ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.88 by jsr166, Mon Oct 24 16:01:25 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 12 | Line 16 | import java.io.*;
16   * usage.  They are not thread-safe; in the absence of external
17   * synchronization, they do not support concurrent access by multiple threads.
18   * Null elements are prohibited.  This class is likely to be faster than
19 < * {@link Stack} when used as as a stack, and faster than {@link LinkedList}
19 > * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64 <     * The array in which the elements of in the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
64 >     * The array in which the elements of the deque are stored.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
70 <     */
71 <    private transient int head;
72 <
73 <    /**
74 <     * The index at which the next element would be added to the tail
75 <     * of the deque (via addLast(E), add(E), or push(E)).
76 <     */
77 <    private transient int tail;
78 <
79 <    /**
80 <     * The minimum capacity that we'll use for a newly created deque.
81 <     * Must be a power of 2.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private static final int MIN_INITIAL_CAPACITY = 8;
75 >    transient int head;
76  
77 <    // ******  Array allocation and resizing utilities ******
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * Allocate empty array to hold the given number of elements.
82 <     *
83 <     * @param numElements  the number of elements to hold.
84 <     */
85 <    private void allocateElements(int numElements) {  
86 <        int initialCapacity = MIN_INITIAL_CAPACITY;
87 <        // Find the best power of two to hold elements.
88 <        // Tests "<=" because arrays aren't kept full.
89 <        if (numElements >= initialCapacity) {
90 <            initialCapacity = numElements;
91 <            initialCapacity |= (initialCapacity >>>  1);
92 <            initialCapacity |= (initialCapacity >>>  2);
93 <            initialCapacity |= (initialCapacity >>>  4);
94 <            initialCapacity |= (initialCapacity >>>  8);
95 <            initialCapacity |= (initialCapacity >>> 16);
96 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        int oldCapacity = elements.length;
119 >        int minCapacity;
120 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
121 >            if (minCapacity < 0)
122 >                throw new IllegalStateException("Sorry, deque too big");
123 >            return Integer.MAX_VALUE;
124          }
125 <        elements = (E[]) new Object[initialCapacity];
125 >        if (needed > jump)
126 >            return minCapacity;
127 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
128 >            ? oldCapacity + jump
129 >            : MAX_ARRAY_SIZE;
130      }
131  
132      /**
133 <     * Double the capacity of this deque.  Call only when full, i.e.,
134 <     * when head and tail have wrapped around to become equal.
133 >     * Increases the internal storage of this collection, if necessary,
134 >     * to ensure that it can hold at least the given number of elements.
135 >     *
136 >     * @param minCapacity the desired minimum capacity
137 >     * @since TBD
138       */
139 <    private void doubleCapacity() {
140 <        assert head == tail;
141 <        int p = head;
142 <        int n = elements.length;
119 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
139 >    /* public */ void ensureCapacity(int minCapacity) {
140 >        if (minCapacity > elements.length)
141 >            grow(minCapacity - elements.length);
142 >        // checkInvariants();
143      }
144  
145      /**
146 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
146 >     * Minimizes the internal storage of this collection.
147       *
148 <     * @return its argument
148 >     * @since TBD
149       */
150 <    private <T> T[] copyElements(T[] a) {
151 <        if (head < tail) {
152 <            System.arraycopy(elements, head, a, 0, size());
153 <        } else if (head > tail) {
142 <            int headPortionLen = elements.length - head;
143 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
150 >    /* public */ void trimToSize() {
151 >        if (size < elements.length) {
152 >            elements = toArray();
153 >            head = 0;
154          }
155 <        return a;
155 >        // checkInvariants();
156      }
157  
158      /**
159 <     * Constructs an empty array deque with the an initial capacity
159 >     * Constructs an empty array deque with an initial capacity
160       * sufficient to hold 16 elements.
161       */
162      public ArrayDeque() {
163 <        elements = (E[]) new Object[16];
163 >        elements = new Object[16];
164      }
165  
166      /**
167       * Constructs an empty array deque with an initial capacity
168       * sufficient to hold the specified number of elements.
169       *
170 <     * @param numElements  lower bound on initial capacity of the deque
170 >     * @param numElements lower bound on initial capacity of the deque
171       */
172      public ArrayDeque(int numElements) {
173 <        allocateElements(numElements);
173 >        elements = new Object[numElements];
174      }
175  
176      /**
# Line 175 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * @throws NullPointerException if the specified collection is null
185       */
186      public ArrayDeque(Collection<? extends E> c) {
187 <        allocateElements(c.size());
188 <        addAll(c);
187 >        Object[] elements = c.toArray();
188 >        // defend against c.toArray (incorrectly) not returning Object[]
189 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 >        size = elements.length;
191 >        if (elements.getClass() != Object[].class)
192 >            elements = Arrays.copyOf(elements, size, Object[].class);
193 >        for (Object obj : elements)
194 >            Objects.requireNonNull(obj);
195 >        this.elements = elements;
196      }
197  
198 <    // The main insertion and extraction methods are addFirst,
199 <    // addLast, pollFirst, pollLast. The other methods are defined in
200 <    // terms of these.
198 >    /**
199 >     * Increments i, mod modulus.
200 >     * Precondition and postcondition: 0 <= i < modulus.
201 >     */
202 >    static final int inc(int i, int modulus) {
203 >        if (++i == modulus) i = 0;
204 >        return i;
205 >    }
206  
207      /**
208 <     * Inserts the specified element to the front this deque.
209 <     *
189 <     * @param e the element to insert
190 <     * @throws NullPointerException if <tt>e</tt> is null
208 >     * Decrements i, mod modulus.
209 >     * Precondition and postcondition: 0 <= i < modulus.
210       */
211 <    public void addFirst(E e) {
212 <        if (e == null)
213 <            throw new NullPointerException();
195 <        elements[head = (head - 1) & (elements.length - 1)] = e;
196 <        if (head == tail)
197 <            doubleCapacity();
211 >    static final int dec(int i, int modulus) {
212 >        if (--i < 0) i += modulus;
213 >        return i;
214      }
215  
216      /**
217 <     * Inserts the specified element to the end this deque.
218 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
204 <     *
205 <     * @param e the element to insert
206 <     * @throws NullPointerException if <tt>e</tt> is null
217 >     * Adds i and j, mod modulus.
218 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
219       */
220 <    public void addLast(E e) {
220 >    static final int add(int i, int j, int modulus) {
221 >        if ((i += j) - modulus >= 0) i -= modulus;
222 >        return i;
223 >    }
224 >
225 >    /**
226 >     * Returns the array index of the last element.
227 >     * May return invalid index -1 if there are no elements.
228 >     */
229 >    final int tail() {
230 >        return add(head, size - 1, elements.length);
231 >    }
232 >
233 >    /**
234 >     * Returns element at array index i.
235 >     */
236 >    @SuppressWarnings("unchecked")
237 >    private E elementAt(int i) {
238 >        return (E) elements[i];
239 >    }
240 >
241 >    /**
242 >     * A version of elementAt that checks for null elements.
243 >     * This check doesn't catch all possible comodifications,
244 >     * but does catch ones that corrupt traversal.
245 >     */
246 >    E checkedElementAt(Object[] elements, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
248          if (e == null)
249 <            throw new NullPointerException();
250 <        elements[tail] = e;
212 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
213 <            doubleCapacity();
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253 +    // The main insertion and extraction methods are addFirst,
254 +    // addLast, pollFirst, pollLast. The other methods are defined in
255 +    // terms of these.
256 +
257      /**
258 <     * Retrieves and removes the first element of this deque, or
218 <     * <tt>null</tt> if this deque is empty.
258 >     * Inserts the specified element at the front of this deque.
259       *
260 <     * @return the first element of this deque, or <tt>null</tt> if
261 <     *     this deque is empty
260 >     * @param e the element to add
261 >     * @throws NullPointerException if the specified element is null
262       */
263 <    public E pollFirst() {
264 <        int h = head;
265 <        E result = elements[h]; // Element is null if deque empty
266 <        if (result == null)
267 <            return null;
268 <        elements[h] = null;     // Must null out slot
269 <        head = (h + 1) & (elements.length - 1);
270 <        return result;
263 >    public void addFirst(E e) {
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        final Object[] elements;
267 >        final int capacity, s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length))
269 >            addFirstSlowPath(e);
270 >        else
271 >            elements[head = dec(head, capacity)] = e;
272 >        size = s + 1;
273 >        // checkInvariants();
274 >    }
275 >
276 >    private void addFirstSlowPath(E e) {
277 >        grow(1);
278 >        final Object[] elements = this.elements;
279 >        elements[head = dec(head, elements.length)] = e;
280      }
281  
282      /**
283 <     * Retrieves and removes the last element of this deque, or
284 <     * <tt>null</tt> if this deque is empty.
283 >     * Inserts the specified element at the end of this deque.
284 >     *
285 >     * <p>This method is equivalent to {@link #add}.
286       *
287 <     * @return the last element of this deque, or <tt>null</tt> if
288 <     *     this deque is empty
287 >     * @param e the element to add
288 >     * @throws NullPointerException if the specified element is null
289       */
290 <    public E pollLast() {
291 <        int t = (tail - 1) & (elements.length - 1);
292 <        E result = elements[t];
293 <        if (result == null)
294 <            return null;
295 <        elements[t] = null;
296 <        tail = t;
297 <        return result;
290 >    public void addLast(E e) {
291 >        // checkInvariants();
292 >        Objects.requireNonNull(e);
293 >        final Object[] elements;
294 >        final int capacity, s;
295 >        if ((s = size) == (capacity = (elements = this.elements).length))
296 >            addLastSlowPath(e);
297 >        else
298 >            elements[add(head, s, capacity)] = e;
299 >        size = s + 1;
300 >        // checkInvariants();
301 >    }
302 >
303 >    private void addLastSlowPath(E e) {
304 >        grow(1);
305 >        final Object[] elements = this.elements;
306 >        elements[add(head, size, elements.length)] = e;
307      }
308  
309      /**
310 <     * Inserts the specified element to the front this deque.
311 <     *
312 <     * @param e the element to insert
313 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
314 <     * @throws NullPointerException if <tt>e</tt> is null
310 >     * Adds all of the elements in the specified collection at the end
311 >     * of this deque, as if by calling {@link #addLast} on each one,
312 >     * in the order that they are returned by the collection's
313 >     * iterator.
314 >     *
315 >     * @param c the elements to be inserted into this deque
316 >     * @return {@code true} if this deque changed as a result of the call
317 >     * @throws NullPointerException if the specified collection or any
318 >     *         of its elements are null
319 >     */
320 >    public boolean addAll(Collection<? extends E> c) {
321 >        final int s = size, needed = c.size() - (elements.length - s);
322 >        if (needed > 0)
323 >            grow(needed);
324 >        c.forEach((e) -> addLast(e));
325 >        // checkInvariants();
326 >        return size > s;
327 >    }
328 >
329 >    /**
330 >     * Inserts the specified element at the front of this deque.
331 >     *
332 >     * @param e the element to add
333 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
334 >     * @throws NullPointerException if the specified element is null
335       */
336      public boolean offerFirst(E e) {
337          addFirst(e);
# Line 260 | Line 339 | public class ArrayDeque<E> extends Abstr
339      }
340  
341      /**
342 <     * Inserts the specified element to the end this deque.
342 >     * Inserts the specified element at the end of this deque.
343       *
344 <     * @param e the element to insert
345 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
346 <     * @throws NullPointerException if <tt>e</tt> is null
344 >     * @param e the element to add
345 >     * @return {@code true} (as specified by {@link Deque#offerLast})
346 >     * @throws NullPointerException if the specified element is null
347       */
348      public boolean offerLast(E e) {
349          addLast(e);
# Line 272 | Line 351 | public class ArrayDeque<E> extends Abstr
351      }
352  
353      /**
354 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
354 >     * @throws NoSuchElementException {@inheritDoc}
355       */
356      public E removeFirst() {
357 <        E x = pollFirst();
358 <        if (x == null)
357 >        // checkInvariants();
358 >        E e = pollFirst();
359 >        if (e == null)
360              throw new NoSuchElementException();
361 <        return x;
361 >        return e;
362      }
363  
364      /**
365 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
365 >     * @throws NoSuchElementException {@inheritDoc}
366       */
367      public E removeLast() {
368 <        E x = pollLast();
369 <        if (x == null)
368 >        // checkInvariants();
369 >        E e = pollLast();
370 >        if (e == null)
371              throw new NoSuchElementException();
372 <        return x;
372 >        return e;
373      }
374  
375 <    /**
376 <     * Retrieves, but does not remove, the first element of this deque,
377 <     * returning <tt>null</tt> if this deque is empty.
378 <     *
379 <     * @return the first element of this deque, or <tt>null</tt> if
380 <     *     this deque is empty
381 <     */
382 <    public E peekFirst() {
383 <        return elements[head]; // elements[head] is null if deque empty
375 >    public E pollFirst() {
376 >        // checkInvariants();
377 >        final int s, h;
378 >        if ((s = size) == 0)
379 >            return null;
380 >        final Object[] elements = this.elements;
381 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
382 >        elements[h] = null;
383 >        head = inc(h, elements.length);
384 >        size = s - 1;
385 >        return e;
386      }
387  
388 <    /**
389 <     * Retrieves, but does not remove, the last element of this deque,
390 <     * returning <tt>null</tt> if this deque is empty.
391 <     *
392 <     * @return the last element of this deque, or <tt>null</tt> if this deque
393 <     *     is empty
394 <     */
395 <    public E peekLast() {
396 <        return elements[(tail - 1) & (elements.length - 1)];
388 >    public E pollLast() {
389 >        // checkInvariants();
390 >        final int s, tail;
391 >        if ((s = size) == 0)
392 >            return null;
393 >        final Object[] elements = this.elements;
394 >        @SuppressWarnings("unchecked")
395 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
396 >        elements[tail] = null;
397 >        size = s - 1;
398 >        return e;
399      }
400  
401      /**
402 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
402 >     * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
407 <            throw new NoSuchElementException();
338 <        return x;
405 >        // checkInvariants();
406 >        if (size == 0) throw new NoSuchElementException();
407 >        return elementAt(head);
408      }
409  
410      /**
411 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
411 >     * @throws NoSuchElementException {@inheritDoc}
412       */
413      public E getLast() {
414 <        E x = elements[(tail - 1) & (elements.length - 1)];
415 <        if (x == null)
416 <            throw new NoSuchElementException();
417 <        return x;
414 >        // checkInvariants();
415 >        if (size == 0) throw new NoSuchElementException();
416 >        return elementAt(tail());
417 >    }
418 >
419 >    public E peekFirst() {
420 >        // checkInvariants();
421 >        return (size == 0) ? null : elementAt(head);
422 >    }
423 >
424 >    public E peekLast() {
425 >        // checkInvariants();
426 >        return (size == 0) ? null : elementAt(tail());
427      }
428  
429      /**
430       * Removes the first occurrence of the specified element in this
431 <     * deque (when traversing the deque from head to tail).  If the deque
432 <     * does not contain the element, it is unchanged.
433 <     *
434 <     * @param e element to be removed from this deque, if present
435 <     * @return <tt>true</tt> if the deque contained the specified element
436 <     */
437 <    public boolean removeFirstOccurrence(Object e) {
438 <        if (e == null)
439 <            return false;
440 <        int mask = elements.length - 1;
441 <        int i = head;
442 <        E x;
443 <        while ( (x = elements[i]) != null) {
444 <            if (e.equals(x)) {
445 <                delete(i);
446 <                return true;
431 >     * deque (when traversing the deque from head to tail).
432 >     * If the deque does not contain the element, it is unchanged.
433 >     * More formally, removes the first element {@code e} such that
434 >     * {@code o.equals(e)} (if such an element exists).
435 >     * Returns {@code true} if this deque contained the specified element
436 >     * (or equivalently, if this deque changed as a result of the call).
437 >     *
438 >     * @param o element to be removed from this deque, if present
439 >     * @return {@code true} if the deque contained the specified element
440 >     */
441 >    public boolean removeFirstOccurrence(Object o) {
442 >        // checkInvariants();
443 >        if (o != null) {
444 >            final Object[] elements = this.elements;
445 >            final int capacity = elements.length;
446 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
447 >                if (o.equals(elements[i])) {
448 >                    delete(i);
449 >                    return true;
450 >                }
451              }
375            i = (i + 1) & mask;
452          }
453          return false;
454      }
455  
456      /**
457       * Removes the last occurrence of the specified element in this
458 <     * deque (when traversing the deque from head to tail).  If the deque
459 <     * does not contain the element, it is unchanged.
460 <     *
461 <     * @param e element to be removed from this deque, if present
462 <     * @return <tt>true</tt> if the deque contained the specified element
463 <     */
464 <    public boolean removeLastOccurrence(Object e) {
465 <        if (e == null)
466 <            return false;
467 <        int mask = elements.length - 1;
468 <        int i = (tail - 1) & mask;
469 <        E x;
470 <        while ( (x = elements[i]) != null) {
471 <            if (e.equals(x)) {
472 <                delete(i);
473 <                return true;
458 >     * deque (when traversing the deque from head to tail).
459 >     * If the deque does not contain the element, it is unchanged.
460 >     * More formally, removes the last element {@code e} such that
461 >     * {@code o.equals(e)} (if such an element exists).
462 >     * Returns {@code true} if this deque contained the specified element
463 >     * (or equivalently, if this deque changed as a result of the call).
464 >     *
465 >     * @param o element to be removed from this deque, if present
466 >     * @return {@code true} if the deque contained the specified element
467 >     */
468 >    public boolean removeLastOccurrence(Object o) {
469 >        if (o != null) {
470 >            final Object[] elements = this.elements;
471 >            final int capacity = elements.length;
472 >            for (int k = size, i = add(head, k - 1, capacity);
473 >                 --k >= 0; i = dec(i, capacity)) {
474 >                if (o.equals(elements[i])) {
475 >                    delete(i);
476 >                    return true;
477 >                }
478              }
399            i = (i - 1) & mask;
479          }
480          return false;
481      }
# Line 404 | Line 483 | public class ArrayDeque<E> extends Abstr
483      // *** Queue methods ***
484  
485      /**
486 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
486 >     * Inserts the specified element at the end of this deque.
487       *
488       * <p>This method is equivalent to {@link #addLast}.
489       *
490 <     * @param e the element to insert
491 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
492 <     * @throws NullPointerException if <tt>e</tt> is null
490 >     * @param e the element to add
491 >     * @return {@code true} (as specified by {@link Collection#add})
492 >     * @throws NullPointerException if the specified element is null
493       */
494      public boolean add(E e) {
495          addLast(e);
# Line 431 | Line 497 | public class ArrayDeque<E> extends Abstr
497      }
498  
499      /**
500 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
500 >     * Inserts the specified element at the end of this deque.
501       *
502 <     * <p>This method is equivalent to {@link #pollFirst}.
502 >     * <p>This method is equivalent to {@link #offerLast}.
503       *
504 <     * @return the first element of this deque, or <tt>null</tt> if
505 <     *     this deque is empty
504 >     * @param e the element to add
505 >     * @return {@code true} (as specified by {@link Queue#offer})
506 >     * @throws NullPointerException if the specified element is null
507       */
508 <    public E poll() {
509 <        return pollFirst();
508 >    public boolean offer(E e) {
509 >        return offerLast(e);
510      }
511  
512      /**
513       * Retrieves and removes the head of the queue represented by this deque.
514 <     * This method differs from the <tt>poll</tt> method in that it throws an
514 >     *
515 >     * This method differs from {@link #poll poll} only in that it throws an
516       * exception if this deque is empty.
517       *
518       * <p>This method is equivalent to {@link #removeFirst}.
519       *
520       * @return the head of the queue represented by this deque
521 <     * @throws NoSuchElementException if this deque is empty
521 >     * @throws NoSuchElementException {@inheritDoc}
522       */
523      public E remove() {
524          return removeFirst();
525      }
526  
527      /**
528 <     * Retrieves, but does not remove, the head of the queue represented by
529 <     * this deque, returning <tt>null</tt> if this deque is empty.
528 >     * Retrieves and removes the head of the queue represented by this deque
529 >     * (in other words, the first element of this deque), or returns
530 >     * {@code null} if this deque is empty.
531       *
532 <     * <p>This method is equivalent to {@link #peekFirst}
532 >     * <p>This method is equivalent to {@link #pollFirst}.
533       *
534       * @return the head of the queue represented by this deque, or
535 <     *     <tt>null</tt> if this deque is empty
535 >     *         {@code null} if this deque is empty
536       */
537 <    public E peek() {
538 <        return peekFirst();
537 >    public E poll() {
538 >        return pollFirst();
539      }
540  
541      /**
542       * Retrieves, but does not remove, the head of the queue represented by
543 <     * this deque.  This method differs from the <tt>peek</tt> method only in
543 >     * this deque.  This method differs from {@link #peek peek} only in
544       * that it throws an exception if this deque is empty.
545       *
546 <     * <p>This method is equivalent to {@link #getFirst}
546 >     * <p>This method is equivalent to {@link #getFirst}.
547       *
548       * @return the head of the queue represented by this deque
549 <     * @throws NoSuchElementException if this deque is empty
549 >     * @throws NoSuchElementException {@inheritDoc}
550       */
551      public E element() {
552          return getFirst();
553      }
554  
555 +    /**
556 +     * Retrieves, but does not remove, the head of the queue represented by
557 +     * this deque, or returns {@code null} if this deque is empty.
558 +     *
559 +     * <p>This method is equivalent to {@link #peekFirst}.
560 +     *
561 +     * @return the head of the queue represented by this deque, or
562 +     *         {@code null} if this deque is empty
563 +     */
564 +    public E peek() {
565 +        return peekFirst();
566 +    }
567 +
568      // *** Stack methods ***
569  
570      /**
571       * Pushes an element onto the stack represented by this deque.  In other
572 <     * words, inserts the element to the front this deque.
572 >     * words, inserts the element at the front of this deque.
573       *
574       * <p>This method is equivalent to {@link #addFirst}.
575       *
576       * @param e the element to push
577 <     * @throws NullPointerException if <tt>e</tt> is null
577 >     * @throws NullPointerException if the specified element is null
578       */
579      public void push(E e) {
580          addFirst(e);
# Line 503 | Line 582 | public class ArrayDeque<E> extends Abstr
582  
583      /**
584       * Pops an element from the stack represented by this deque.  In other
585 <     * words, removes and returns the the first element of this deque.
585 >     * words, removes and returns the first element of this deque.
586       *
587       * <p>This method is equivalent to {@link #removeFirst()}.
588       *
589       * @return the element at the front of this deque (which is the top
590 <     *     of the stack represented by this deque)
591 <     * @throws NoSuchElementException if this deque is empty
590 >     *         of the stack represented by this deque)
591 >     * @throws NoSuchElementException {@inheritDoc}
592       */
593      public E pop() {
594          return removeFirst();
595      }
596  
597      /**
598 <     * Remove the element at the specified position in the elements array,
599 <     * adjusting head, tail, and size as necessary.  This can result in
600 <     * motion of elements backwards or forwards in the array.
601 <     *
602 <     * <p>This method is called delete rather than remove to emphasize the
603 <     * that that its semantics differ from those of List.remove(int).
604 <     *
598 >     * Removes the element at the specified position in the elements array.
599 >     * This can result in forward or backwards motion of array elements.
600 >     * We optimize for least element motion.
601 >     *
602 >     * <p>This method is called delete rather than remove to emphasize
603 >     * that its semantics differ from those of {@link List#remove(int)}.
604 >     *
605       * @return true if elements moved backwards
606       */
607 <    private boolean delete(int i) {
608 <        // Case 1: Deque doesn't wrap
609 <        // Case 2: Deque does wrap and removed element is in the head portion
610 <        if ((head < tail || tail == 0) || i >= head) {
611 <            System.arraycopy(elements, head, elements, head + 1, i - head);
612 <            elements[head] = null;
613 <            head = (head + 1) & (elements.length - 1);
607 >    boolean delete(int i) {
608 >        // checkInvariants();
609 >        final Object[] elements = this.elements;
610 >        final int capacity = elements.length;
611 >        final int h = head;
612 >        int front;              // number of elements before to-be-deleted elt
613 >        if ((front = i - h) < 0) front += capacity;
614 >        final int back = size - front - 1; // number of elements after
615 >        if (front < back) {
616 >            // move front elements forwards
617 >            if (h <= i) {
618 >                System.arraycopy(elements, h, elements, h + 1, front);
619 >            } else { // Wrap around
620 >                System.arraycopy(elements, 0, elements, 1, i);
621 >                elements[0] = elements[capacity - 1];
622 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
623 >            }
624 >            elements[h] = null;
625 >            head = inc(h, capacity);
626 >            size--;
627 >            // checkInvariants();
628              return false;
629 +        } else {
630 +            // move back elements backwards
631 +            int tail = tail();
632 +            if (i <= tail) {
633 +                System.arraycopy(elements, i + 1, elements, i, back);
634 +            } else { // Wrap around
635 +                int firstLeg = capacity - (i + 1);
636 +                System.arraycopy(elements, i + 1, elements, i, firstLeg);
637 +                elements[capacity - 1] = elements[0];
638 +                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
639 +            }
640 +            elements[tail] = null;
641 +            size--;
642 +            // checkInvariants();
643 +            return true;
644          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
645      }
646  
647      // *** Collection Methods ***
# Line 550 | Line 652 | public class ArrayDeque<E> extends Abstr
652       * @return the number of elements in this deque
653       */
654      public int size() {
655 <        return (tail - head) & (elements.length - 1);
655 >        return size;
656      }
657  
658      /**
659 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
659 >     * Returns {@code true} if this deque contains no elements.
660       *
661 <     * @return <tt>true</tt> if this collection contains no elements.
661 >     * @return {@code true} if this deque contains no elements
662       */
663      public boolean isEmpty() {
664 <        return head == tail;
664 >        return size == 0;
665      }
666  
667      /**
# Line 567 | Line 669 | public class ArrayDeque<E> extends Abstr
669       * will be ordered from first (head) to last (tail).  This is the same
670       * order that elements would be dequeued (via successive calls to
671       * {@link #remove} or popped (via successive calls to {@link #pop}).
672 <     *
673 <     * @return an <tt>Iterator</tt> over the elements in this deque
672 >     *
673 >     * @return an iterator over the elements in this deque
674       */
675      public Iterator<E> iterator() {
676          return new DeqIterator();
677      }
678  
679 +    public Iterator<E> descendingIterator() {
680 +        return new DescendingIterator();
681 +    }
682 +
683      private class DeqIterator implements Iterator<E> {
684 <        /**
685 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
684 >        /** Index of element to be returned by subsequent call to next. */
685 >        int cursor;
686  
687 <        /**
688 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
687 >        /** Number of elements yet to be returned. */
688 >        int remaining = size;
689  
690          /**
691           * Index of element returned by most recent call to next.
692           * Reset to -1 if element is deleted by a call to remove.
693           */
694 <        private int lastRet = -1;
694 >        int lastRet = -1;
695 >
696 >        DeqIterator() { cursor = head; }
697  
698 <        public boolean hasNext() {
699 <            return cursor != fence;
698 >        public final boolean hasNext() {
699 >            return remaining > 0;
700          }
701  
702          public E next() {
703 <            E result;
601 <            if (cursor == fence)
703 >            if (remaining == 0)
704                  throw new NoSuchElementException();
705 <            // This check doesn't catch all possible comodifications,
604 <            // but does catch the ones that corrupt traversal
605 <            if (tail != fence || (result = elements[cursor]) == null)
606 <                throw new ConcurrentModificationException();
705 >            E e = checkedElementAt(elements, cursor);
706              lastRet = cursor;
707 <            cursor = (cursor + 1) & (elements.length - 1);
708 <            return result;
707 >            cursor = inc(cursor, elements.length);
708 >            remaining--;
709 >            return e;
710 >        }
711 >
712 >        void postDelete(boolean leftShifted) {
713 >            if (leftShifted)
714 >                cursor = dec(cursor, elements.length); // undo inc in next
715          }
716  
717 <        public void remove() {
717 >        public final void remove() {
718              if (lastRet < 0)
719                  throw new IllegalStateException();
720 <            if (delete(lastRet))
616 <                cursor--;
720 >            postDelete(delete(lastRet));
721              lastRet = -1;
618            fence = tail;
722          }
723 +
724 +        public void forEachRemaining(Consumer<? super E> action) {
725 +            Objects.requireNonNull(action);
726 +            final Object[] elements = ArrayDeque.this.elements;
727 +            final int capacity = elements.length;
728 +            int k = remaining;
729 +            remaining = 0;
730 +            for (int i = cursor; --k >= 0; i = inc(i, capacity))
731 +                action.accept(checkedElementAt(elements, i));
732 +        }
733 +    }
734 +
735 +    private class DescendingIterator extends DeqIterator {
736 +        DescendingIterator() { cursor = tail(); }
737 +
738 +        public final E next() {
739 +            if (remaining == 0)
740 +                throw new NoSuchElementException();
741 +            E e = checkedElementAt(elements, cursor);
742 +            lastRet = cursor;
743 +            cursor = dec(cursor, elements.length);
744 +            remaining--;
745 +            return e;
746 +        }
747 +
748 +        void postDelete(boolean leftShifted) {
749 +            if (!leftShifted)
750 +                cursor = inc(cursor, elements.length); // undo dec in next
751 +        }
752 +
753 +        public final void forEachRemaining(Consumer<? super E> action) {
754 +            Objects.requireNonNull(action);
755 +            final Object[] elements = ArrayDeque.this.elements;
756 +            final int capacity = elements.length;
757 +            int k = remaining;
758 +            remaining = 0;
759 +            for (int i = cursor; --k >= 0; i = dec(i, capacity))
760 +                action.accept(checkedElementAt(elements, i));
761 +        }
762 +    }
763 +
764 +    /**
765 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
766 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
767 +     * deque.
768 +     *
769 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
770 +     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
771 +     * {@link Spliterator#NONNULL}.  Overriding implementations should document
772 +     * the reporting of additional characteristic values.
773 +     *
774 +     * @return a {@code Spliterator} over the elements in this deque
775 +     * @since 1.8
776 +     */
777 +    public Spliterator<E> spliterator() {
778 +        return new ArrayDequeSpliterator();
779 +    }
780 +
781 +    final class ArrayDequeSpliterator implements Spliterator<E> {
782 +        private int cursor;
783 +        private int remaining; // -1 until late-binding first use
784 +
785 +        /** Constructs late-binding spliterator over all elements. */
786 +        ArrayDequeSpliterator() {
787 +            this.remaining = -1;
788 +        }
789 +
790 +        /** Constructs spliterator over the given slice. */
791 +        ArrayDequeSpliterator(int cursor, int count) {
792 +            this.cursor = cursor;
793 +            this.remaining = count;
794 +        }
795 +
796 +        /** Ensures late-binding initialization; then returns remaining. */
797 +        private int remaining() {
798 +            if (remaining < 0) {
799 +                cursor = head;
800 +                remaining = size;
801 +            }
802 +            return remaining;
803 +        }
804 +
805 +        public ArrayDequeSpliterator trySplit() {
806 +            final int mid;
807 +            if ((mid = remaining() >> 1) > 0) {
808 +                int oldCursor = cursor;
809 +                cursor = add(cursor, mid, elements.length);
810 +                remaining -= mid;
811 +                return new ArrayDequeSpliterator(oldCursor, mid);
812 +            }
813 +            return null;
814 +        }
815 +
816 +        public void forEachRemaining(Consumer<? super E> action) {
817 +            Objects.requireNonNull(action);
818 +            final Object[] elements = ArrayDeque.this.elements;
819 +            final int capacity = elements.length;
820 +            int k = remaining();
821 +            remaining = 0;
822 +            for (int i = cursor; --k >= 0; i = inc(i, capacity))
823 +                action.accept(checkedElementAt(elements, i));
824 +        }
825 +
826 +        public boolean tryAdvance(Consumer<? super E> action) {
827 +            Objects.requireNonNull(action);
828 +            if (remaining() == 0)
829 +                return false;
830 +            action.accept(checkedElementAt(elements, cursor));
831 +            cursor = inc(cursor, elements.length);
832 +            remaining--;
833 +            return true;
834 +        }
835 +
836 +        public long estimateSize() {
837 +            return remaining();
838 +        }
839 +
840 +        public int characteristics() {
841 +            return Spliterator.NONNULL
842 +                | Spliterator.ORDERED
843 +                | Spliterator.SIZED
844 +                | Spliterator.SUBSIZED;
845 +        }
846 +    }
847 +
848 +    public void forEach(Consumer<? super E> action) {
849 +        // checkInvariants();
850 +        Objects.requireNonNull(action);
851 +        final Object[] elements = this.elements;
852 +        final int capacity = elements.length;
853 +        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
854 +            action.accept(elementAt(i));
855 +        // checkInvariants();
856      }
857  
858      /**
859 <     * Returns <tt>true</tt> if this deque contains the specified
860 <     * element.  More formally, returns <tt>true</tt> if and only if this
861 <     * deque contains at least one element <tt>e</tt> such that
862 <     * <tt>e.equals(o)</tt>.
859 >     * Replaces each element of this deque with the result of applying the
860 >     * operator to that element, as specified by {@link List#replaceAll}.
861 >     *
862 >     * @param operator the operator to apply to each element
863 >     * @since TBD
864 >     */
865 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
866 >        Objects.requireNonNull(operator);
867 >        final Object[] elements = this.elements;
868 >        final int capacity = elements.length;
869 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
870 >            elements[i] = operator.apply(elementAt(i));
871 >        // checkInvariants();
872 >    }
873 >
874 >    /**
875 >     * @throws NullPointerException {@inheritDoc}
876 >     */
877 >    public boolean removeIf(Predicate<? super E> filter) {
878 >        Objects.requireNonNull(filter);
879 >        return bulkRemove(filter);
880 >    }
881 >
882 >    /**
883 >     * @throws NullPointerException {@inheritDoc}
884 >     */
885 >    public boolean removeAll(Collection<?> c) {
886 >        Objects.requireNonNull(c);
887 >        return bulkRemove(e -> c.contains(e));
888 >    }
889 >
890 >    /**
891 >     * @throws NullPointerException {@inheritDoc}
892 >     */
893 >    public boolean retainAll(Collection<?> c) {
894 >        Objects.requireNonNull(c);
895 >        return bulkRemove(e -> !c.contains(e));
896 >    }
897 >
898 >    /** Implementation of bulk remove methods. */
899 >    private boolean bulkRemove(Predicate<? super E> filter) {
900 >        // checkInvariants();
901 >        final Object[] elements = this.elements;
902 >        final int capacity = elements.length;
903 >        int i = head, j = i, remaining = size, deleted = 0;
904 >        try {
905 >            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
906 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
907 >                if (filter.test(e))
908 >                    deleted++;
909 >                else {
910 >                    if (j != i)
911 >                        elements[j] = e;
912 >                    j = inc(j, capacity);
913 >                }
914 >            }
915 >            return deleted > 0;
916 >        } catch (Throwable ex) {
917 >            if (deleted > 0)
918 >                for (; remaining > 0;
919 >                     remaining--, i = inc(i, capacity), j = inc(j, capacity))
920 >                    elements[j] = elements[i];
921 >            throw ex;
922 >        } finally {
923 >            size -= deleted;
924 >            for (; --deleted >= 0; j = inc(j, capacity))
925 >                elements[j] = null;
926 >            // checkInvariants();
927 >        }
928 >    }
929 >
930 >    /**
931 >     * Returns {@code true} if this deque contains the specified element.
932 >     * More formally, returns {@code true} if and only if this deque contains
933 >     * at least one element {@code e} such that {@code o.equals(e)}.
934       *
935       * @param o object to be checked for containment in this deque
936 <     * @return <tt>true</tt> if this deque contains the specified element
936 >     * @return {@code true} if this deque contains the specified element
937       */
938      public boolean contains(Object o) {
939 <        if (o == null)
940 <            return false;
941 <        int mask = elements.length - 1;
942 <        int i = head;
943 <        E x;
944 <        while ( (x = elements[i]) != null) {
638 <            if (o.equals(x))
639 <                return true;
640 <            i = (i + 1) & mask;
939 >        if (o != null) {
940 >            final Object[] elements = this.elements;
941 >            final int capacity = elements.length;
942 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
943 >                if (o.equals(elements[i]))
944 >                    return true;
945          }
946          return false;
947      }
948  
949      /**
950       * Removes a single instance of the specified element from this deque.
951 <     * This method is equivalent to {@link #removeFirstOccurrence}.
951 >     * If the deque does not contain the element, it is unchanged.
952 >     * More formally, removes the first element {@code e} such that
953 >     * {@code o.equals(e)} (if such an element exists).
954 >     * Returns {@code true} if this deque contained the specified element
955 >     * (or equivalently, if this deque changed as a result of the call).
956       *
957 <     * @param e element to be removed from this deque, if present
958 <     * @return <tt>true</tt> if this deque contained the specified element
957 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
958 >     *
959 >     * @param o element to be removed from this deque, if present
960 >     * @return {@code true} if this deque contained the specified element
961       */
962 <    public boolean remove(Object e) {
963 <        return removeFirstOccurrence(e);
962 >    public boolean remove(Object o) {
963 >        return removeFirstOccurrence(o);
964      }
965  
966      /**
967       * Removes all of the elements from this deque.
968 +     * The deque will be empty after this call returns.
969       */
970      public void clear() {
971 <        int h = head;
972 <        int t = tail;
973 <        if (h != t) { // clear all cells
974 <            head = tail = 0;
975 <            int i = h;
976 <            int mask = elements.length - 1;
977 <            do {
667 <                elements[i] = null;
668 <                i = (i + 1) & mask;
669 <            } while(i != t);
971 >        final Object[] elements = this.elements;
972 >        final int capacity = elements.length, tail = head + size;
973 >        if (capacity - tail >= 0)
974 >            Arrays.fill(elements, head, tail, null);
975 >        else {
976 >            Arrays.fill(elements, head, capacity, null);
977 >            Arrays.fill(elements, 0, tail - capacity, null);
978          }
979 +        size = head = 0;
980 +        // checkInvariants();
981      }
982  
983      /**
984 <     * Returns an array containing all of the elements in this list
985 <     * in the correct order.
984 >     * Returns an array containing all of the elements in this deque
985 >     * in proper sequence (from first to last element).
986 >     *
987 >     * <p>The returned array will be "safe" in that no references to it are
988 >     * maintained by this deque.  (In other words, this method must allocate
989 >     * a new array).  The caller is thus free to modify the returned array.
990 >     *
991 >     * <p>This method acts as bridge between array-based and collection-based
992 >     * APIs.
993       *
994 <     * @return an array containing all of the elements in this list
678 <     *         in the correct order
994 >     * @return an array containing all of the elements in this deque
995       */
996      public Object[] toArray() {
997 <        return copyElements(new Object[size()]);
997 >        return toArray(Object[].class);
998 >    }
999 >
1000 >    private <T> T[] toArray(Class<T[]> klazz) {
1001 >        final Object[] elements = this.elements;
1002 >        final int capacity = elements.length;
1003 >        final int head = this.head, tail = head + size;
1004 >        final T[] a;
1005 >        if (tail >= 0) {
1006 >            a = Arrays.copyOfRange(elements, head, tail, klazz);
1007 >        } else {
1008 >            // integer overflow!
1009 >            a = Arrays.copyOfRange(elements, 0, size, klazz);
1010 >            System.arraycopy(elements, head, a, 0, capacity - head);
1011 >        }
1012 >        if (tail - capacity > 0)
1013 >            System.arraycopy(elements, 0, a, capacity - head, tail - capacity);
1014 >        return a;
1015      }
1016  
1017      /**
1018 <     * Returns an array containing all of the elements in this deque in the
1019 <     * correct order; the runtime type of the returned array is that of the
1020 <     * specified array.  If the deque fits in the specified array, it is
1021 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1022 <     * type of the specified array and the size of this deque.
1018 >     * Returns an array containing all of the elements in this deque in
1019 >     * proper sequence (from first to last element); the runtime type of the
1020 >     * returned array is that of the specified array.  If the deque fits in
1021 >     * the specified array, it is returned therein.  Otherwise, a new array
1022 >     * is allocated with the runtime type of the specified array and the
1023 >     * size of this deque.
1024 >     *
1025 >     * <p>If this deque fits in the specified array with room to spare
1026 >     * (i.e., the array has more elements than this deque), the element in
1027 >     * the array immediately following the end of the deque is set to
1028 >     * {@code null}.
1029 >     *
1030 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1031 >     * array-based and collection-based APIs.  Further, this method allows
1032 >     * precise control over the runtime type of the output array, and may,
1033 >     * under certain circumstances, be used to save allocation costs.
1034 >     *
1035 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1036 >     * The following code can be used to dump the deque into a newly
1037 >     * allocated array of {@code String}:
1038       *
1039 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1040 <     * the array has more elements than the deque), the element in the array
1041 <     * immediately following the end of the collection is set to <tt>null</tt>.
1039 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1040 >     *
1041 >     * Note that {@code toArray(new Object[0])} is identical in function to
1042 >     * {@code toArray()}.
1043       *
1044       * @param a the array into which the elements of the deque are to
1045 <     *          be stored, if it is big enough; otherwise, a new array of the
1046 <     *          same runtime type is allocated for this purpose
1047 <     * @return an array containing the elements of the deque
1048 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1049 <     *         of the runtime type of every element in this deque
1045 >     *          be stored, if it is big enough; otherwise, a new array of the
1046 >     *          same runtime type is allocated for this purpose
1047 >     * @return an array containing all of the elements in this deque
1048 >     * @throws ArrayStoreException if the runtime type of the specified array
1049 >     *         is not a supertype of the runtime type of every element in
1050 >     *         this deque
1051 >     * @throws NullPointerException if the specified array is null
1052       */
1053 +    @SuppressWarnings("unchecked")
1054      public <T> T[] toArray(T[] a) {
1055 <        int size = size();
1056 <        if (a.length < size)
1057 <            a = (T[])java.lang.reflect.Array.newInstance(
1058 <                    a.getClass().getComponentType(), size);
1059 <        copyElements(a);
1060 <        if (a.length > size)
1055 >        final int size = this.size;
1056 >        if (size > a.length)
1057 >            return toArray((Class<T[]>) a.getClass());
1058 >        final Object[] elements = this.elements;
1059 >        final int capacity = elements.length;
1060 >        final int head = this.head, tail = head + size;
1061 >        if (capacity - tail >= 0)
1062 >            System.arraycopy(elements, head, a, 0, size);
1063 >        else {
1064 >            System.arraycopy(elements, head, a, 0, capacity - head);
1065 >            System.arraycopy(elements, 0, a, capacity - head, tail - capacity);
1066 >        }
1067 >        if (size < a.length)
1068              a[size] = null;
1069          return a;
1070      }
# Line 718 | Line 1077 | public class ArrayDeque<E> extends Abstr
1077       * @return a copy of this deque
1078       */
1079      public ArrayDeque<E> clone() {
1080 <        try {
1080 >        try {
1081 >            @SuppressWarnings("unchecked")
1082              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1083 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1083 >            result.elements = Arrays.copyOf(elements, elements.length);
1084              return result;
1085 <
728 <        } catch (CloneNotSupportedException e) {
1085 >        } catch (CloneNotSupportedException e) {
1086              throw new AssertionError();
1087          }
1088      }
1089  
733    /**
734     * Appease the serialization gods.
735     */
1090      private static final long serialVersionUID = 2340985798034038923L;
1091  
1092      /**
1093 <     * Serialize this deque.
1093 >     * Saves this deque to a stream (that is, serializes it).
1094       *
1095 <     * @serialData The current size (<tt>int</tt>) of the deque,
1095 >     * @param s the stream
1096 >     * @throws java.io.IOException if an I/O error occurs
1097 >     * @serialData The current size ({@code int}) of the deque,
1098       * followed by all of its elements (each an object reference) in
1099       * first-to-last order.
1100       */
1101 <    private void writeObject(ObjectOutputStream s) throws IOException {
1101 >    private void writeObject(java.io.ObjectOutputStream s)
1102 >            throws java.io.IOException {
1103          s.defaultWriteObject();
1104  
1105          // Write out size
749        int size = size();
1106          s.writeInt(size);
1107  
1108          // Write out elements in order.
1109 <        int i = head;
1110 <        int mask = elements.length - 1;
1111 <        for (int j = 0; j < size; j++) {
1109 >        final Object[] elements = this.elements;
1110 >        final int capacity = elements.length;
1111 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1112              s.writeObject(elements[i]);
757            i = (i + 1) & mask;
758        }
1113      }
1114  
1115      /**
1116 <     * Deserialize this deque.
1116 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1117 >     * @param s the stream
1118 >     * @throws ClassNotFoundException if the class of a serialized object
1119 >     *         could not be found
1120 >     * @throws java.io.IOException if an I/O error occurs
1121       */
1122 <    private void readObject(ObjectInputStream s)
1123 <            throws IOException, ClassNotFoundException {
1122 >    private void readObject(java.io.ObjectInputStream s)
1123 >            throws java.io.IOException, ClassNotFoundException {
1124          s.defaultReadObject();
1125  
1126          // Read in size and allocate array
1127 <        int size = s.readInt();
770 <        allocateElements(size);
771 <        head = 0;
772 <        tail = size;
1127 >        elements = new Object[size = s.readInt()];
1128  
1129          // Read in all elements in the proper order.
1130          for (int i = 0; i < size; i++)
1131 <            elements[i] = (E)s.readObject();
1131 >            elements[i] = s.readObject();
1132 >    }
1133  
1134 +    /** debugging */
1135 +    private void checkInvariants() {
1136 +        try {
1137 +            int capacity = elements.length;
1138 +            assert size >= 0 && size <= capacity;
1139 +            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1140 +                                 || head < capacity);
1141 +            assert size == 0
1142 +                || (elements[head] != null && elements[tail()] != null);
1143 +            assert size == capacity
1144 +                || (elements[dec(head, capacity)] == null
1145 +                    && elements[inc(tail(), capacity)] == null);
1146 +        } catch (Throwable t) {
1147 +            System.err.printf("head=%d size=%d capacity=%d%n",
1148 +                              head, size, elements.length);
1149 +            System.err.printf("elements=%s%n",
1150 +                              Arrays.toString(elements));
1151 +            throw t;
1152 +        }
1153      }
1154 +
1155   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines