ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.127 by jsr166, Wed Apr 19 23:45:50 2017 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 12 | Line 16 | import java.io.*;
16   * usage.  They are not thread-safe; in the absence of external
17   * synchronization, they do not support concurrent access by multiple threads.
18   * Null elements are prohibited.  This class is likely to be faster than
19 < * {@link Stack} when used as as a stack, and faster than {@link LinkedList}
19 > * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77 <     * The array in which the elements of in the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
77 >     * The array in which the elements of the deque are stored.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private transient int tail;
96 >    transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
101 <     */
102 <    private static final int MIN_INITIAL_CAPACITY = 8;
103 <
104 <    // ******  Array allocation and resizing utilities ******
105 <
106 <    /**
107 <     * Allocate empty array to hold the given number of elements.
108 <     *
109 <     * @param numElements  the number of elements to hold.
110 <     */
111 <    private void allocateElements(int numElements) {  
112 <        int initialCapacity = MIN_INITIAL_CAPACITY;
113 <        // Find the best power of two to hold elements.
114 <        // Tests "<=" because arrays aren't kept full.
115 <        if (numElements >= initialCapacity) {
116 <            initialCapacity = numElements;
117 <            initialCapacity |= (initialCapacity >>>  1);
118 <            initialCapacity |= (initialCapacity >>>  2);
119 <            initialCapacity |= (initialCapacity >>>  4);
120 <            initialCapacity |= (initialCapacity >>>  8);
121 <            initialCapacity |= (initialCapacity >>> 16);
122 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && es[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(es, head,
126 >                             es, head + newSpace,
127 >                             oldCapacity - head);
128 >            for (int i = head, to = (head += newSpace); i < to; i++)
129 >                es[i] = null;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
179 <     * Constructs an empty array deque with the an initial capacity
179 >     * Constructs an empty array deque with an initial capacity
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 175 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) i -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is diambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
278  
279      /**
280 <     * Inserts the specified element to the front this deque.
280 >     * Inserts the specified element at the front of this deque.
281       *
282 <     * @param e the element to insert
283 <     * @throws NullPointerException if <tt>e</tt> is null
282 >     * @param e the element to add
283 >     * @throws NullPointerException if the specified element is null
284       */
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 <        if (head == tail)
290 <            doubleCapacity();
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290 >        if (head == tail)
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
296 <     * Inserts the specified element to the end this deque.
202 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
296 >     * Inserts the specified element at the end of this deque.
297       *
298 <     * @param e the element to insert
299 <     * @throws NullPointerException if <tt>e</tt> is null
298 >     * <p>This method is equivalent to {@link #add}.
299 >     *
300 >     * @param e the element to add
301 >     * @throws NullPointerException if the specified element is null
302       */
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311      }
312  
313      /**
314 <     * Retrieves and removes the first element of this deque, or
315 <     * <tt>null</tt> if this deque is empty.
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318       *
319 <     * @return the first element of this deque, or <tt>null</tt> if
320 <     *     this deque is empty
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323       */
324 <    public E pollFirst() {
325 <        int h = head;
326 <        E result = elements[h]; // Element is null if deque empty
327 <        if (result == null)
328 <            return null;
329 <        elements[h] = null;     // Must null out slot
330 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        c.forEach(this::addLast);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
334 <     * Retrieves and removes the last element of this deque, or
235 <     * <tt>null</tt> if this deque is empty.
334 >     * Inserts the specified element at the front of this deque.
335       *
336 <     * @return the last element of this deque, or <tt>null</tt> if
337 <     *     this deque is empty
338 <     */
240 <    public E pollLast() {
241 <        int t = (tail - 1) & (elements.length - 1);
242 <        E result = elements[t];
243 <        if (result == null)
244 <            return null;
245 <        elements[t] = null;
246 <        tail = t;
247 <        return result;
248 <    }
249 <
250 <    /**
251 <     * Inserts the specified element to the front this deque.
252 <     *
253 <     * @param e the element to insert
254 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
255 <     * @throws NullPointerException if <tt>e</tt> is null
336 >     * @param e the element to add
337 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
338 >     * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerFirst(E e) {
341          addFirst(e);
# Line 260 | Line 343 | public class ArrayDeque<E> extends Abstr
343      }
344  
345      /**
346 <     * Inserts the specified element to the end this deque.
346 >     * Inserts the specified element at the end of this deque.
347       *
348 <     * @param e the element to insert
349 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
350 <     * @throws NullPointerException if <tt>e</tt> is null
348 >     * @param e the element to add
349 >     * @return {@code true} (as specified by {@link Deque#offerLast})
350 >     * @throws NullPointerException if the specified element is null
351       */
352      public boolean offerLast(E e) {
353          addLast(e);
# Line 272 | Line 355 | public class ArrayDeque<E> extends Abstr
355      }
356  
357      /**
358 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
358 >     * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
369 >     * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379 <    /**
380 <     * Retrieves, but does not remove, the first element of this deque,
381 <     * returning <tt>null</tt> if this deque is empty.
382 <     *
383 <     * @return the first element of this deque, or <tt>null</tt> if
384 <     *     this deque is empty
385 <     */
386 <    public E peekFirst() {
387 <        return elements[head]; // elements[head] is null if deque empty
379 >    public E pollFirst() {
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391 <    /**
392 <     * Retrieves, but does not remove, the last element of this deque,
393 <     * returning <tt>null</tt> if this deque is empty.
394 <     *
395 <     * @return the last element of this deque, or <tt>null</tt> if this deque
396 <     *     is empty
397 <     */
398 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
391 >    public E pollLast() {
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
402 >     * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return x;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
413 >     * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        E x = elements[(tail - 1) & (elements.length - 1)];
417 <        if (x == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return x;
420 >        // checkInvariants();
421 >        return e;
422 >    }
423 >
424 >    public E peekFirst() {
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427 >    }
428 >
429 >    public E peekLast() {
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
436       * Removes the first occurrence of the specified element in this
437 <     * deque (when traversing the deque from head to tail).  If the deque
438 <     * does not contain the element, it is unchanged.
439 <     *
440 <     * @param e element to be removed from this deque, if present
441 <     * @return <tt>true</tt> if the deque contained the specified element
442 <     */
443 <    public boolean removeFirstOccurrence(Object e) {
444 <        if (e == null)
445 <            return false;
446 <        int mask = elements.length - 1;
447 <        int i = head;
448 <        E x;
449 <        while ( (x = elements[i]) != null) {
450 <            if (e.equals(x)) {
451 <                delete(i);
452 <                return true;
437 >     * deque (when traversing the deque from head to tail).
438 >     * If the deque does not contain the element, it is unchanged.
439 >     * More formally, removes the first element {@code e} such that
440 >     * {@code o.equals(e)} (if such an element exists).
441 >     * Returns {@code true} if this deque contained the specified element
442 >     * (or equivalently, if this deque changed as a result of the call).
443 >     *
444 >     * @param o element to be removed from this deque, if present
445 >     * @return {@code true} if the deque contained the specified element
446 >     */
447 >    public boolean removeFirstOccurrence(Object o) {
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
375            i = (i + 1) & mask;
459          }
460          return false;
461      }
462  
463      /**
464       * Removes the last occurrence of the specified element in this
465 <     * deque (when traversing the deque from head to tail).  If the deque
466 <     * does not contain the element, it is unchanged.
467 <     *
468 <     * @param e element to be removed from this deque, if present
469 <     * @return <tt>true</tt> if the deque contained the specified element
470 <     */
471 <    public boolean removeLastOccurrence(Object e) {
472 <        if (e == null)
473 <            return false;
474 <        int mask = elements.length - 1;
475 <        int i = (tail - 1) & mask;
476 <        E x;
477 <        while ( (x = elements[i]) != null) {
478 <            if (e.equals(x)) {
479 <                delete(i);
480 <                return true;
465 >     * deque (when traversing the deque from head to tail).
466 >     * If the deque does not contain the element, it is unchanged.
467 >     * More formally, removes the last element {@code e} such that
468 >     * {@code o.equals(e)} (if such an element exists).
469 >     * Returns {@code true} if this deque contained the specified element
470 >     * (or equivalently, if this deque changed as a result of the call).
471 >     *
472 >     * @param o element to be removed from this deque, if present
473 >     * @return {@code true} if the deque contained the specified element
474 >     */
475 >    public boolean removeLastOccurrence(Object o) {
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
399            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 404 | Line 491 | public class ArrayDeque<E> extends Abstr
491      // *** Queue methods ***
492  
493      /**
494 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
494 >     * Inserts the specified element at the end of this deque.
495       *
496       * <p>This method is equivalent to {@link #addLast}.
497       *
498 <     * @param e the element to insert
499 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
500 <     * @throws NullPointerException if <tt>e</tt> is null
498 >     * @param e the element to add
499 >     * @return {@code true} (as specified by {@link Collection#add})
500 >     * @throws NullPointerException if the specified element is null
501       */
502      public boolean add(E e) {
503          addLast(e);
# Line 431 | Line 505 | public class ArrayDeque<E> extends Abstr
505      }
506  
507      /**
508 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
508 >     * Inserts the specified element at the end of this deque.
509       *
510 <     * <p>This method is equivalent to {@link #pollFirst}.
510 >     * <p>This method is equivalent to {@link #offerLast}.
511       *
512 <     * @return the first element of this deque, or <tt>null</tt> if
513 <     *     this deque is empty
512 >     * @param e the element to add
513 >     * @return {@code true} (as specified by {@link Queue#offer})
514 >     * @throws NullPointerException if the specified element is null
515       */
516 <    public E poll() {
517 <        return pollFirst();
516 >    public boolean offer(E e) {
517 >        return offerLast(e);
518      }
519  
520      /**
521       * Retrieves and removes the head of the queue represented by this deque.
522 <     * This method differs from the <tt>poll</tt> method in that it throws an
523 <     * exception if this deque is empty.
522 >     *
523 >     * This method differs from {@link #poll() poll()} only in that it
524 >     * throws an exception if this deque is empty.
525       *
526       * <p>This method is equivalent to {@link #removeFirst}.
527       *
528       * @return the head of the queue represented by this deque
529 <     * @throws NoSuchElementException if this deque is empty
529 >     * @throws NoSuchElementException {@inheritDoc}
530       */
531      public E remove() {
532          return removeFirst();
533      }
534  
535      /**
536 <     * Retrieves, but does not remove, the head of the queue represented by
537 <     * this deque, returning <tt>null</tt> if this deque is empty.
536 >     * Retrieves and removes the head of the queue represented by this deque
537 >     * (in other words, the first element of this deque), or returns
538 >     * {@code null} if this deque is empty.
539       *
540 <     * <p>This method is equivalent to {@link #peekFirst}
540 >     * <p>This method is equivalent to {@link #pollFirst}.
541       *
542       * @return the head of the queue represented by this deque, or
543 <     *     <tt>null</tt> if this deque is empty
543 >     *         {@code null} if this deque is empty
544       */
545 <    public E peek() {
546 <        return peekFirst();
545 >    public E poll() {
546 >        return pollFirst();
547      }
548  
549      /**
550       * Retrieves, but does not remove, the head of the queue represented by
551 <     * this deque.  This method differs from the <tt>peek</tt> method only in
551 >     * this deque.  This method differs from {@link #peek peek} only in
552       * that it throws an exception if this deque is empty.
553       *
554 <     * <p>This method is equivalent to {@link #getFirst}
554 >     * <p>This method is equivalent to {@link #getFirst}.
555       *
556       * @return the head of the queue represented by this deque
557 <     * @throws NoSuchElementException if this deque is empty
557 >     * @throws NoSuchElementException {@inheritDoc}
558       */
559      public E element() {
560          return getFirst();
561      }
562  
563 +    /**
564 +     * Retrieves, but does not remove, the head of the queue represented by
565 +     * this deque, or returns {@code null} if this deque is empty.
566 +     *
567 +     * <p>This method is equivalent to {@link #peekFirst}.
568 +     *
569 +     * @return the head of the queue represented by this deque, or
570 +     *         {@code null} if this deque is empty
571 +     */
572 +    public E peek() {
573 +        return peekFirst();
574 +    }
575 +
576      // *** Stack methods ***
577  
578      /**
579       * Pushes an element onto the stack represented by this deque.  In other
580 <     * words, inserts the element to the front this deque.
580 >     * words, inserts the element at the front of this deque.
581       *
582       * <p>This method is equivalent to {@link #addFirst}.
583       *
584       * @param e the element to push
585 <     * @throws NullPointerException if <tt>e</tt> is null
585 >     * @throws NullPointerException if the specified element is null
586       */
587      public void push(E e) {
588          addFirst(e);
# Line 503 | Line 590 | public class ArrayDeque<E> extends Abstr
590  
591      /**
592       * Pops an element from the stack represented by this deque.  In other
593 <     * words, removes and returns the the first element of this deque.
593 >     * words, removes and returns the first element of this deque.
594       *
595       * <p>This method is equivalent to {@link #removeFirst()}.
596       *
597       * @return the element at the front of this deque (which is the top
598 <     *     of the stack represented by this deque)
599 <     * @throws NoSuchElementException if this deque is empty
598 >     *         of the stack represented by this deque)
599 >     * @throws NoSuchElementException {@inheritDoc}
600       */
601      public E pop() {
602          return removeFirst();
603      }
604  
605      /**
606 <     * Remove the element at the specified position in the elements array,
607 <     * adjusting head, tail, and size as necessary.  This can result in
608 <     * motion of elements backwards or forwards in the array.
609 <     *
610 <     * <p>This method is called delete rather than remove to emphasize the
611 <     * that that its semantics differ from those of List.remove(int).
612 <     *
613 <     * @return true if elements moved backwards
614 <     */
615 <    private boolean delete(int i) {
616 <        // Case 1: Deque doesn't wrap
617 <        // Case 2: Deque does wrap and removed element is in the head portion
618 <        if ((head < tail || tail == 0) || i >= head) {
619 <            System.arraycopy(elements, head, elements, head + 1, i - head);
620 <            elements[head] = null;
621 <            head = (head + 1) & (elements.length - 1);
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609 >     *
610 >     * <p>This method is called delete rather than remove to emphasize
611 >     * that its semantics differ from those of {@link List#remove(int)}.
612 >     *
613 >     * @return true if elements near tail moved backwards
614 >     */
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624 >        if (front < back) {
625 >            // move front elements forwards
626 >            if (h <= i) {
627 >                System.arraycopy(es, h, es, h + 1, front);
628 >            } else { // Wrap around
629 >                System.arraycopy(es, 0, es, 1, i);
630 >                es[0] = es[capacity - 1];
631 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
632 >            }
633 >            es[h] = null;
634 >            head = inc(h, capacity);
635 >            // checkInvariants();
636              return false;
637 +        } else {
638 +            // move back elements backwards
639 +            tail = dec(t, capacity);
640 +            if (i <= tail) {
641 +                System.arraycopy(es, i + 1, es, i, back);
642 +            } else { // Wrap around
643 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644 +                es[capacity - 1] = es[0];
645 +                System.arraycopy(es, 1, es, 0, t - 1);
646 +            }
647 +            es[tail] = null;
648 +            // checkInvariants();
649 +            return true;
650          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
651      }
652  
653      // *** Collection Methods ***
# Line 550 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this collection contains no elements.
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670          return head == tail;
# Line 567 | Line 675 | public class ArrayDeque<E> extends Abstr
675       * will be ordered from first (head) to last (tail).  This is the same
676       * order that elements would be dequeued (via successive calls to
677       * {@link #remove} or popped (via successive calls to {@link #pop}).
678 <     *
679 <     * @return an <tt>Iterator</tt> over the elements in this deque
678 >     *
679 >     * @return an iterator over the elements in this deque
680       */
681      public Iterator<E> iterator() {
682          return new DeqIterator();
683      }
684  
685 +    public Iterator<E> descendingIterator() {
686 +        return new DescendingIterator();
687 +    }
688 +
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701 >
702 >        DeqIterator() { cursor = head; }
703  
704 <        public boolean hasNext() {
705 <            return cursor != fence;
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            E result;
601 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            // This check doesn't catch all possible comodifications,
712 <            // but does catch the ones that corrupt traversal
713 <            if (tail != fence || (result = elements[cursor]) == null)
714 <                throw new ConcurrentModificationException();
715 <            lastRet = cursor;
608 <            cursor = (cursor + 1) & (elements.length - 1);
609 <            return result;
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713 >            cursor = inc(lastRet = cursor, es.length);
714 >            remaining--;
715 >            return e;
716          }
717  
718 <        public void remove() {
718 >        void postDelete(boolean leftShifted) {
719 >            if (leftShifted)
720 >                cursor = dec(cursor, elements.length);
721 >        }
722 >
723 >        public final void remove() {
724              if (lastRet < 0)
725                  throw new IllegalStateException();
726 <            if (delete(lastRet))
616 <                cursor--;
726 >            postDelete(delete(lastRet));
727              lastRet = -1;
618            fence = tail;
728          }
729 +
730 +        public void forEachRemaining(Consumer<? super E> action) {
731 +            Objects.requireNonNull(action);
732 +            int r;
733 +            if ((r = remaining) <= 0)
734 +                return;
735 +            remaining = 0;
736 +            final Object[] es = elements;
737 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
738 +                throw new ConcurrentModificationException();
739 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
740 +                 ; i = 0, to = end) {
741 +                for (; i < to; i++)
742 +                    action.accept(elementAt(es, i));
743 +                if (to == end) {
744 +                    if (end != tail)
745 +                        throw new ConcurrentModificationException();
746 +                    lastRet = dec(end, es.length);
747 +                    break;
748 +                }
749 +            }
750 +        }
751 +    }
752 +
753 +    private class DescendingIterator extends DeqIterator {
754 +        DescendingIterator() { cursor = dec(tail, elements.length); }
755 +
756 +        public final E next() {
757 +            if (remaining <= 0)
758 +                throw new NoSuchElementException();
759 +            final Object[] es = elements;
760 +            E e = nonNullElementAt(es, cursor);
761 +            cursor = dec(lastRet = cursor, es.length);
762 +            remaining--;
763 +            return e;
764 +        }
765 +
766 +        void postDelete(boolean leftShifted) {
767 +            if (!leftShifted)
768 +                cursor = inc(cursor, elements.length);
769 +        }
770 +
771 +        public final void forEachRemaining(Consumer<? super E> action) {
772 +            Objects.requireNonNull(action);
773 +            int r;
774 +            if ((r = remaining) <= 0)
775 +                return;
776 +            remaining = 0;
777 +            final Object[] es = elements;
778 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
779 +                throw new ConcurrentModificationException();
780 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
781 +                 ; i = es.length - 1, to = end) {
782 +                // hotspot generates faster code than for: i >= to !
783 +                for (; i > to - 1; i--)
784 +                    action.accept(elementAt(es, i));
785 +                if (to == end) {
786 +                    if (end != head)
787 +                        throw new ConcurrentModificationException();
788 +                    lastRet = end;
789 +                    break;
790 +                }
791 +            }
792 +        }
793 +    }
794 +
795 +    /**
796 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
797 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
798 +     * deque.
799 +     *
800 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
801 +     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
802 +     * {@link Spliterator#NONNULL}.  Overriding implementations should document
803 +     * the reporting of additional characteristic values.
804 +     *
805 +     * @return a {@code Spliterator} over the elements in this deque
806 +     * @since 1.8
807 +     */
808 +    public Spliterator<E> spliterator() {
809 +        return new DeqSpliterator();
810 +    }
811 +
812 +    final class DeqSpliterator implements Spliterator<E> {
813 +        private int fence;      // -1 until first use
814 +        private int cursor;     // current index, modified on traverse/split
815 +
816 +        /** Constructs late-binding spliterator over all elements. */
817 +        DeqSpliterator() {
818 +            this.fence = -1;
819 +        }
820 +
821 +        /** Constructs spliterator over the given range. */
822 +        DeqSpliterator(int origin, int fence) {
823 +            // assert 0 <= origin && origin < elements.length;
824 +            // assert 0 <= fence && fence < elements.length;
825 +            this.cursor = origin;
826 +            this.fence = fence;
827 +        }
828 +
829 +        /** Ensures late-binding initialization; then returns fence. */
830 +        private int getFence() { // force initialization
831 +            int t;
832 +            if ((t = fence) < 0) {
833 +                t = fence = tail;
834 +                cursor = head;
835 +            }
836 +            return t;
837 +        }
838 +
839 +        public DeqSpliterator trySplit() {
840 +            final Object[] es = elements;
841 +            final int i, n;
842 +            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 +                ? null
844 +                : new DeqSpliterator(i, cursor = add(i, n, es.length));
845 +        }
846 +
847 +        public void forEachRemaining(Consumer<? super E> action) {
848 +            if (action == null)
849 +                throw new NullPointerException();
850 +            final int end = getFence(), cursor = this.cursor;
851 +            final Object[] es = elements;
852 +            if (cursor != end) {
853 +                this.cursor = end;
854 +                // null check at both ends of range is sufficient
855 +                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 +                    throw new ConcurrentModificationException();
857 +                for (int i = cursor, to = (i <= end) ? end : es.length;
858 +                     ; i = 0, to = end) {
859 +                    for (; i < to; i++)
860 +                        action.accept(elementAt(es, i));
861 +                    if (to == end) break;
862 +                }
863 +            }
864 +        }
865 +
866 +        public boolean tryAdvance(Consumer<? super E> action) {
867 +            Objects.requireNonNull(action);
868 +            final Object[] es = elements;
869 +            if (fence < 0) { fence = tail; cursor = head; } // late-binding
870 +            final int i;
871 +            if ((i = cursor) == fence)
872 +                return false;
873 +            E e = nonNullElementAt(es, i);
874 +            cursor = inc(i, es.length);
875 +            action.accept(e);
876 +            return true;
877 +        }
878 +
879 +        public long estimateSize() {
880 +            return sub(getFence(), cursor, elements.length);
881 +        }
882 +
883 +        public int characteristics() {
884 +            return Spliterator.NONNULL
885 +                | Spliterator.ORDERED
886 +                | Spliterator.SIZED
887 +                | Spliterator.SUBSIZED;
888 +        }
889 +    }
890 +
891 +    /**
892 +     * @throws NullPointerException {@inheritDoc}
893 +     */
894 +    public void forEach(Consumer<? super E> action) {
895 +        Objects.requireNonNull(action);
896 +        final Object[] es = elements;
897 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
898 +             ; i = 0, to = end) {
899 +            for (; i < to; i++)
900 +                action.accept(elementAt(es, i));
901 +            if (to == end) {
902 +                if (end != tail) throw new ConcurrentModificationException();
903 +                break;
904 +            }
905 +        }
906 +        // checkInvariants();
907 +    }
908 +
909 +    /**
910 +     * Replaces each element of this deque with the result of applying the
911 +     * operator to that element, as specified by {@link List#replaceAll}.
912 +     *
913 +     * @param operator the operator to apply to each element
914 +     * @since TBD
915 +     */
916 +    /* public */ void replaceAll(UnaryOperator<E> operator) {
917 +        Objects.requireNonNull(operator);
918 +        final Object[] es = elements;
919 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
920 +             ; i = 0, to = end) {
921 +            for (; i < to; i++)
922 +                es[i] = operator.apply(elementAt(es, i));
923 +            if (to == end) {
924 +                if (end != tail) throw new ConcurrentModificationException();
925 +                break;
926 +            }
927 +        }
928 +        // checkInvariants();
929 +    }
930 +
931 +    /**
932 +     * @throws NullPointerException {@inheritDoc}
933 +     */
934 +    public boolean removeIf(Predicate<? super E> filter) {
935 +        Objects.requireNonNull(filter);
936 +        return bulkRemove(filter);
937 +    }
938 +
939 +    /**
940 +     * @throws NullPointerException {@inheritDoc}
941 +     */
942 +    public boolean removeAll(Collection<?> c) {
943 +        Objects.requireNonNull(c);
944 +        return bulkRemove(e -> c.contains(e));
945 +    }
946 +
947 +    /**
948 +     * @throws NullPointerException {@inheritDoc}
949 +     */
950 +    public boolean retainAll(Collection<?> c) {
951 +        Objects.requireNonNull(c);
952 +        return bulkRemove(e -> !c.contains(e));
953 +    }
954 +
955 +    /** Implementation of bulk remove methods. */
956 +    private boolean bulkRemove(Predicate<? super E> filter) {
957 +        // checkInvariants();
958 +        final Object[] es = elements;
959 +        // Optimize for initial run of survivors
960 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
961 +             ; i = 0, to = end) {
962 +            for (; i < to; i++)
963 +                if (filter.test(elementAt(es, i)))
964 +                    return bulkRemoveModified(filter, i);
965 +            if (to == end) {
966 +                if (end != tail) throw new ConcurrentModificationException();
967 +                break;
968 +            }
969 +        }
970 +        return false;
971 +    }
972 +
973 +    // A tiny bit set implementation
974 +
975 +    private static long[] nBits(int n) {
976 +        return new long[((n - 1) >> 6) + 1];
977 +    }
978 +    private static void setBit(long[] bits, int i) {
979 +        bits[i >> 6] |= 1L << i;
980 +    }
981 +    private static boolean isClear(long[] bits, int i) {
982 +        return (bits[i >> 6] & (1L << i)) == 0;
983 +    }
984 +
985 +    /**
986 +     * Helper for bulkRemove, in case of at least one deletion.
987 +     * Tolerate predicates that reentrantly access the collection for
988 +     * read (but writers still get CME), so traverse once to find
989 +     * elements to delete, a second pass to physically expunge.
990 +     *
991 +     * @param beg valid index of first element to be deleted
992 +     */
993 +    private boolean bulkRemoveModified(
994 +        Predicate<? super E> filter, final int beg) {
995 +        final Object[] es = elements;
996 +        final int capacity = es.length;
997 +        final int end = tail;
998 +        final long[] deathRow = nBits(sub(end, beg, capacity));
999 +        deathRow[0] = 1L;   // set bit 0
1000 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1001 +             ; i = 0, to = end, k -= capacity) {
1002 +            for (; i < to; i++)
1003 +                if (filter.test(elementAt(es, i)))
1004 +                    setBit(deathRow, i - k);
1005 +            if (to == end) break;
1006 +        }
1007 +        // a two-finger traversal, with hare i reading, tortoise w writing
1008 +        int w = beg;
1009 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1010 +             ; w = 0) { // w rejoins i on second leg
1011 +            // In this loop, i and w are on the same leg, with i > w
1012 +            for (; i < to; i++)
1013 +                if (isClear(deathRow, i - k))
1014 +                    es[w++] = es[i];
1015 +            if (to == end) break;
1016 +            // In this loop, w is on the first leg, i on the second
1017 +            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1018 +                if (isClear(deathRow, i - k))
1019 +                    es[w++] = es[i];
1020 +            if (i >= to) {
1021 +                if (w == capacity) w = 0; // "corner" case
1022 +                break;
1023 +            }
1024 +        }
1025 +        if (end != tail) throw new ConcurrentModificationException();
1026 +        circularClear(es, tail = w, end);
1027 +        // checkInvariants();
1028 +        return true;
1029      }
1030  
1031      /**
1032 <     * Returns <tt>true</tt> if this deque contains the specified
1033 <     * element.  More formally, returns <tt>true</tt> if and only if this
1034 <     * deque contains at least one element <tt>e</tt> such that
626 <     * <tt>e.equals(o)</tt>.
1032 >     * Returns {@code true} if this deque contains the specified element.
1033 >     * More formally, returns {@code true} if and only if this deque contains
1034 >     * at least one element {@code e} such that {@code o.equals(e)}.
1035       *
1036       * @param o object to be checked for containment in this deque
1037 <     * @return <tt>true</tt> if this deque contains the specified element
1037 >     * @return {@code true} if this deque contains the specified element
1038       */
1039      public boolean contains(Object o) {
1040 <        if (o == null)
1041 <            return false;
1042 <        int mask = elements.length - 1;
1043 <        int i = head;
1044 <        E x;
1045 <        while ( (x = elements[i]) != null) {
1046 <            if (o.equals(x))
1047 <                return true;
1048 <            i = (i + 1) & mask;
1040 >        if (o != null) {
1041 >            final Object[] es = elements;
1042 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1043 >                 ; i = 0, to = end) {
1044 >                for (; i < to; i++)
1045 >                    if (o.equals(es[i]))
1046 >                        return true;
1047 >                if (to == end) break;
1048 >            }
1049          }
1050          return false;
1051      }
1052  
1053      /**
1054       * Removes a single instance of the specified element from this deque.
1055 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1055 >     * If the deque does not contain the element, it is unchanged.
1056 >     * More formally, removes the first element {@code e} such that
1057 >     * {@code o.equals(e)} (if such an element exists).
1058 >     * Returns {@code true} if this deque contained the specified element
1059 >     * (or equivalently, if this deque changed as a result of the call).
1060 >     *
1061 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1062       *
1063 <     * @param e element to be removed from this deque, if present
1064 <     * @return <tt>true</tt> if this deque contained the specified element
1063 >     * @param o element to be removed from this deque, if present
1064 >     * @return {@code true} if this deque contained the specified element
1065       */
1066 <    public boolean remove(Object e) {
1067 <        return removeFirstOccurrence(e);
1066 >    public boolean remove(Object o) {
1067 >        return removeFirstOccurrence(o);
1068      }
1069  
1070      /**
1071       * Removes all of the elements from this deque.
1072 +     * The deque will be empty after this call returns.
1073       */
1074      public void clear() {
1075 <        int h = head;
1076 <        int t = tail;
1077 <        if (h != t) { // clear all cells
1078 <            head = tail = 0;
1079 <            int i = h;
1080 <            int mask = elements.length - 1;
1081 <            do {
1082 <                elements[i] = null;
1083 <                i = (i + 1) & mask;
1084 <            } while(i != t);
1075 >        circularClear(elements, head, tail);
1076 >        head = tail = 0;
1077 >        // checkInvariants();
1078 >    }
1079 >
1080 >    /**
1081 >     * Nulls out slots starting at array index i, upto index end.
1082 >     * Condition i == end means "empty" - nothing to do.
1083 >     */
1084 >    private static void circularClear(Object[] es, int i, int end) {
1085 >        // assert 0 <= i && i < es.length;
1086 >        // assert 0 <= end && end < es.length;
1087 >        for (int to = (i <= end) ? end : es.length;
1088 >             ; i = 0, to = end) {
1089 >            for (; i < to; i++) es[i] = null;
1090 >            if (to == end) break;
1091          }
1092      }
1093  
1094      /**
1095 <     * Returns an array containing all of the elements in this list
1096 <     * in the correct order.
1095 >     * Returns an array containing all of the elements in this deque
1096 >     * in proper sequence (from first to last element).
1097       *
1098 <     * @return an array containing all of the elements in this list
1099 <     *         in the correct order
1098 >     * <p>The returned array will be "safe" in that no references to it are
1099 >     * maintained by this deque.  (In other words, this method must allocate
1100 >     * a new array).  The caller is thus free to modify the returned array.
1101 >     *
1102 >     * <p>This method acts as bridge between array-based and collection-based
1103 >     * APIs.
1104 >     *
1105 >     * @return an array containing all of the elements in this deque
1106       */
1107      public Object[] toArray() {
1108 <        return copyElements(new Object[size()]);
1108 >        return toArray(Object[].class);
1109 >    }
1110 >
1111 >    private <T> T[] toArray(Class<T[]> klazz) {
1112 >        final Object[] es = elements;
1113 >        final T[] a;
1114 >        final int head = this.head, tail = this.tail, end;
1115 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1116 >            // Uses null extension feature of copyOfRange
1117 >            a = Arrays.copyOfRange(es, head, end, klazz);
1118 >        } else {
1119 >            // integer overflow!
1120 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1121 >            System.arraycopy(es, head, a, 0, es.length - head);
1122 >        }
1123 >        if (end != tail)
1124 >            System.arraycopy(es, 0, a, es.length - head, tail);
1125 >        return a;
1126      }
1127  
1128      /**
1129 <     * Returns an array containing all of the elements in this deque in the
1130 <     * correct order; the runtime type of the returned array is that of the
1131 <     * specified array.  If the deque fits in the specified array, it is
1132 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1133 <     * type of the specified array and the size of this deque.
1129 >     * Returns an array containing all of the elements in this deque in
1130 >     * proper sequence (from first to last element); the runtime type of the
1131 >     * returned array is that of the specified array.  If the deque fits in
1132 >     * the specified array, it is returned therein.  Otherwise, a new array
1133 >     * is allocated with the runtime type of the specified array and the
1134 >     * size of this deque.
1135 >     *
1136 >     * <p>If this deque fits in the specified array with room to spare
1137 >     * (i.e., the array has more elements than this deque), the element in
1138 >     * the array immediately following the end of the deque is set to
1139 >     * {@code null}.
1140 >     *
1141 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1142 >     * array-based and collection-based APIs.  Further, this method allows
1143 >     * precise control over the runtime type of the output array, and may,
1144 >     * under certain circumstances, be used to save allocation costs.
1145 >     *
1146 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1147 >     * The following code can be used to dump the deque into a newly
1148 >     * allocated array of {@code String}:
1149 >     *
1150 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1151       *
1152 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1153 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1152 >     * Note that {@code toArray(new Object[0])} is identical in function to
1153 >     * {@code toArray()}.
1154       *
1155       * @param a the array into which the elements of the deque are to
1156 <     *          be stored, if it is big enough; otherwise, a new array of the
1157 <     *          same runtime type is allocated for this purpose
1158 <     * @return an array containing the elements of the deque
1159 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1160 <     *         of the runtime type of every element in this deque
1156 >     *          be stored, if it is big enough; otherwise, a new array of the
1157 >     *          same runtime type is allocated for this purpose
1158 >     * @return an array containing all of the elements in this deque
1159 >     * @throws ArrayStoreException if the runtime type of the specified array
1160 >     *         is not a supertype of the runtime type of every element in
1161 >     *         this deque
1162 >     * @throws NullPointerException if the specified array is null
1163       */
1164 +    @SuppressWarnings("unchecked")
1165      public <T> T[] toArray(T[] a) {
1166 <        int size = size();
1167 <        if (a.length < size)
1168 <            a = (T[])java.lang.reflect.Array.newInstance(
1169 <                    a.getClass().getComponentType(), size);
1170 <        copyElements(a);
1171 <        if (a.length > size)
1166 >        final int size;
1167 >        if ((size = size()) > a.length)
1168 >            return toArray((Class<T[]>) a.getClass());
1169 >        final Object[] es = elements;
1170 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1171 >             ; i = 0, len = tail) {
1172 >            System.arraycopy(es, i, a, j, len);
1173 >            if ((j += len) == size) break;
1174 >        }
1175 >        if (size < a.length)
1176              a[size] = null;
1177          return a;
1178      }
# Line 718 | Line 1185 | public class ArrayDeque<E> extends Abstr
1185       * @return a copy of this deque
1186       */
1187      public ArrayDeque<E> clone() {
1188 <        try {
1188 >        try {
1189 >            @SuppressWarnings("unchecked")
1190              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1191 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1191 >            result.elements = Arrays.copyOf(elements, elements.length);
1192              return result;
1193 <
728 <        } catch (CloneNotSupportedException e) {
1193 >        } catch (CloneNotSupportedException e) {
1194              throw new AssertionError();
1195          }
1196      }
1197  
733    /**
734     * Appease the serialization gods.
735     */
1198      private static final long serialVersionUID = 2340985798034038923L;
1199  
1200      /**
1201 <     * Serialize this deque.
1201 >     * Saves this deque to a stream (that is, serializes it).
1202       *
1203 <     * @serialData The current size (<tt>int</tt>) of the deque,
1203 >     * @param s the stream
1204 >     * @throws java.io.IOException if an I/O error occurs
1205 >     * @serialData The current size ({@code int}) of the deque,
1206       * followed by all of its elements (each an object reference) in
1207       * first-to-last order.
1208       */
1209 <    private void writeObject(ObjectOutputStream s) throws IOException {
1209 >    private void writeObject(java.io.ObjectOutputStream s)
1210 >            throws java.io.IOException {
1211          s.defaultWriteObject();
1212  
1213          // Write out size
1214 <        int size = size();
750 <        s.writeInt(size);
1214 >        s.writeInt(size());
1215  
1216          // Write out elements in order.
1217 <        int i = head;
1218 <        int mask = elements.length - 1;
1219 <        for (int j = 0; j < size; j++) {
1220 <            s.writeObject(elements[i]);
1221 <            i = (i + 1) & mask;
1217 >        final Object[] es = elements;
1218 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1219 >             ; i = 0, to = end) {
1220 >            for (; i < to; i++)
1221 >                s.writeObject(es[i]);
1222 >            if (to == end) break;
1223          }
1224      }
1225  
1226      /**
1227 <     * Deserialize this deque.
1227 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1228 >     * @param s the stream
1229 >     * @throws ClassNotFoundException if the class of a serialized object
1230 >     *         could not be found
1231 >     * @throws java.io.IOException if an I/O error occurs
1232       */
1233 <    private void readObject(ObjectInputStream s)
1234 <            throws IOException, ClassNotFoundException {
1233 >    private void readObject(java.io.ObjectInputStream s)
1234 >            throws java.io.IOException, ClassNotFoundException {
1235          s.defaultReadObject();
1236  
1237          // Read in size and allocate array
1238          int size = s.readInt();
1239 <        allocateElements(size);
1240 <        head = 0;
772 <        tail = size;
1239 >        elements = new Object[size + 1];
1240 >        this.tail = size;
1241  
1242          // Read in all elements in the proper order.
1243          for (int i = 0; i < size; i++)
1244 <            elements[i] = (E)s.readObject();
1244 >            elements[i] = s.readObject();
1245 >    }
1246  
1247 +    /** debugging */
1248 +    void checkInvariants() {
1249 +        // Use head and tail fields with empty slot at tail strategy.
1250 +        // head == tail disambiguates to "empty".
1251 +        try {
1252 +            int capacity = elements.length;
1253 +            // assert 0 <= head && head < capacity;
1254 +            // assert 0 <= tail && tail < capacity;
1255 +            // assert capacity > 0;
1256 +            // assert size() < capacity;
1257 +            // assert head == tail || elements[head] != null;
1258 +            // assert elements[tail] == null;
1259 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1260 +        } catch (Throwable t) {
1261 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1262 +                              head, tail, elements.length);
1263 +            System.err.printf("elements=%s%n",
1264 +                              Arrays.toString(elements));
1265 +            throw t;
1266 +        }
1267      }
1268 +
1269   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines