ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.130 by jsr166, Wed May 31 22:54:47 2017 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 12 | Line 16 | import java.io.*;
16   * usage.  They are not thread-safe; in the absence of external
17   * synchronization, they do not support concurrent access by multiple threads.
18   * Null elements are prohibited.  This class is likely to be faster than
19 < * {@link Stack} when used as as a stack, and faster than {@link LinkedList}
19 > * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77 <     * The array in which the elements of in the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
77 >     * The array in which the elements of the deque are stored.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private transient int tail;
96 >    transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
101 <     */
102 <    private static final int MIN_INITIAL_CAPACITY = 8;
103 <
104 <    // ******  Array allocation and resizing utilities ******
105 <
106 <    /**
107 <     * Allocate empty array to hold the given number of elements.
108 <     *
109 <     * @param numElements  the number of elements to hold.
110 <     */
111 <    private void allocateElements(int numElements) {  
112 <        int initialCapacity = MIN_INITIAL_CAPACITY;
113 <        // Find the best power of two to hold elements.
114 <        // Tests "<=" because arrays aren't kept full.
115 <        if (numElements >= initialCapacity) {
116 <            initialCapacity = numElements;
117 <            initialCapacity |= (initialCapacity >>>  1);
118 <            initialCapacity |= (initialCapacity >>>  2);
119 <            initialCapacity |= (initialCapacity >>>  4);
120 <            initialCapacity |= (initialCapacity >>>  8);
121 <            initialCapacity |= (initialCapacity >>> 16);
122 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && es[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(es, head,
126 >                             es, head + newSpace,
127 >                             oldCapacity - head);
128 >            for (int i = head, to = (head += newSpace); i < to; i++)
129 >                es[i] = null;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
179 <     * Constructs an empty array deque with the an initial capacity
179 >     * Constructs an empty array deque with an initial capacity
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 175 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) i -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is disambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
278  
279      /**
280 <     * Inserts the specified element to the front this deque.
280 >     * Inserts the specified element at the front of this deque.
281       *
282 <     * @param e the element to insert
283 <     * @throws NullPointerException if <tt>e</tt> is null
282 >     * @param e the element to add
283 >     * @throws NullPointerException if the specified element is null
284       */
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 <        if (head == tail)
290 <            doubleCapacity();
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290 >        if (head == tail)
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
296 <     * Inserts the specified element to the end this deque.
202 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
296 >     * Inserts the specified element at the end of this deque.
297       *
298 <     * @param e the element to insert
299 <     * @throws NullPointerException if <tt>e</tt> is null
298 >     * <p>This method is equivalent to {@link #add}.
299 >     *
300 >     * @param e the element to add
301 >     * @throws NullPointerException if the specified element is null
302       */
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311      }
312  
313      /**
314 <     * Retrieves and removes the first element of this deque, or
315 <     * <tt>null</tt> if this deque is empty.
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's iterator.
317       *
318 <     * @return the first element of this deque, or <tt>null</tt> if
319 <     *     this deque is empty
318 >     * @param c the elements to be inserted into this deque
319 >     * @return {@code true} if this deque changed as a result of the call
320 >     * @throws NullPointerException if the specified collection or any
321 >     *         of its elements are null
322       */
323 <    public E pollFirst() {
324 <        int h = head;
325 <        E result = elements[h]; // Element is null if deque empty
326 <        if (result == null)
327 <            return null;
328 <        elements[h] = null;     // Must null out slot
329 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
323 >    public boolean addAll(Collection<? extends E> c) {
324 >        final int s, needed;
325 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
326 >            grow(needed);
327 >        c.forEach(this::addLast);
328 >        // checkInvariants();
329 >        return size() > s;
330      }
331  
332      /**
333 <     * Retrieves and removes the last element of this deque, or
235 <     * <tt>null</tt> if this deque is empty.
333 >     * Inserts the specified element at the front of this deque.
334       *
335 <     * @return the last element of this deque, or <tt>null</tt> if
336 <     *     this deque is empty
337 <     */
240 <    public E pollLast() {
241 <        int t = (tail - 1) & (elements.length - 1);
242 <        E result = elements[t];
243 <        if (result == null)
244 <            return null;
245 <        elements[t] = null;
246 <        tail = t;
247 <        return result;
248 <    }
249 <
250 <    /**
251 <     * Inserts the specified element to the front this deque.
252 <     *
253 <     * @param e the element to insert
254 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
255 <     * @throws NullPointerException if <tt>e</tt> is null
335 >     * @param e the element to add
336 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
337 >     * @throws NullPointerException if the specified element is null
338       */
339      public boolean offerFirst(E e) {
340          addFirst(e);
# Line 260 | Line 342 | public class ArrayDeque<E> extends Abstr
342      }
343  
344      /**
345 <     * Inserts the specified element to the end this deque.
345 >     * Inserts the specified element at the end of this deque.
346       *
347 <     * @param e the element to insert
348 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
349 <     * @throws NullPointerException if <tt>e</tt> is null
347 >     * @param e the element to add
348 >     * @return {@code true} (as specified by {@link Deque#offerLast})
349 >     * @throws NullPointerException if the specified element is null
350       */
351      public boolean offerLast(E e) {
352          addLast(e);
# Line 272 | Line 354 | public class ArrayDeque<E> extends Abstr
354      }
355  
356      /**
357 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
357 >     * @throws NoSuchElementException {@inheritDoc}
358       */
359      public E removeFirst() {
360 <        E x = pollFirst();
361 <        if (x == null)
360 >        E e = pollFirst();
361 >        if (e == null)
362              throw new NoSuchElementException();
363 <        return x;
363 >        // checkInvariants();
364 >        return e;
365      }
366  
367      /**
368 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
368 >     * @throws NoSuchElementException {@inheritDoc}
369       */
370      public E removeLast() {
371 <        E x = pollLast();
372 <        if (x == null)
371 >        E e = pollLast();
372 >        if (e == null)
373              throw new NoSuchElementException();
374 <        return x;
374 >        // checkInvariants();
375 >        return e;
376      }
377  
378 <    /**
379 <     * Retrieves, but does not remove, the first element of this deque,
380 <     * returning <tt>null</tt> if this deque is empty.
381 <     *
382 <     * @return the first element of this deque, or <tt>null</tt> if
383 <     *     this deque is empty
384 <     */
385 <    public E peekFirst() {
386 <        return elements[head]; // elements[head] is null if deque empty
378 >    public E pollFirst() {
379 >        final Object[] es;
380 >        final int h;
381 >        E e = elementAt(es = elements, h = head);
382 >        if (e != null) {
383 >            es[h] = null;
384 >            head = inc(h, es.length);
385 >        }
386 >        // checkInvariants();
387 >        return e;
388      }
389  
390 <    /**
391 <     * Retrieves, but does not remove, the last element of this deque,
392 <     * returning <tt>null</tt> if this deque is empty.
393 <     *
394 <     * @return the last element of this deque, or <tt>null</tt> if this deque
395 <     *     is empty
396 <     */
397 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
390 >    public E pollLast() {
391 >        final Object[] es;
392 >        final int t;
393 >        E e = elementAt(es = elements, t = dec(tail, es.length));
394 >        if (e != null)
395 >            es[tail = t] = null;
396 >        // checkInvariants();
397 >        return e;
398      }
399  
400      /**
401 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
401 >     * @throws NoSuchElementException {@inheritDoc}
402       */
403      public E getFirst() {
404 <        E x = elements[head];
405 <        if (x == null)
404 >        E e = elementAt(elements, head);
405 >        if (e == null)
406              throw new NoSuchElementException();
407 <        return x;
407 >        // checkInvariants();
408 >        return e;
409      }
410  
411      /**
412 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
412 >     * @throws NoSuchElementException {@inheritDoc}
413       */
414      public E getLast() {
415 <        E x = elements[(tail - 1) & (elements.length - 1)];
416 <        if (x == null)
415 >        final Object[] es = elements;
416 >        E e = elementAt(es, dec(tail, es.length));
417 >        if (e == null)
418              throw new NoSuchElementException();
419 <        return x;
419 >        // checkInvariants();
420 >        return e;
421 >    }
422 >
423 >    public E peekFirst() {
424 >        // checkInvariants();
425 >        return elementAt(elements, head);
426 >    }
427 >
428 >    public E peekLast() {
429 >        // checkInvariants();
430 >        final Object[] es;
431 >        return elementAt(es = elements, dec(tail, es.length));
432      }
433  
434      /**
435       * Removes the first occurrence of the specified element in this
436 <     * deque (when traversing the deque from head to tail).  If the deque
437 <     * does not contain the element, it is unchanged.
438 <     *
439 <     * @param e element to be removed from this deque, if present
440 <     * @return <tt>true</tt> if the deque contained the specified element
441 <     */
442 <    public boolean removeFirstOccurrence(Object e) {
443 <        if (e == null)
444 <            return false;
445 <        int mask = elements.length - 1;
446 <        int i = head;
447 <        E x;
448 <        while ( (x = elements[i]) != null) {
449 <            if (e.equals(x)) {
450 <                delete(i);
451 <                return true;
436 >     * deque (when traversing the deque from head to tail).
437 >     * If the deque does not contain the element, it is unchanged.
438 >     * More formally, removes the first element {@code e} such that
439 >     * {@code o.equals(e)} (if such an element exists).
440 >     * Returns {@code true} if this deque contained the specified element
441 >     * (or equivalently, if this deque changed as a result of the call).
442 >     *
443 >     * @param o element to be removed from this deque, if present
444 >     * @return {@code true} if the deque contained the specified element
445 >     */
446 >    public boolean removeFirstOccurrence(Object o) {
447 >        if (o != null) {
448 >            final Object[] es = elements;
449 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
450 >                 ; i = 0, to = end) {
451 >                for (; i < to; i++)
452 >                    if (o.equals(es[i])) {
453 >                        delete(i);
454 >                        return true;
455 >                    }
456 >                if (to == end) break;
457              }
375            i = (i + 1) & mask;
458          }
459          return false;
460      }
461  
462      /**
463       * Removes the last occurrence of the specified element in this
464 <     * deque (when traversing the deque from head to tail).  If the deque
465 <     * does not contain the element, it is unchanged.
466 <     *
467 <     * @param e element to be removed from this deque, if present
468 <     * @return <tt>true</tt> if the deque contained the specified element
469 <     */
470 <    public boolean removeLastOccurrence(Object e) {
471 <        if (e == null)
472 <            return false;
473 <        int mask = elements.length - 1;
474 <        int i = (tail - 1) & mask;
475 <        E x;
476 <        while ( (x = elements[i]) != null) {
477 <            if (e.equals(x)) {
478 <                delete(i);
479 <                return true;
464 >     * deque (when traversing the deque from head to tail).
465 >     * If the deque does not contain the element, it is unchanged.
466 >     * More formally, removes the last element {@code e} such that
467 >     * {@code o.equals(e)} (if such an element exists).
468 >     * Returns {@code true} if this deque contained the specified element
469 >     * (or equivalently, if this deque changed as a result of the call).
470 >     *
471 >     * @param o element to be removed from this deque, if present
472 >     * @return {@code true} if the deque contained the specified element
473 >     */
474 >    public boolean removeLastOccurrence(Object o) {
475 >        if (o != null) {
476 >            final Object[] es = elements;
477 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
478 >                 ; i = es.length, to = end) {
479 >                for (i--; i > to - 1; i--)
480 >                    if (o.equals(es[i])) {
481 >                        delete(i);
482 >                        return true;
483 >                    }
484 >                if (to == end) break;
485              }
399            i = (i - 1) & mask;
486          }
487          return false;
488      }
# Line 404 | Line 490 | public class ArrayDeque<E> extends Abstr
490      // *** Queue methods ***
491  
492      /**
493 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
493 >     * Inserts the specified element at the end of this deque.
494       *
495       * <p>This method is equivalent to {@link #addLast}.
496       *
497 <     * @param e the element to insert
498 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
499 <     * @throws NullPointerException if <tt>e</tt> is null
497 >     * @param e the element to add
498 >     * @return {@code true} (as specified by {@link Collection#add})
499 >     * @throws NullPointerException if the specified element is null
500       */
501      public boolean add(E e) {
502          addLast(e);
# Line 431 | Line 504 | public class ArrayDeque<E> extends Abstr
504      }
505  
506      /**
507 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
507 >     * Inserts the specified element at the end of this deque.
508       *
509 <     * <p>This method is equivalent to {@link #pollFirst}.
509 >     * <p>This method is equivalent to {@link #offerLast}.
510       *
511 <     * @return the first element of this deque, or <tt>null</tt> if
512 <     *     this deque is empty
511 >     * @param e the element to add
512 >     * @return {@code true} (as specified by {@link Queue#offer})
513 >     * @throws NullPointerException if the specified element is null
514       */
515 <    public E poll() {
516 <        return pollFirst();
515 >    public boolean offer(E e) {
516 >        return offerLast(e);
517      }
518  
519      /**
520       * Retrieves and removes the head of the queue represented by this deque.
521 <     * This method differs from the <tt>poll</tt> method in that it throws an
522 <     * exception if this deque is empty.
521 >     *
522 >     * This method differs from {@link #poll() poll()} only in that it
523 >     * throws an exception if this deque is empty.
524       *
525       * <p>This method is equivalent to {@link #removeFirst}.
526       *
527       * @return the head of the queue represented by this deque
528 <     * @throws NoSuchElementException if this deque is empty
528 >     * @throws NoSuchElementException {@inheritDoc}
529       */
530      public E remove() {
531          return removeFirst();
532      }
533  
534      /**
535 <     * Retrieves, but does not remove, the head of the queue represented by
536 <     * this deque, returning <tt>null</tt> if this deque is empty.
535 >     * Retrieves and removes the head of the queue represented by this deque
536 >     * (in other words, the first element of this deque), or returns
537 >     * {@code null} if this deque is empty.
538       *
539 <     * <p>This method is equivalent to {@link #peekFirst}
539 >     * <p>This method is equivalent to {@link #pollFirst}.
540       *
541       * @return the head of the queue represented by this deque, or
542 <     *     <tt>null</tt> if this deque is empty
542 >     *         {@code null} if this deque is empty
543       */
544 <    public E peek() {
545 <        return peekFirst();
544 >    public E poll() {
545 >        return pollFirst();
546      }
547  
548      /**
549       * Retrieves, but does not remove, the head of the queue represented by
550 <     * this deque.  This method differs from the <tt>peek</tt> method only in
550 >     * this deque.  This method differs from {@link #peek peek} only in
551       * that it throws an exception if this deque is empty.
552       *
553 <     * <p>This method is equivalent to {@link #getFirst}
553 >     * <p>This method is equivalent to {@link #getFirst}.
554       *
555       * @return the head of the queue represented by this deque
556 <     * @throws NoSuchElementException if this deque is empty
556 >     * @throws NoSuchElementException {@inheritDoc}
557       */
558      public E element() {
559          return getFirst();
560      }
561  
562 +    /**
563 +     * Retrieves, but does not remove, the head of the queue represented by
564 +     * this deque, or returns {@code null} if this deque is empty.
565 +     *
566 +     * <p>This method is equivalent to {@link #peekFirst}.
567 +     *
568 +     * @return the head of the queue represented by this deque, or
569 +     *         {@code null} if this deque is empty
570 +     */
571 +    public E peek() {
572 +        return peekFirst();
573 +    }
574 +
575      // *** Stack methods ***
576  
577      /**
578       * Pushes an element onto the stack represented by this deque.  In other
579 <     * words, inserts the element to the front this deque.
579 >     * words, inserts the element at the front of this deque.
580       *
581       * <p>This method is equivalent to {@link #addFirst}.
582       *
583       * @param e the element to push
584 <     * @throws NullPointerException if <tt>e</tt> is null
584 >     * @throws NullPointerException if the specified element is null
585       */
586      public void push(E e) {
587          addFirst(e);
# Line 503 | Line 589 | public class ArrayDeque<E> extends Abstr
589  
590      /**
591       * Pops an element from the stack represented by this deque.  In other
592 <     * words, removes and returns the the first element of this deque.
592 >     * words, removes and returns the first element of this deque.
593       *
594       * <p>This method is equivalent to {@link #removeFirst()}.
595       *
596       * @return the element at the front of this deque (which is the top
597 <     *     of the stack represented by this deque)
598 <     * @throws NoSuchElementException if this deque is empty
597 >     *         of the stack represented by this deque)
598 >     * @throws NoSuchElementException {@inheritDoc}
599       */
600      public E pop() {
601          return removeFirst();
602      }
603  
604      /**
605 <     * Remove the element at the specified position in the elements array,
606 <     * adjusting head, tail, and size as necessary.  This can result in
607 <     * motion of elements backwards or forwards in the array.
608 <     *
609 <     * <p>This method is called delete rather than remove to emphasize the
610 <     * that that its semantics differ from those of List.remove(int).
611 <     *
612 <     * @return true if elements moved backwards
613 <     */
614 <    private boolean delete(int i) {
615 <        // Case 1: Deque doesn't wrap
616 <        // Case 2: Deque does wrap and removed element is in the head portion
617 <        if ((head < tail || tail == 0) || i >= head) {
618 <            System.arraycopy(elements, head, elements, head + 1, i - head);
619 <            elements[head] = null;
620 <            head = (head + 1) & (elements.length - 1);
605 >     * Removes the element at the specified position in the elements array.
606 >     * This can result in forward or backwards motion of array elements.
607 >     * We optimize for least element motion.
608 >     *
609 >     * <p>This method is called delete rather than remove to emphasize
610 >     * that its semantics differ from those of {@link List#remove(int)}.
611 >     *
612 >     * @return true if elements near tail moved backwards
613 >     */
614 >    boolean delete(int i) {
615 >        // checkInvariants();
616 >        final Object[] es = elements;
617 >        final int capacity = es.length;
618 >        final int h, t;
619 >        // number of elements before to-be-deleted elt
620 >        final int front = sub(i, h = head, capacity);
621 >        // number of elements after to-be-deleted elt
622 >        final int back = sub(t = tail, i, capacity) - 1;
623 >        if (front < back) {
624 >            // move front elements forwards
625 >            if (h <= i) {
626 >                System.arraycopy(es, h, es, h + 1, front);
627 >            } else { // Wrap around
628 >                System.arraycopy(es, 0, es, 1, i);
629 >                es[0] = es[capacity - 1];
630 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
631 >            }
632 >            es[h] = null;
633 >            head = inc(h, capacity);
634 >            // checkInvariants();
635              return false;
636 +        } else {
637 +            // move back elements backwards
638 +            tail = dec(t, capacity);
639 +            if (i <= tail) {
640 +                System.arraycopy(es, i + 1, es, i, back);
641 +            } else { // Wrap around
642 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
643 +                es[capacity - 1] = es[0];
644 +                System.arraycopy(es, 1, es, 0, t - 1);
645 +            }
646 +            es[tail] = null;
647 +            // checkInvariants();
648 +            return true;
649          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
650      }
651  
652      // *** Collection Methods ***
# Line 550 | Line 657 | public class ArrayDeque<E> extends Abstr
657       * @return the number of elements in this deque
658       */
659      public int size() {
660 <        return (tail - head) & (elements.length - 1);
660 >        return sub(tail, head, elements.length);
661      }
662  
663      /**
664 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
664 >     * Returns {@code true} if this deque contains no elements.
665       *
666 <     * @return <tt>true</tt> if this collection contains no elements.
666 >     * @return {@code true} if this deque contains no elements
667       */
668      public boolean isEmpty() {
669          return head == tail;
# Line 567 | Line 674 | public class ArrayDeque<E> extends Abstr
674       * will be ordered from first (head) to last (tail).  This is the same
675       * order that elements would be dequeued (via successive calls to
676       * {@link #remove} or popped (via successive calls to {@link #pop}).
677 <     *
678 <     * @return an <tt>Iterator</tt> over the elements in this deque
677 >     *
678 >     * @return an iterator over the elements in this deque
679       */
680      public Iterator<E> iterator() {
681          return new DeqIterator();
682      }
683  
684 +    public Iterator<E> descendingIterator() {
685 +        return new DescendingIterator();
686 +    }
687 +
688      private class DeqIterator implements Iterator<E> {
689 <        /**
690 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
689 >        /** Index of element to be returned by subsequent call to next. */
690 >        int cursor;
691  
692 <        /**
693 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
692 >        /** Number of elements yet to be returned. */
693 >        int remaining = size();
694  
695          /**
696           * Index of element returned by most recent call to next.
697           * Reset to -1 if element is deleted by a call to remove.
698           */
699 <        private int lastRet = -1;
699 >        int lastRet = -1;
700 >
701 >        DeqIterator() { cursor = head; }
702  
703 <        public boolean hasNext() {
704 <            return cursor != fence;
703 >        public final boolean hasNext() {
704 >            return remaining > 0;
705          }
706  
707          public E next() {
708 <            E result;
601 <            if (cursor == fence)
708 >            if (remaining <= 0)
709                  throw new NoSuchElementException();
710 <            // This check doesn't catch all possible comodifications,
711 <            // but does catch the ones that corrupt traversal
712 <            if (tail != fence || (result = elements[cursor]) == null)
713 <                throw new ConcurrentModificationException();
714 <            lastRet = cursor;
608 <            cursor = (cursor + 1) & (elements.length - 1);
609 <            return result;
710 >            final Object[] es = elements;
711 >            E e = nonNullElementAt(es, cursor);
712 >            cursor = inc(lastRet = cursor, es.length);
713 >            remaining--;
714 >            return e;
715          }
716  
717 <        public void remove() {
717 >        void postDelete(boolean leftShifted) {
718 >            if (leftShifted)
719 >                cursor = dec(cursor, elements.length);
720 >        }
721 >
722 >        public final void remove() {
723              if (lastRet < 0)
724                  throw new IllegalStateException();
725 <            if (delete(lastRet))
616 <                cursor--;
725 >            postDelete(delete(lastRet));
726              lastRet = -1;
618            fence = tail;
727          }
728 +
729 +        public void forEachRemaining(Consumer<? super E> action) {
730 +            Objects.requireNonNull(action);
731 +            int r;
732 +            if ((r = remaining) <= 0)
733 +                return;
734 +            remaining = 0;
735 +            final Object[] es = elements;
736 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
737 +                throw new ConcurrentModificationException();
738 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
739 +                 ; i = 0, to = end) {
740 +                for (; i < to; i++)
741 +                    action.accept(elementAt(es, i));
742 +                if (to == end) {
743 +                    if (end != tail)
744 +                        throw new ConcurrentModificationException();
745 +                    lastRet = dec(end, es.length);
746 +                    break;
747 +                }
748 +            }
749 +        }
750 +    }
751 +
752 +    private class DescendingIterator extends DeqIterator {
753 +        DescendingIterator() { cursor = dec(tail, elements.length); }
754 +
755 +        public final E next() {
756 +            if (remaining <= 0)
757 +                throw new NoSuchElementException();
758 +            final Object[] es = elements;
759 +            E e = nonNullElementAt(es, cursor);
760 +            cursor = dec(lastRet = cursor, es.length);
761 +            remaining--;
762 +            return e;
763 +        }
764 +
765 +        void postDelete(boolean leftShifted) {
766 +            if (!leftShifted)
767 +                cursor = inc(cursor, elements.length);
768 +        }
769 +
770 +        public final void forEachRemaining(Consumer<? super E> action) {
771 +            Objects.requireNonNull(action);
772 +            int r;
773 +            if ((r = remaining) <= 0)
774 +                return;
775 +            remaining = 0;
776 +            final Object[] es = elements;
777 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
778 +                throw new ConcurrentModificationException();
779 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
780 +                 ; i = es.length - 1, to = end) {
781 +                // hotspot generates faster code than for: i >= to !
782 +                for (; i > to - 1; i--)
783 +                    action.accept(elementAt(es, i));
784 +                if (to == end) {
785 +                    if (end != head)
786 +                        throw new ConcurrentModificationException();
787 +                    lastRet = end;
788 +                    break;
789 +                }
790 +            }
791 +        }
792 +    }
793 +
794 +    /**
795 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
796 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
797 +     * deque.
798 +     *
799 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
800 +     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
801 +     * {@link Spliterator#NONNULL}.  Overriding implementations should document
802 +     * the reporting of additional characteristic values.
803 +     *
804 +     * @return a {@code Spliterator} over the elements in this deque
805 +     * @since 1.8
806 +     */
807 +    public Spliterator<E> spliterator() {
808 +        return new DeqSpliterator();
809 +    }
810 +
811 +    final class DeqSpliterator implements Spliterator<E> {
812 +        private int fence;      // -1 until first use
813 +        private int cursor;     // current index, modified on traverse/split
814 +
815 +        /** Constructs late-binding spliterator over all elements. */
816 +        DeqSpliterator() {
817 +            this.fence = -1;
818 +        }
819 +
820 +        /** Constructs spliterator over the given range. */
821 +        DeqSpliterator(int origin, int fence) {
822 +            // assert 0 <= origin && origin < elements.length;
823 +            // assert 0 <= fence && fence < elements.length;
824 +            this.cursor = origin;
825 +            this.fence = fence;
826 +        }
827 +
828 +        /** Ensures late-binding initialization; then returns fence. */
829 +        private int getFence() { // force initialization
830 +            int t;
831 +            if ((t = fence) < 0) {
832 +                t = fence = tail;
833 +                cursor = head;
834 +            }
835 +            return t;
836 +        }
837 +
838 +        public DeqSpliterator trySplit() {
839 +            final Object[] es = elements;
840 +            final int i, n;
841 +            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 +                ? null
843 +                : new DeqSpliterator(i, cursor = add(i, n, es.length));
844 +        }
845 +
846 +        public void forEachRemaining(Consumer<? super E> action) {
847 +            if (action == null)
848 +                throw new NullPointerException();
849 +            final int end = getFence(), cursor = this.cursor;
850 +            final Object[] es = elements;
851 +            if (cursor != end) {
852 +                this.cursor = end;
853 +                // null check at both ends of range is sufficient
854 +                if (es[cursor] == null || es[dec(end, es.length)] == null)
855 +                    throw new ConcurrentModificationException();
856 +                for (int i = cursor, to = (i <= end) ? end : es.length;
857 +                     ; i = 0, to = end) {
858 +                    for (; i < to; i++)
859 +                        action.accept(elementAt(es, i));
860 +                    if (to == end) break;
861 +                }
862 +            }
863 +        }
864 +
865 +        public boolean tryAdvance(Consumer<? super E> action) {
866 +            Objects.requireNonNull(action);
867 +            final Object[] es = elements;
868 +            if (fence < 0) { fence = tail; cursor = head; } // late-binding
869 +            final int i;
870 +            if ((i = cursor) == fence)
871 +                return false;
872 +            E e = nonNullElementAt(es, i);
873 +            cursor = inc(i, es.length);
874 +            action.accept(e);
875 +            return true;
876 +        }
877 +
878 +        public long estimateSize() {
879 +            return sub(getFence(), cursor, elements.length);
880 +        }
881 +
882 +        public int characteristics() {
883 +            return Spliterator.NONNULL
884 +                | Spliterator.ORDERED
885 +                | Spliterator.SIZED
886 +                | Spliterator.SUBSIZED;
887 +        }
888 +    }
889 +
890 +    /**
891 +     * @throws NullPointerException {@inheritDoc}
892 +     */
893 +    public void forEach(Consumer<? super E> action) {
894 +        Objects.requireNonNull(action);
895 +        final Object[] es = elements;
896 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
897 +             ; i = 0, to = end) {
898 +            for (; i < to; i++)
899 +                action.accept(elementAt(es, i));
900 +            if (to == end) {
901 +                if (end != tail) throw new ConcurrentModificationException();
902 +                break;
903 +            }
904 +        }
905 +        // checkInvariants();
906 +    }
907 +
908 +    /**
909 +     * Replaces each element of this deque with the result of applying the
910 +     * operator to that element, as specified by {@link List#replaceAll}.
911 +     *
912 +     * @param operator the operator to apply to each element
913 +     * @since TBD
914 +     */
915 +    /* public */ void replaceAll(UnaryOperator<E> operator) {
916 +        Objects.requireNonNull(operator);
917 +        final Object[] es = elements;
918 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
919 +             ; i = 0, to = end) {
920 +            for (; i < to; i++)
921 +                es[i] = operator.apply(elementAt(es, i));
922 +            if (to == end) {
923 +                if (end != tail) throw new ConcurrentModificationException();
924 +                break;
925 +            }
926 +        }
927 +        // checkInvariants();
928 +    }
929 +
930 +    /**
931 +     * @throws NullPointerException {@inheritDoc}
932 +     */
933 +    public boolean removeIf(Predicate<? super E> filter) {
934 +        Objects.requireNonNull(filter);
935 +        return bulkRemove(filter);
936 +    }
937 +
938 +    /**
939 +     * @throws NullPointerException {@inheritDoc}
940 +     */
941 +    public boolean removeAll(Collection<?> c) {
942 +        Objects.requireNonNull(c);
943 +        return bulkRemove(e -> c.contains(e));
944 +    }
945 +
946 +    /**
947 +     * @throws NullPointerException {@inheritDoc}
948 +     */
949 +    public boolean retainAll(Collection<?> c) {
950 +        Objects.requireNonNull(c);
951 +        return bulkRemove(e -> !c.contains(e));
952 +    }
953 +
954 +    /** Implementation of bulk remove methods. */
955 +    private boolean bulkRemove(Predicate<? super E> filter) {
956 +        // checkInvariants();
957 +        final Object[] es = elements;
958 +        // Optimize for initial run of survivors
959 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
960 +             ; i = 0, to = end) {
961 +            for (; i < to; i++)
962 +                if (filter.test(elementAt(es, i)))
963 +                    return bulkRemoveModified(filter, i);
964 +            if (to == end) {
965 +                if (end != tail) throw new ConcurrentModificationException();
966 +                break;
967 +            }
968 +        }
969 +        return false;
970 +    }
971 +
972 +    // A tiny bit set implementation
973 +
974 +    private static long[] nBits(int n) {
975 +        return new long[((n - 1) >> 6) + 1];
976 +    }
977 +    private static void setBit(long[] bits, int i) {
978 +        bits[i >> 6] |= 1L << i;
979 +    }
980 +    private static boolean isClear(long[] bits, int i) {
981 +        return (bits[i >> 6] & (1L << i)) == 0;
982 +    }
983 +
984 +    /**
985 +     * Helper for bulkRemove, in case of at least one deletion.
986 +     * Tolerate predicates that reentrantly access the collection for
987 +     * read (but writers still get CME), so traverse once to find
988 +     * elements to delete, a second pass to physically expunge.
989 +     *
990 +     * @param beg valid index of first element to be deleted
991 +     */
992 +    private boolean bulkRemoveModified(
993 +        Predicate<? super E> filter, final int beg) {
994 +        final Object[] es = elements;
995 +        final int capacity = es.length;
996 +        final int end = tail;
997 +        final long[] deathRow = nBits(sub(end, beg, capacity));
998 +        deathRow[0] = 1L;   // set bit 0
999 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1000 +             ; i = 0, to = end, k -= capacity) {
1001 +            for (; i < to; i++)
1002 +                if (filter.test(elementAt(es, i)))
1003 +                    setBit(deathRow, i - k);
1004 +            if (to == end) break;
1005 +        }
1006 +        // a two-finger traversal, with hare i reading, tortoise w writing
1007 +        int w = beg;
1008 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1009 +             ; w = 0) { // w rejoins i on second leg
1010 +            // In this loop, i and w are on the same leg, with i > w
1011 +            for (; i < to; i++)
1012 +                if (isClear(deathRow, i - k))
1013 +                    es[w++] = es[i];
1014 +            if (to == end) break;
1015 +            // In this loop, w is on the first leg, i on the second
1016 +            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1017 +                if (isClear(deathRow, i - k))
1018 +                    es[w++] = es[i];
1019 +            if (i >= to) {
1020 +                if (w == capacity) w = 0; // "corner" case
1021 +                break;
1022 +            }
1023 +        }
1024 +        if (end != tail) throw new ConcurrentModificationException();
1025 +        circularClear(es, tail = w, end);
1026 +        // checkInvariants();
1027 +        return true;
1028      }
1029  
1030      /**
1031 <     * Returns <tt>true</tt> if this deque contains the specified
1032 <     * element.  More formally, returns <tt>true</tt> if and only if this
1033 <     * deque contains at least one element <tt>e</tt> such that
626 <     * <tt>e.equals(o)</tt>.
1031 >     * Returns {@code true} if this deque contains the specified element.
1032 >     * More formally, returns {@code true} if and only if this deque contains
1033 >     * at least one element {@code e} such that {@code o.equals(e)}.
1034       *
1035       * @param o object to be checked for containment in this deque
1036 <     * @return <tt>true</tt> if this deque contains the specified element
1036 >     * @return {@code true} if this deque contains the specified element
1037       */
1038      public boolean contains(Object o) {
1039 <        if (o == null)
1040 <            return false;
1041 <        int mask = elements.length - 1;
1042 <        int i = head;
1043 <        E x;
1044 <        while ( (x = elements[i]) != null) {
1045 <            if (o.equals(x))
1046 <                return true;
1047 <            i = (i + 1) & mask;
1039 >        if (o != null) {
1040 >            final Object[] es = elements;
1041 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1042 >                 ; i = 0, to = end) {
1043 >                for (; i < to; i++)
1044 >                    if (o.equals(es[i]))
1045 >                        return true;
1046 >                if (to == end) break;
1047 >            }
1048          }
1049          return false;
1050      }
1051  
1052      /**
1053       * Removes a single instance of the specified element from this deque.
1054 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1054 >     * If the deque does not contain the element, it is unchanged.
1055 >     * More formally, removes the first element {@code e} such that
1056 >     * {@code o.equals(e)} (if such an element exists).
1057 >     * Returns {@code true} if this deque contained the specified element
1058 >     * (or equivalently, if this deque changed as a result of the call).
1059 >     *
1060 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1061       *
1062 <     * @param e element to be removed from this deque, if present
1063 <     * @return <tt>true</tt> if this deque contained the specified element
1062 >     * @param o element to be removed from this deque, if present
1063 >     * @return {@code true} if this deque contained the specified element
1064       */
1065 <    public boolean remove(Object e) {
1066 <        return removeFirstOccurrence(e);
1065 >    public boolean remove(Object o) {
1066 >        return removeFirstOccurrence(o);
1067      }
1068  
1069      /**
1070       * Removes all of the elements from this deque.
1071 +     * The deque will be empty after this call returns.
1072       */
1073      public void clear() {
1074 <        int h = head;
1075 <        int t = tail;
1076 <        if (h != t) { // clear all cells
1077 <            head = tail = 0;
1078 <            int i = h;
1079 <            int mask = elements.length - 1;
1080 <            do {
1081 <                elements[i] = null;
1082 <                i = (i + 1) & mask;
1083 <            } while(i != t);
1074 >        circularClear(elements, head, tail);
1075 >        head = tail = 0;
1076 >        // checkInvariants();
1077 >    }
1078 >
1079 >    /**
1080 >     * Nulls out slots starting at array index i, upto index end.
1081 >     * Condition i == end means "empty" - nothing to do.
1082 >     */
1083 >    private static void circularClear(Object[] es, int i, int end) {
1084 >        // assert 0 <= i && i < es.length;
1085 >        // assert 0 <= end && end < es.length;
1086 >        for (int to = (i <= end) ? end : es.length;
1087 >             ; i = 0, to = end) {
1088 >            for (; i < to; i++) es[i] = null;
1089 >            if (to == end) break;
1090          }
1091      }
1092  
1093      /**
1094 <     * Returns an array containing all of the elements in this list
1095 <     * in the correct order.
1094 >     * Returns an array containing all of the elements in this deque
1095 >     * in proper sequence (from first to last element).
1096       *
1097 <     * @return an array containing all of the elements in this list
1098 <     *         in the correct order
1097 >     * <p>The returned array will be "safe" in that no references to it are
1098 >     * maintained by this deque.  (In other words, this method must allocate
1099 >     * a new array).  The caller is thus free to modify the returned array.
1100 >     *
1101 >     * <p>This method acts as bridge between array-based and collection-based
1102 >     * APIs.
1103 >     *
1104 >     * @return an array containing all of the elements in this deque
1105       */
1106      public Object[] toArray() {
1107 <        return copyElements(new Object[size()]);
1107 >        return toArray(Object[].class);
1108 >    }
1109 >
1110 >    private <T> T[] toArray(Class<T[]> klazz) {
1111 >        final Object[] es = elements;
1112 >        final T[] a;
1113 >        final int head = this.head, tail = this.tail, end;
1114 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1115 >            // Uses null extension feature of copyOfRange
1116 >            a = Arrays.copyOfRange(es, head, end, klazz);
1117 >        } else {
1118 >            // integer overflow!
1119 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1120 >            System.arraycopy(es, head, a, 0, es.length - head);
1121 >        }
1122 >        if (end != tail)
1123 >            System.arraycopy(es, 0, a, es.length - head, tail);
1124 >        return a;
1125      }
1126  
1127      /**
1128 <     * Returns an array containing all of the elements in this deque in the
1129 <     * correct order; the runtime type of the returned array is that of the
1130 <     * specified array.  If the deque fits in the specified array, it is
1131 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1132 <     * type of the specified array and the size of this deque.
1128 >     * Returns an array containing all of the elements in this deque in
1129 >     * proper sequence (from first to last element); the runtime type of the
1130 >     * returned array is that of the specified array.  If the deque fits in
1131 >     * the specified array, it is returned therein.  Otherwise, a new array
1132 >     * is allocated with the runtime type of the specified array and the
1133 >     * size of this deque.
1134 >     *
1135 >     * <p>If this deque fits in the specified array with room to spare
1136 >     * (i.e., the array has more elements than this deque), the element in
1137 >     * the array immediately following the end of the deque is set to
1138 >     * {@code null}.
1139 >     *
1140 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1141 >     * array-based and collection-based APIs.  Further, this method allows
1142 >     * precise control over the runtime type of the output array, and may,
1143 >     * under certain circumstances, be used to save allocation costs.
1144 >     *
1145 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1146 >     * The following code can be used to dump the deque into a newly
1147 >     * allocated array of {@code String}:
1148 >     *
1149 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1150       *
1151 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1152 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1151 >     * Note that {@code toArray(new Object[0])} is identical in function to
1152 >     * {@code toArray()}.
1153       *
1154       * @param a the array into which the elements of the deque are to
1155 <     *          be stored, if it is big enough; otherwise, a new array of the
1156 <     *          same runtime type is allocated for this purpose
1157 <     * @return an array containing the elements of the deque
1158 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1159 <     *         of the runtime type of every element in this deque
1155 >     *          be stored, if it is big enough; otherwise, a new array of the
1156 >     *          same runtime type is allocated for this purpose
1157 >     * @return an array containing all of the elements in this deque
1158 >     * @throws ArrayStoreException if the runtime type of the specified array
1159 >     *         is not a supertype of the runtime type of every element in
1160 >     *         this deque
1161 >     * @throws NullPointerException if the specified array is null
1162       */
1163 +    @SuppressWarnings("unchecked")
1164      public <T> T[] toArray(T[] a) {
1165 <        int size = size();
1166 <        if (a.length < size)
1167 <            a = (T[])java.lang.reflect.Array.newInstance(
1168 <                    a.getClass().getComponentType(), size);
1169 <        copyElements(a);
1170 <        if (a.length > size)
1165 >        final int size;
1166 >        if ((size = size()) > a.length)
1167 >            return toArray((Class<T[]>) a.getClass());
1168 >        final Object[] es = elements;
1169 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1170 >             ; i = 0, len = tail) {
1171 >            System.arraycopy(es, i, a, j, len);
1172 >            if ((j += len) == size) break;
1173 >        }
1174 >        if (size < a.length)
1175              a[size] = null;
1176          return a;
1177      }
# Line 718 | Line 1184 | public class ArrayDeque<E> extends Abstr
1184       * @return a copy of this deque
1185       */
1186      public ArrayDeque<E> clone() {
1187 <        try {
1187 >        try {
1188 >            @SuppressWarnings("unchecked")
1189              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1190 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1190 >            result.elements = Arrays.copyOf(elements, elements.length);
1191              return result;
1192 <
728 <        } catch (CloneNotSupportedException e) {
1192 >        } catch (CloneNotSupportedException e) {
1193              throw new AssertionError();
1194          }
1195      }
1196  
733    /**
734     * Appease the serialization gods.
735     */
1197      private static final long serialVersionUID = 2340985798034038923L;
1198  
1199      /**
1200 <     * Serialize this deque.
1200 >     * Saves this deque to a stream (that is, serializes it).
1201       *
1202 <     * @serialData The current size (<tt>int</tt>) of the deque,
1202 >     * @param s the stream
1203 >     * @throws java.io.IOException if an I/O error occurs
1204 >     * @serialData The current size ({@code int}) of the deque,
1205       * followed by all of its elements (each an object reference) in
1206       * first-to-last order.
1207       */
1208 <    private void writeObject(ObjectOutputStream s) throws IOException {
1208 >    private void writeObject(java.io.ObjectOutputStream s)
1209 >            throws java.io.IOException {
1210          s.defaultWriteObject();
1211  
1212          // Write out size
1213 <        int size = size();
750 <        s.writeInt(size);
1213 >        s.writeInt(size());
1214  
1215          // Write out elements in order.
1216 <        int i = head;
1217 <        int mask = elements.length - 1;
1218 <        for (int j = 0; j < size; j++) {
1219 <            s.writeObject(elements[i]);
1220 <            i = (i + 1) & mask;
1216 >        final Object[] es = elements;
1217 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1218 >             ; i = 0, to = end) {
1219 >            for (; i < to; i++)
1220 >                s.writeObject(es[i]);
1221 >            if (to == end) break;
1222          }
1223      }
1224  
1225      /**
1226 <     * Deserialize this deque.
1226 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1227 >     * @param s the stream
1228 >     * @throws ClassNotFoundException if the class of a serialized object
1229 >     *         could not be found
1230 >     * @throws java.io.IOException if an I/O error occurs
1231       */
1232 <    private void readObject(ObjectInputStream s)
1233 <            throws IOException, ClassNotFoundException {
1232 >    private void readObject(java.io.ObjectInputStream s)
1233 >            throws java.io.IOException, ClassNotFoundException {
1234          s.defaultReadObject();
1235  
1236          // Read in size and allocate array
1237          int size = s.readInt();
1238 <        allocateElements(size);
1239 <        head = 0;
772 <        tail = size;
1238 >        elements = new Object[size + 1];
1239 >        this.tail = size;
1240  
1241          // Read in all elements in the proper order.
1242          for (int i = 0; i < size; i++)
1243 <            elements[i] = (E)s.readObject();
1243 >            elements[i] = s.readObject();
1244 >    }
1245  
1246 +    /** debugging */
1247 +    void checkInvariants() {
1248 +        // Use head and tail fields with empty slot at tail strategy.
1249 +        // head == tail disambiguates to "empty".
1250 +        try {
1251 +            int capacity = elements.length;
1252 +            // assert 0 <= head && head < capacity;
1253 +            // assert 0 <= tail && tail < capacity;
1254 +            // assert capacity > 0;
1255 +            // assert size() < capacity;
1256 +            // assert head == tail || elements[head] != null;
1257 +            // assert elements[tail] == null;
1258 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1259 +        } catch (Throwable t) {
1260 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1261 +                              head, tail, elements.length);
1262 +            System.err.printf("elements=%s%n",
1263 +                              Arrays.toString(elements));
1264 +            throw t;
1265 +        }
1266      }
1267 +
1268   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines