if this deque contains the specified
1012 <     * element.  More formally, returns <tt>true</tt> if and only if this
1013 <     * deque contains at least one element <tt>e</tt> such that
626 <     * <tt>e.equals(o)</tt>.
1011 >     * Returns {@code true} if this deque contains the specified element.
1012 >     * More formally, returns {@code true} if and only if this deque contains
1013 >     * at least one element {@code e} such that {@code o.equals(e)}.
1014       *
1015       * @param o object to be checked for containment in this deque
1016 <     * @return <tt>true</tt> if this deque contains the specified element
1016 >     * @return {@code true} if this deque contains the specified element
1017       */
1018      public boolean contains(Object o) {
1019 <        if (o == null)
1020 <            return false;
1021 <        int mask = elements.length - 1;
1022 <        int i = head;
1023 <        E x;
1024 <        while ( (x = elements[i]) != null) {
1025 <            if (o.equals(x))
1026 <                return true;
1027 <            i = (i + 1) & mask;
1019 >        if (o != null) {
1020 >            final Object[] es = elements;
1021 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1022 >                 ; i = 0, to = end) {
1023 >                for (; i < to; i++)
1024 >                    if (o.equals(es[i]))
1025 >                        return true;
1026 >                if (to == end) break;
1027 >            }
1028          }
1029          return false;
1030      }
1031  
1032      /**
1033       * Removes a single instance of the specified element from this deque.
1034 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1034 >     * If the deque does not contain the element, it is unchanged.
1035 >     * More formally, removes the first element {@code e} such that
1036 >     * {@code o.equals(e)} (if such an element exists).
1037 >     * Returns {@code true} if this deque contained the specified element
1038 >     * (or equivalently, if this deque changed as a result of the call).
1039       *
1040 <     * @param e element to be removed from this deque, if present
1041 <     * @return <tt>true</tt> if this deque contained the specified element
1040 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1041 >     *
1042 >     * @param o element to be removed from this deque, if present
1043 >     * @return {@code true} if this deque contained the specified element
1044       */
1045 <    public boolean remove(Object e) {
1046 <        return removeFirstOccurrence(e);
1045 >    public boolean remove(Object o) {
1046 >        return removeFirstOccurrence(o);
1047      }
1048  
1049      /**
1050       * Removes all of the elements from this deque.
1051 +     * The deque will be empty after this call returns.
1052       */
1053      public void clear() {
1054 <        int h = head;
1055 <        int t = tail;
1056 <        if (h != t) { // clear all cells
1057 <            head = tail = 0;
1058 <            int i = h;
1059 <            int mask = elements.length - 1;
1060 <            do {
1061 <                elements[i] = null;
1062 <                i = (i + 1) & mask;
1063 <            } while(i != t);
1054 >        circularClear(elements, head, tail);
1055 >        head = tail = 0;
1056 >        // checkInvariants();
1057 >    }
1058 >
1059 >    /**
1060 >     * Nulls out slots starting at array index i, upto index end.
1061 >     */
1062 >    private static void circularClear(Object[] es, int i, int end) {
1063 >        for (int to = (i <= end) ? end : es.length;
1064 >             ; i = 0, to = end) {
1065 >            Arrays.fill(es, i, to, null);
1066 >            if (to == end) break;
1067          }
1068      }
1069  
1070      /**
1071 <     * Returns an array containing all of the elements in this list
1072 <     * in the correct order.
1071 >     * Returns an array containing all of the elements in this deque
1072 >     * in proper sequence (from first to last element).
1073       *
1074 <     * @return an array containing all of the elements in this list
1075 <     *         in the correct order
1074 >     * <p>The returned array will be "safe" in that no references to it are
1075 >     * maintained by this deque.  (In other words, this method must allocate
1076 >     * a new array).  The caller is thus free to modify the returned array.
1077 >     *
1078 >     * <p>This method acts as bridge between array-based and collection-based
1079 >     * APIs.
1080 >     *
1081 >     * @return an array containing all of the elements in this deque
1082       */
1083      public Object[] toArray() {
1084 <        return copyElements(new Object[size()]);
1084 >        return toArray(Object[].class);
1085 >    }
1086 >
1087 >    private <T> T[] toArray(Class<T[]> klazz) {
1088 >        final Object[] es = elements;
1089 >        final T[] a;
1090 >        final int size = size(), head = this.head, end;
1091 >        final int len = Math.min(size, es.length - head);
1092 >        if ((end = head + size) >= 0) {
1093 >            a = Arrays.copyOfRange(es, head, end, klazz);
1094 >        } else {
1095 >            // integer overflow!
1096 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1097 >            System.arraycopy(es, head, a, 0, len);
1098 >        }
1099 >        if (tail < head)
1100 >            System.arraycopy(es, 0, a, len, tail);
1101 >        return a;
1102      }
1103  
1104      /**
1105 <     * Returns an array containing all of the elements in this deque in the
1106 <     * correct order; the runtime type of the returned array is that of the
1107 <     * specified array.  If the deque fits in the specified array, it is
1108 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1109 <     * type of the specified array and the size of this deque.
1105 >     * Returns an array containing all of the elements in this deque in
1106 >     * proper sequence (from first to last element); the runtime type of the
1107 >     * returned array is that of the specified array.  If the deque fits in
1108 >     * the specified array, it is returned therein.  Otherwise, a new array
1109 >     * is allocated with the runtime type of the specified array and the
1110 >     * size of this deque.
1111 >     *
1112 >     * <p>If this deque fits in the specified array with room to spare
1113 >     * (i.e., the array has more elements than this deque), the element in
1114 >     * the array immediately following the end of the deque is set to
1115 >     * {@code null}.
1116 >     *
1117 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1118 >     * array-based and collection-based APIs.  Further, this method allows
1119 >     * precise control over the runtime type of the output array, and may,
1120 >     * under certain circumstances, be used to save allocation costs.
1121 >     *
1122 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1123 >     * The following code can be used to dump the deque into a newly
1124 >     * allocated array of {@code String}:
1125 >     *
1126 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1127       *
1128 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1129 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1128 >     * Note that {@code toArray(new Object[0])} is identical in function to
1129 >     * {@code toArray()}.
1130       *
1131       * @param a the array into which the elements of the deque are to
1132 <     *          be stored, if it is big enough; otherwise, a new array of the
1133 <     *          same runtime type is allocated for this purpose
1134 <     * @return an array containing the elements of the deque
1135 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1136 <     *         of the runtime type of every element in this deque
1132 >     *          be stored, if it is big enough; otherwise, a new array of the
1133 >     *          same runtime type is allocated for this purpose
1134 >     * @return an array containing all of the elements in this deque
1135 >     * @throws ArrayStoreException if the runtime type of the specified array
1136 >     *         is not a supertype of the runtime type of every element in
1137 >     *         this deque
1138 >     * @throws NullPointerException if the specified array is null
1139       */
1140 +    @SuppressWarnings("unchecked")
1141      public <T> T[] toArray(T[] a) {
1142 <        int size = size();
1143 <        if (a.length < size)
1144 <            a = (T[])java.lang.reflect.Array.newInstance(
1145 <                    a.getClass().getComponentType(), size);
1146 <        copyElements(a);
1147 <        if (a.length > size)
1142 >        final int size;
1143 >        if ((size = size()) > a.length)
1144 >            return toArray((Class<T[]>) a.getClass());
1145 >        final Object[] es = elements;
1146 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1147 >             ; i = 0, len = tail) {
1148 >            System.arraycopy(es, i, a, j, len);
1149 >            if ((j += len) == size) break;
1150 >        }
1151 >        if (size < a.length)
1152              a[size] = null;
1153          return a;
1154      }
# Line 718 | Line 1161 | public class ArrayDeque<E> extends Abstr
1161       * @return a copy of this deque
1162       */
1163      public ArrayDeque<E> clone() {
1164 <        try {
1164 >        try {
1165 >            @SuppressWarnings("unchecked")
1166              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1167 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1167 >            result.elements = Arrays.copyOf(elements, elements.length);
1168              return result;
1169 <
728 <        } catch (CloneNotSupportedException e) {
1169 >        } catch (CloneNotSupportedException e) {
1170              throw new AssertionError();
1171          }
1172      }
1173  
733    /**
734     * Appease the serialization gods.
735     */
1174      private static final long serialVersionUID = 2340985798034038923L;
1175  
1176      /**
1177 <     * Serialize this deque.
1177 >     * Saves this deque to a stream (that is, serializes it).
1178       *
1179 <     * @serialData The current size (<tt>int</tt>) of the deque,
1179 >     * @param s the stream
1180 >     * @throws java.io.IOException if an I/O error occurs
1181 >     * @serialData The current size ({@code int}) of the deque,
1182       * followed by all of its elements (each an object reference) in
1183       * first-to-last order.
1184       */
1185 <    private void writeObject(ObjectOutputStream s) throws IOException {
1185 >    private void writeObject(java.io.ObjectOutputStream s)
1186 >            throws java.io.IOException {
1187          s.defaultWriteObject();
1188  
1189          // Write out size
1190 <        int size = size();
750 <        s.writeInt(size);
1190 >        s.writeInt(size());
1191  
1192          // Write out elements in order.
1193 <        int i = head;
1194 <        int mask = elements.length - 1;
1195 <        for (int j = 0; j < size; j++) {
1196 <            s.writeObject(elements[i]);
1197 <            i = (i + 1) & mask;
1193 >        final Object[] es = elements;
1194 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1195 >             ; i = 0, to = end) {
1196 >            for (; i < to; i++)
1197 >                s.writeObject(es[i]);
1198 >            if (to == end) break;
1199          }
1200      }
1201  
1202      /**
1203 <     * Deserialize this deque.
1203 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1204 >     * @param s the stream
1205 >     * @throws ClassNotFoundException if the class of a serialized object
1206 >     *         could not be found
1207 >     * @throws java.io.IOException if an I/O error occurs
1208       */
1209 <    private void readObject(ObjectInputStream s)
1210 <            throws IOException, ClassNotFoundException {
1209 >    private void readObject(java.io.ObjectInputStream s)
1210 >            throws java.io.IOException, ClassNotFoundException {
1211          s.defaultReadObject();
1212  
1213          // Read in size and allocate array
1214          int size = s.readInt();
1215 <        allocateElements(size);
1216 <        head = 0;
772 <        tail = size;
1215 >        elements = new Object[size + 1];
1216 >        this.tail = size;
1217  
1218          // Read in all elements in the proper order.
1219          for (int i = 0; i < size; i++)
1220 <            elements[i] = (E)s.readObject();
1220 >            elements[i] = s.readObject();
1221 >    }
1222  
1223 +    /** debugging */
1224 +    void checkInvariants() {
1225 +        try {
1226 +            int capacity = elements.length;
1227 +            // assert head >= 0 && head < capacity;
1228 +            // assert tail >= 0 && tail < capacity;
1229 +            // assert capacity > 0;
1230 +            // assert size() < capacity;
1231 +            // assert head == tail || elements[head] != null;
1232 +            // assert elements[tail] == null;
1233 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1234 +        } catch (Throwable t) {
1235 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1236 +                              head, tail, elements.length);
1237 +            System.err.printf("elements=%s%n",
1238 +                              Arrays.toString(elements));
1239 +            throw t;
1240 +        }
1241      }
1242 +
1243   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines