ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.42 by jsr166, Wed Jan 16 21:18:50 2013 UTC vs.
Revision 1.109 by jsr166, Sat Nov 5 16:21:06 2016 UTC

# Line 1 | Line 1
1   /*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25 /*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3   * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.util.Spliterator;
8 < import java.util.stream.Stream;
9 < import java.util.stream.Streams;
10 < import java.util.function.Block;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 47 | Line 19 | import java.util.function.Block;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 66 | Line 40 | import java.util.function.Block;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 80 | Line 54 | import java.util.function.Block;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
84 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61 <                           implements Deque<E>, Cloneable, java.io.Serializable
61 >                           implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75       * The array in which the elements of the deque are stored.
76 <     * The capacity of the deque is the length of this array, which is
77 <     * always a power of two. The array is never allowed to become
93 <     * full, except transiently within an addX method where it is
94 <     * resized (see doubleCapacity) immediately upon becoming full,
95 <     * thus avoiding head and tail wrapping around to equal each
96 <     * other.  We also guarantee that all array cells not holding
97 <     * deque elements are always null.
76 >     * We guarantee that all array cells not holding deque elements
77 >     * are always null.
78       */
79 <    transient Object[] elements; // non-private to simplify nested class access
79 >    transient Object[] elements;
80  
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number equal to tail if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87      transient int head;
88  
# Line 112 | Line 93 | public class ArrayDeque<E> extends Abstr
93      transient int tail;
94  
95      /**
96 <     * The minimum capacity that we'll use for a newly created deque.
97 <     * Must be a power of 2.
96 >     * The maximum size of array to allocate.
97 >     * Some VMs reserve some header words in an array.
98 >     * Attempts to allocate larger arrays may result in
99 >     * OutOfMemoryError: Requested array size exceeds VM limit
100       */
101 <    private static final int MIN_INITIAL_CAPACITY = 8;
119 <
120 <    // ******  Array allocation and resizing utilities ******
101 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102  
103      /**
104 <     * Allocates empty array to hold the given number of elements.
104 >     * Increases the capacity of this deque by at least the given amount.
105       *
106 <     * @param numElements  the number of elements to hold
106 >     * @param needed the required minimum extra capacity; must be positive
107       */
108 <    private void allocateElements(int numElements) {
109 <        int initialCapacity = MIN_INITIAL_CAPACITY;
110 <        // Find the best power of two to hold elements.
111 <        // Tests "<=" because arrays aren't kept full.
112 <        if (numElements >= initialCapacity) {
113 <            initialCapacity = numElements;
114 <            initialCapacity |= (initialCapacity >>>  1);
115 <            initialCapacity |= (initialCapacity >>>  2);
116 <            initialCapacity |= (initialCapacity >>>  4);
117 <            initialCapacity |= (initialCapacity >>>  8);
118 <            initialCapacity |= (initialCapacity >>> 16);
119 <            initialCapacity++;
108 >    private void grow(int needed) {
109 >        // overflow-conscious code
110 >        final int oldCapacity = elements.length;
111 >        int newCapacity;
112 >        // Double capacity if small; else grow by 50%
113 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 >        if (jump < needed
115 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 >            newCapacity = newCapacity(needed, jump);
117 >        elements = Arrays.copyOf(elements, newCapacity);
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120 >            // wrap around; slide first leg forward to end of array
121 >            int newSpace = newCapacity - oldCapacity;
122 >            System.arraycopy(elements, head,
123 >                             elements, head + newSpace,
124 >                             oldCapacity - head);
125 >            Arrays.fill(elements, head, head + newSpace, null);
126 >            head += newSpace;
127 >        }
128 >        // checkInvariants();
129 >    }
130  
131 <            if (initialCapacity < 0)   // Too many elements, must back off
132 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
131 >    /** Capacity calculation for edge conditions, especially overflow. */
132 >    private int newCapacity(int needed, int jump) {
133 >        final int oldCapacity = elements.length, minCapacity;
134 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 >            if (minCapacity < 0)
136 >                throw new IllegalStateException("Sorry, deque too big");
137 >            return Integer.MAX_VALUE;
138          }
139 <        elements = new Object[initialCapacity];
139 >        if (needed > jump)
140 >            return minCapacity;
141 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 >            ? oldCapacity + jump
143 >            : MAX_ARRAY_SIZE;
144      }
145  
146      /**
147 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
148 <     * when head and tail have wrapped around to become equal.
147 >     * Increases the internal storage of this collection, if necessary,
148 >     * to ensure that it can hold at least the given number of elements.
149 >     *
150 >     * @param minCapacity the desired minimum capacity
151 >     * @since TBD
152       */
153 <    private void doubleCapacity() {
154 <        assert head == tail;
155 <        int p = head;
156 <        int n = elements.length;
157 <        int r = n - p; // number of elements to the right of p
155 <        int newCapacity = n << 1;
156 <        if (newCapacity < 0)
157 <            throw new IllegalStateException("Sorry, deque too big");
158 <        Object[] a = new Object[newCapacity];
159 <        System.arraycopy(elements, p, a, 0, r);
160 <        System.arraycopy(elements, 0, a, r, p);
161 <        elements = a;
162 <        head = 0;
163 <        tail = n;
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157 >        // checkInvariants();
158      }
159  
160      /**
161 <     * Copies the elements from our element array into the specified array,
168 <     * in order (from first to last element in the deque).  It is assumed
169 <     * that the array is large enough to hold all elements in the deque.
161 >     * Minimizes the internal storage of this collection.
162       *
163 <     * @return its argument
163 >     * @since TBD
164       */
165 <    private <T> T[] copyElements(T[] a) {
166 <        if (head < tail) {
167 <            System.arraycopy(elements, head, a, 0, size());
168 <        } else if (head > tail) {
169 <            int headPortionLen = elements.length - head;
170 <            System.arraycopy(elements, head, a, 0, headPortionLen);
179 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169 >            head = 0;
170 >            tail = size;
171          }
172 <        return a;
172 >        // checkInvariants();
173      }
174  
175      /**
# Line 193 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * Constructs an empty array deque with an initial capacity
185       * sufficient to hold the specified number of elements.
186       *
187 <     * @param numElements  lower bound on initial capacity of the deque
187 >     * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        allocateElements(numElements);
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 210 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        allocateElements(c.size());
204 >        elements = new Object[c.size() + 1];
205          addAll(c);
206      }
207  
208 +    /**
209 +     * Increments i, mod modulus.
210 +     * Precondition and postcondition: 0 <= i < modulus.
211 +     */
212 +    static final int inc(int i, int modulus) {
213 +        if (++i >= modulus) i = 0;
214 +        return i;
215 +    }
216 +
217 +    /**
218 +     * Decrements i, mod modulus.
219 +     * Precondition and postcondition: 0 <= i < modulus.
220 +     */
221 +    static final int dec(int i, int modulus) {
222 +        if (--i < 0) i = modulus - 1;
223 +        return i;
224 +    }
225 +
226 +    /**
227 +     * Adds i and j, mod modulus.
228 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 +     */
230 +    static final int add(int i, int j, int modulus) {
231 +        if ((i += j) - modulus >= 0) i -= modulus;
232 +        return i;
233 +    }
234 +
235 +    /**
236 +     * Subtracts j from i, mod modulus.
237 +     * Index i must be logically ahead of j.
238 +     * Returns the "circular distance" from j to i.
239 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 +     */
241 +    static final int sub(int i, int j, int modulus) {
242 +        if ((i -= j) < 0) i += modulus;
243 +        return i;
244 +    }
245 +
246 +    /**
247 +     * Returns element at array index i.
248 +     * This is a slight abuse of generics, accepted by javac.
249 +     */
250 +    @SuppressWarnings("unchecked")
251 +    static final <E> E elementAt(Object[] es, int i) {
252 +        return (E) es[i];
253 +    }
254 +
255 +    /**
256 +     * A version of elementAt that checks for null elements.
257 +     * This check doesn't catch all possible comodifications,
258 +     * but does catch ones that corrupt traversal.
259 +     */
260 +    static final <E> E nonNullElementAt(Object[] es, int i) {
261 +        @SuppressWarnings("unchecked") E e = (E) es[i];
262 +        if (e == null)
263 +            throw new ConcurrentModificationException();
264 +        return e;
265 +    }
266 +
267      // The main insertion and extraction methods are addFirst,
268      // addLast, pollFirst, pollLast. The other methods are defined in
269      // terms of these.
# Line 227 | Line 277 | public class ArrayDeque<E> extends Abstr
277      public void addFirst(E e) {
278          if (e == null)
279              throw new NullPointerException();
280 <        elements[head = (head - 1) & (elements.length - 1)] = e;
280 >        final Object[] es = elements;
281 >        es[head = dec(head, es.length)] = e;
282          if (head == tail)
283 <            doubleCapacity();
283 >            grow(1);
284 >        // checkInvariants();
285      }
286  
287      /**
# Line 243 | Line 295 | public class ArrayDeque<E> extends Abstr
295      public void addLast(E e) {
296          if (e == null)
297              throw new NullPointerException();
298 <        elements[tail] = e;
299 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
300 <            doubleCapacity();
298 >        final Object[] es = elements;
299 >        es[tail] = e;
300 >        if (head == (tail = inc(tail, es.length)))
301 >            grow(1);
302 >        // checkInvariants();
303 >    }
304 >
305 >    /**
306 >     * Adds all of the elements in the specified collection at the end
307 >     * of this deque, as if by calling {@link #addLast} on each one,
308 >     * in the order that they are returned by the collection's
309 >     * iterator.
310 >     *
311 >     * @param c the elements to be inserted into this deque
312 >     * @return {@code true} if this deque changed as a result of the call
313 >     * @throws NullPointerException if the specified collection or any
314 >     *         of its elements are null
315 >     */
316 >    public boolean addAll(Collection<? extends E> c) {
317 >        final int s = size(), needed;
318 >        if ((needed = s + c.size() - elements.length + 1) > 0)
319 >            grow(needed);
320 >        c.forEach((e) -> addLast(e));
321 >        // checkInvariants();
322 >        return size() > s;
323      }
324  
325      /**
# Line 276 | Line 350 | public class ArrayDeque<E> extends Abstr
350       * @throws NoSuchElementException {@inheritDoc}
351       */
352      public E removeFirst() {
353 <        E x = pollFirst();
354 <        if (x == null)
353 >        E e = pollFirst();
354 >        if (e == null)
355              throw new NoSuchElementException();
356 <        return x;
356 >        // checkInvariants();
357 >        return e;
358      }
359  
360      /**
361       * @throws NoSuchElementException {@inheritDoc}
362       */
363      public E removeLast() {
364 <        E x = pollLast();
365 <        if (x == null)
364 >        E e = pollLast();
365 >        if (e == null)
366              throw new NoSuchElementException();
367 <        return x;
367 >        // checkInvariants();
368 >        return e;
369      }
370  
371      public E pollFirst() {
372 <        int h = head;
373 <        @SuppressWarnings("unchecked")
374 <        E result = (E) elements[h];
375 <        // Element is null if deque empty
376 <        if (result == null)
377 <            return null;
378 <        elements[h] = null;     // Must null out slot
379 <        head = (h + 1) & (elements.length - 1);
380 <        return result;
372 >        final Object[] es;
373 >        final int h;
374 >        E e = elementAt(es = elements, h = head);
375 >        if (e != null) {
376 >            es[h] = null;
377 >            head = inc(h, es.length);
378 >        }
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383      public E pollLast() {
384 <        int t = (tail - 1) & (elements.length - 1);
385 <        @SuppressWarnings("unchecked")
386 <        E result = (E) elements[t];
387 <        if (result == null)
388 <            return null;
389 <        elements[t] = null;
390 <        tail = t;
315 <        return result;
384 >        final Object[] es;
385 >        final int t;
386 >        E e = elementAt(es = elements, t = dec(tail, es.length));
387 >        if (e != null)
388 >            es[tail = t] = null;
389 >        // checkInvariants();
390 >        return e;
391      }
392  
393      /**
394       * @throws NoSuchElementException {@inheritDoc}
395       */
396      public E getFirst() {
397 <        @SuppressWarnings("unchecked")
398 <        E result = (E) elements[head];
324 <        if (result == null)
397 >        E e = elementAt(elements, head);
398 >        if (e == null)
399              throw new NoSuchElementException();
400 <        return result;
400 >        // checkInvariants();
401 >        return e;
402      }
403  
404      /**
405       * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getLast() {
408 <        @SuppressWarnings("unchecked")
409 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
410 <        if (result == null)
408 >        final Object[] es = elements;
409 >        E e = elementAt(es, dec(tail, es.length));
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return result;
412 >        // checkInvariants();
413 >        return e;
414      }
415  
340    @SuppressWarnings("unchecked")
416      public E peekFirst() {
417 <        // elements[head] is null if deque empty
418 <        return (E) elements[head];
417 >        // checkInvariants();
418 >        return elementAt(elements, head);
419      }
420  
346    @SuppressWarnings("unchecked")
421      public E peekLast() {
422 <        return (E) elements[(tail - 1) & (elements.length - 1)];
422 >        // checkInvariants();
423 >        final Object[] es;
424 >        return elementAt(es = elements, dec(tail, es.length));
425      }
426  
427      /**
# Line 361 | Line 437 | public class ArrayDeque<E> extends Abstr
437       * @return {@code true} if the deque contained the specified element
438       */
439      public boolean removeFirstOccurrence(Object o) {
440 <        if (o == null)
441 <            return false;
442 <        int mask = elements.length - 1;
443 <        int i = head;
444 <        Object x;
445 <        while ( (x = elements[i]) != null) {
446 <            if (o.equals(x)) {
447 <                delete(i);
448 <                return true;
440 >        if (o != null) {
441 >            final Object[] es = elements;
442 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
443 >                 ; i = 0, to = end) {
444 >                for (; i < to; i++)
445 >                    if (o.equals(es[i])) {
446 >                        delete(i);
447 >                        return true;
448 >                    }
449 >                if (to == end) break;
450              }
374            i = (i + 1) & mask;
451          }
452          return false;
453      }
# Line 389 | Line 465 | public class ArrayDeque<E> extends Abstr
465       * @return {@code true} if the deque contained the specified element
466       */
467      public boolean removeLastOccurrence(Object o) {
468 <        if (o == null)
469 <            return false;
470 <        int mask = elements.length - 1;
471 <        int i = (tail - 1) & mask;
472 <        Object x;
473 <        while ( (x = elements[i]) != null) {
474 <            if (o.equals(x)) {
475 <                delete(i);
476 <                return true;
468 >        if (o != null) {
469 >            final Object[] es = elements;
470 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
471 >                 ; i = es.length, to = end) {
472 >                while (--i >= to)
473 >                    if (o.equals(es[i])) {
474 >                        delete(i);
475 >                        return true;
476 >                    }
477 >                if (to == end) break;
478              }
402            i = (i - 1) & mask;
479          }
480          return false;
481      }
# Line 518 | Line 594 | public class ArrayDeque<E> extends Abstr
594          return removeFirst();
595      }
596  
521    private void checkInvariants() {
522        assert elements[tail] == null;
523        assert head == tail ? elements[head] == null :
524            (elements[head] != null &&
525             elements[(tail - 1) & (elements.length - 1)] != null);
526        assert elements[(head - 1) & (elements.length - 1)] == null;
527    }
528
597      /**
598 <     * Removes the element at the specified position in the elements array,
599 <     * adjusting head and tail as necessary.  This can result in motion of
600 <     * elements backwards or forwards in the array.
598 >     * Removes the element at the specified position in the elements array.
599 >     * This can result in forward or backwards motion of array elements.
600 >     * We optimize for least element motion.
601       *
602       * <p>This method is called delete rather than remove to emphasize
603       * that its semantics differ from those of {@link List#remove(int)}.
604       *
605 <     * @return true if elements moved backwards
605 >     * @return true if elements near tail moved backwards
606       */
607 <    private boolean delete(int i) {
608 <        checkInvariants();
609 <        final Object[] elements = this.elements;
610 <        final int mask = elements.length - 1;
607 >    boolean delete(int i) {
608 >        // checkInvariants();
609 >        final Object[] es = elements;
610 >        final int capacity = es.length;
611          final int h = head;
612 <        final int t = tail;
613 <        final int front = (i - h) & mask;
614 <        final int back  = (t - i) & mask;
547 <
548 <        // Invariant: head <= i < tail mod circularity
549 <        if (front >= ((t - h) & mask))
550 <            throw new ConcurrentModificationException();
551 <
552 <        // Optimize for least element motion
612 >        // number of elements before to-be-deleted elt
613 >        final int front = sub(i, h, capacity);
614 >        final int back = size() - front - 1; // number of elements after
615          if (front < back) {
616 +            // move front elements forwards
617              if (h <= i) {
618 <                System.arraycopy(elements, h, elements, h + 1, front);
618 >                System.arraycopy(es, h, es, h + 1, front);
619              } else { // Wrap around
620 <                System.arraycopy(elements, 0, elements, 1, i);
621 <                elements[0] = elements[mask];
622 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
620 >                System.arraycopy(es, 0, es, 1, i);
621 >                es[0] = es[capacity - 1];
622 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
623              }
624 <            elements[h] = null;
625 <            head = (h + 1) & mask;
624 >            es[h] = null;
625 >            head = inc(h, capacity);
626 >            // checkInvariants();
627              return false;
628          } else {
629 <            if (i < t) { // Copy the null tail as well
630 <                System.arraycopy(elements, i + 1, elements, i, back);
631 <                tail = t - 1;
629 >            // move back elements backwards
630 >            tail = dec(tail, capacity);
631 >            if (i <= tail) {
632 >                System.arraycopy(es, i + 1, es, i, back);
633              } else { // Wrap around
634 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
635 <                elements[mask] = elements[0];
636 <                System.arraycopy(elements, 1, elements, 0, t);
637 <                tail = (t - 1) & mask;
634 >                int firstLeg = capacity - (i + 1);
635 >                System.arraycopy(es, i + 1, es, i, firstLeg);
636 >                es[capacity - 1] = es[0];
637 >                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
638              }
639 +            es[tail] = null;
640 +            // checkInvariants();
641              return true;
642          }
643      }
# Line 583 | Line 650 | public class ArrayDeque<E> extends Abstr
650       * @return the number of elements in this deque
651       */
652      public int size() {
653 <        return (tail - head) & (elements.length - 1);
653 >        return sub(tail, head, elements.length);
654      }
655  
656      /**
# Line 612 | Line 679 | public class ArrayDeque<E> extends Abstr
679      }
680  
681      private class DeqIterator implements Iterator<E> {
682 <        /**
683 <         * Index of element to be returned by subsequent call to next.
617 <         */
618 <        private int cursor = head;
682 >        /** Index of element to be returned by subsequent call to next. */
683 >        int cursor;
684  
685 <        /**
686 <         * Tail recorded at construction (also in remove), to stop
622 <         * iterator and also to check for comodification.
623 <         */
624 <        private int fence = tail;
685 >        /** Number of elements yet to be returned. */
686 >        int remaining = size();
687  
688          /**
689           * Index of element returned by most recent call to next.
690           * Reset to -1 if element is deleted by a call to remove.
691           */
692 <        private int lastRet = -1;
692 >        int lastRet = -1;
693 >
694 >        DeqIterator() { cursor = head; }
695  
696 <        public boolean hasNext() {
697 <            return cursor != fence;
696 >        public final boolean hasNext() {
697 >            return remaining > 0;
698          }
699  
700          public E next() {
701 <            if (cursor == fence)
701 >            if (remaining <= 0)
702                  throw new NoSuchElementException();
703 <            @SuppressWarnings("unchecked")
704 <            E result = (E) elements[cursor];
641 <            // This check doesn't catch all possible comodifications,
642 <            // but does catch the ones that corrupt traversal
643 <            if (tail != fence || result == null)
644 <                throw new ConcurrentModificationException();
703 >            final Object[] es = elements;
704 >            E e = nonNullElementAt(es, cursor);
705              lastRet = cursor;
706 <            cursor = (cursor + 1) & (elements.length - 1);
707 <            return result;
706 >            cursor = inc(cursor, es.length);
707 >            remaining--;
708 >            return e;
709 >        }
710 >
711 >        void postDelete(boolean leftShifted) {
712 >            if (leftShifted)
713 >                cursor = dec(cursor, elements.length);
714          }
715  
716 <        public void remove() {
716 >        public final void remove() {
717              if (lastRet < 0)
718                  throw new IllegalStateException();
719 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
654 <                cursor = (cursor - 1) & (elements.length - 1);
655 <                fence = tail;
656 <            }
719 >            postDelete(delete(lastRet));
720              lastRet = -1;
721          }
659    }
722  
723 <    private class DescendingIterator implements Iterator<E> {
724 <        /*
725 <         * This class is nearly a mirror-image of DeqIterator, using
726 <         * tail instead of head for initial cursor, and head instead of
727 <         * tail for fence.
728 <         */
729 <        private int cursor = tail;
730 <        private int fence = head;
731 <        private int lastRet = -1;
732 <
733 <        public boolean hasNext() {
734 <            return cursor != fence;
723 >        public void forEachRemaining(Consumer<? super E> action) {
724 >            Objects.requireNonNull(action);
725 >            int r;
726 >            if ((r = remaining) <= 0)
727 >                return;
728 >            remaining = 0;
729 >            final Object[] es = elements;
730 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
731 >                throw new ConcurrentModificationException();
732 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
733 >                 ; i = 0, to = end) {
734 >                for (; i < to; i++)
735 >                    action.accept(elementAt(es, i));
736 >                if (to == end) {
737 >                    if (end != tail)
738 >                        throw new ConcurrentModificationException();
739 >                    lastRet = dec(end, es.length);
740 >                    break;
741 >                }
742 >            }
743          }
744 +    }
745  
746 <        public E next() {
747 <            if (cursor == fence)
746 >    private class DescendingIterator extends DeqIterator {
747 >        DescendingIterator() { cursor = dec(tail, elements.length); }
748 >
749 >        public final E next() {
750 >            if (remaining <= 0)
751                  throw new NoSuchElementException();
752 <            cursor = (cursor - 1) & (elements.length - 1);
753 <            @SuppressWarnings("unchecked")
680 <            E result = (E) elements[cursor];
681 <            if (head != fence || result == null)
682 <                throw new ConcurrentModificationException();
752 >            final Object[] es = elements;
753 >            E e = nonNullElementAt(es, cursor);
754              lastRet = cursor;
755 <            return result;
755 >            cursor = dec(cursor, es.length);
756 >            remaining--;
757 >            return e;
758 >        }
759 >
760 >        void postDelete(boolean leftShifted) {
761 >            if (!leftShifted)
762 >                cursor = inc(cursor, elements.length);
763 >        }
764 >
765 >        public final void forEachRemaining(Consumer<? super E> action) {
766 >            Objects.requireNonNull(action);
767 >            int r;
768 >            if ((r = remaining) <= 0)
769 >                return;
770 >            remaining = 0;
771 >            final Object[] es = elements;
772 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
773 >                throw new ConcurrentModificationException();
774 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
775 >                 ; i = es.length - 1, to = end) {
776 >                for (; i >= to; i--)
777 >                    action.accept(elementAt(es, i));
778 >                if (to == end) {
779 >                    if (end != head)
780 >                        throw new ConcurrentModificationException();
781 >                    lastRet = head;
782 >                    break;
783 >                }
784 >            }
785          }
786 +    }
787  
788 <        public void remove() {
789 <            if (lastRet < 0)
790 <                throw new IllegalStateException();
791 <            if (!delete(lastRet)) {
792 <                cursor = (cursor + 1) & (elements.length - 1);
793 <                fence = head;
788 >    /**
789 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
790 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
791 >     * deque.
792 >     *
793 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
794 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
795 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
796 >     * the reporting of additional characteristic values.
797 >     *
798 >     * @return a {@code Spliterator} over the elements in this deque
799 >     * @since 1.8
800 >     */
801 >    public Spliterator<E> spliterator() {
802 >        return new DeqSpliterator();
803 >    }
804 >
805 >    final class DeqSpliterator implements Spliterator<E> {
806 >        private int fence;      // -1 until first use
807 >        private int cursor;     // current index, modified on traverse/split
808 >
809 >        /** Constructs late-binding spliterator over all elements. */
810 >        DeqSpliterator() {
811 >            this.fence = -1;
812 >        }
813 >
814 >        /** Constructs spliterator over the given range. */
815 >        DeqSpliterator(int origin, int fence) {
816 >            this.cursor = origin;
817 >            this.fence = fence;
818 >        }
819 >
820 >        /** Ensures late-binding initialization; then returns fence. */
821 >        private int getFence() { // force initialization
822 >            int t;
823 >            if ((t = fence) < 0) {
824 >                t = fence = tail;
825 >                cursor = head;
826              }
827 <            lastRet = -1;
827 >            return t;
828 >        }
829 >
830 >        public DeqSpliterator trySplit() {
831 >            final Object[] es = elements;
832 >            final int i, n;
833 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
834 >                ? null
835 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
836 >        }
837 >
838 >        public void forEachRemaining(Consumer<? super E> action) {
839 >            if (action == null)
840 >                throw new NullPointerException();
841 >            final int end = getFence(), cursor = this.cursor;
842 >            final Object[] es = elements;
843 >            if (cursor != end) {
844 >                this.cursor = end;
845 >                // null check at both ends of range is sufficient
846 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
847 >                    throw new ConcurrentModificationException();
848 >                for (int i = cursor, to = (i <= end) ? end : es.length;
849 >                     ; i = 0, to = end) {
850 >                    for (; i < to; i++)
851 >                        action.accept(elementAt(es, i));
852 >                    if (to == end) break;
853 >                }
854 >            }
855 >        }
856 >
857 >        public boolean tryAdvance(Consumer<? super E> action) {
858 >            if (action == null)
859 >                throw new NullPointerException();
860 >            int t, i;
861 >            if ((t = fence) < 0) t = getFence();
862 >            if (t == (i = cursor))
863 >                return false;
864 >            final Object[] es;
865 >            action.accept(nonNullElementAt(es = elements, i));
866 >            cursor = inc(i, es.length);
867 >            return true;
868 >        }
869 >
870 >        public long estimateSize() {
871 >            return sub(getFence(), cursor, elements.length);
872 >        }
873 >
874 >        public int characteristics() {
875 >            return Spliterator.NONNULL
876 >                | Spliterator.ORDERED
877 >                | Spliterator.SIZED
878 >                | Spliterator.SUBSIZED;
879 >        }
880 >    }
881 >
882 >    public void forEach(Consumer<? super E> action) {
883 >        Objects.requireNonNull(action);
884 >        final Object[] es = elements;
885 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
886 >             ; i = 0, to = end) {
887 >            for (; i < to; i++)
888 >                action.accept(elementAt(es, i));
889 >            if (to == end) {
890 >                if (end != tail) throw new ConcurrentModificationException();
891 >                break;
892 >            }
893 >        }
894 >        // checkInvariants();
895 >    }
896 >
897 >    /**
898 >     * Replaces each element of this deque with the result of applying the
899 >     * operator to that element, as specified by {@link List#replaceAll}.
900 >     *
901 >     * @param operator the operator to apply to each element
902 >     * @since TBD
903 >     */
904 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
905 >        Objects.requireNonNull(operator);
906 >        final Object[] es = elements;
907 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
908 >             ; i = 0, to = end) {
909 >            for (; i < to; i++)
910 >                es[i] = operator.apply(elementAt(es, i));
911 >            if (to == end) {
912 >                if (end != tail) throw new ConcurrentModificationException();
913 >                break;
914 >            }
915 >        }
916 >        // checkInvariants();
917 >    }
918 >
919 >    /**
920 >     * @throws NullPointerException {@inheritDoc}
921 >     */
922 >    public boolean removeIf(Predicate<? super E> filter) {
923 >        Objects.requireNonNull(filter);
924 >        return bulkRemove(filter);
925 >    }
926 >
927 >    /**
928 >     * @throws NullPointerException {@inheritDoc}
929 >     */
930 >    public boolean removeAll(Collection<?> c) {
931 >        Objects.requireNonNull(c);
932 >        return bulkRemove(e -> c.contains(e));
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean retainAll(Collection<?> c) {
939 >        Objects.requireNonNull(c);
940 >        return bulkRemove(e -> !c.contains(e));
941 >    }
942 >
943 >    /** Implementation of bulk remove methods. */
944 >    private boolean bulkRemove(Predicate<? super E> filter) {
945 >        // checkInvariants();
946 >        final Object[] es = elements;
947 >        // Optimize for initial run of survivors
948 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
949 >             ; i = 0, to = end) {
950 >            for (; i < to; i++)
951 >                if (filter.test(elementAt(es, i)))
952 >                    return bulkRemoveModified(filter, i, to);
953 >            if (to == end) {
954 >                if (end != tail) throw new ConcurrentModificationException();
955 >                break;
956 >            }
957 >        }
958 >        return false;
959 >    }
960 >
961 >    /**
962 >     * Helper for bulkRemove, in case of at least one deletion.
963 >     * @param i valid index of first element to be deleted
964 >     */
965 >    private boolean bulkRemoveModified(
966 >        Predicate<? super E> filter, int i, int to) {
967 >        final Object[] es = elements;
968 >        final int capacity = es.length;
969 >        // a two-finger algorithm, with hare i reading, tortoise j writing
970 >        int j = i++;
971 >        final int end = tail;
972 >        try {
973 >            for (;; j = 0) {    // j rejoins i on second leg
974 >                E e;
975 >                // In this loop, i and j are on the same leg, with i > j
976 >                for (; i < to; i++)
977 >                    if (!filter.test(e = elementAt(es, i)))
978 >                        es[j++] = e;
979 >                if (to == end) break;
980 >                // In this loop, j is on the first leg, i on the second
981 >                for (i = 0, to = end; i < to && j < capacity; i++)
982 >                    if (!filter.test(e = elementAt(es, i)))
983 >                        es[j++] = e;
984 >                if (i >= to) {
985 >                    if (j == capacity) j = 0; // "corner" case
986 >                    break;
987 >                }
988 >            }
989 >            return true;
990 >        } catch (Throwable ex) {
991 >            // copy remaining elements
992 >            for (; i != end; i = inc(i, capacity), j = inc(j, capacity))
993 >                es[j] = es[i];
994 >            throw ex;
995 >        } finally {
996 >            if (end != tail) throw new ConcurrentModificationException();
997 >            circularClear(es, tail = j, end);
998 >            // checkInvariants();
999          }
1000      }
1001  
# Line 704 | Line 1008 | public class ArrayDeque<E> extends Abstr
1008       * @return {@code true} if this deque contains the specified element
1009       */
1010      public boolean contains(Object o) {
1011 <        if (o == null)
1012 <            return false;
1013 <        int mask = elements.length - 1;
1014 <        int i = head;
1015 <        Object x;
1016 <        while ( (x = elements[i]) != null) {
1017 <            if (o.equals(x))
1018 <                return true;
1019 <            i = (i + 1) & mask;
1011 >        if (o != null) {
1012 >            final Object[] es = elements;
1013 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1014 >                 ; i = 0, to = end) {
1015 >                for (; i < to; i++)
1016 >                    if (o.equals(es[i]))
1017 >                        return true;
1018 >                if (to == end) break;
1019 >            }
1020          }
1021          return false;
1022      }
# Line 725 | Line 1029 | public class ArrayDeque<E> extends Abstr
1029       * Returns {@code true} if this deque contained the specified element
1030       * (or equivalently, if this deque changed as a result of the call).
1031       *
1032 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1032 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1033       *
1034       * @param o element to be removed from this deque, if present
1035       * @return {@code true} if this deque contained the specified element
# Line 739 | Line 1043 | public class ArrayDeque<E> extends Abstr
1043       * The deque will be empty after this call returns.
1044       */
1045      public void clear() {
1046 <        int h = head;
1047 <        int t = tail;
1048 <        if (h != t) { // clear all cells
1049 <            head = tail = 0;
1050 <            int i = h;
1051 <            int mask = elements.length - 1;
1052 <            do {
1053 <                elements[i] = null;
1054 <                i = (i + 1) & mask;
1055 <            } while (i != t);
1046 >        circularClear(elements, head, tail);
1047 >        head = tail = 0;
1048 >        // checkInvariants();
1049 >    }
1050 >
1051 >    /**
1052 >     * Nulls out slots starting at array index i, upto index end.
1053 >     */
1054 >    private static void circularClear(Object[] es, int i, int end) {
1055 >        for (int to = (i <= end) ? end : es.length;
1056 >             ; i = 0, to = end) {
1057 >            Arrays.fill(es, i, to, null);
1058 >            if (to == end) break;
1059          }
1060      }
1061  
# Line 766 | Line 1073 | public class ArrayDeque<E> extends Abstr
1073       * @return an array containing all of the elements in this deque
1074       */
1075      public Object[] toArray() {
1076 <        return copyElements(new Object[size()]);
1076 >        return toArray(Object[].class);
1077 >    }
1078 >
1079 >    private <T> T[] toArray(Class<T[]> klazz) {
1080 >        final Object[] es = elements;
1081 >        final T[] a;
1082 >        final int size = size(), head = this.head, end;
1083 >        final int len = Math.min(size, es.length - head);
1084 >        if ((end = head + size) >= 0) {
1085 >            a = Arrays.copyOfRange(es, head, end, klazz);
1086 >        } else {
1087 >            // integer overflow!
1088 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1089 >            System.arraycopy(es, head, a, 0, len);
1090 >        }
1091 >        if (tail < head)
1092 >            System.arraycopy(es, 0, a, len, tail);
1093 >        return a;
1094      }
1095  
1096      /**
# Line 791 | Line 1115 | public class ArrayDeque<E> extends Abstr
1115       * The following code can be used to dump the deque into a newly
1116       * allocated array of {@code String}:
1117       *
1118 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1118 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1119       *
1120       * Note that {@code toArray(new Object[0])} is identical in function to
1121       * {@code toArray()}.
# Line 807 | Line 1131 | public class ArrayDeque<E> extends Abstr
1131       */
1132      @SuppressWarnings("unchecked")
1133      public <T> T[] toArray(T[] a) {
1134 <        int size = size();
1135 <        if (a.length < size)
1136 <            a = (T[])java.lang.reflect.Array.newInstance(
1137 <                    a.getClass().getComponentType(), size);
1138 <        copyElements(a);
1139 <        if (a.length > size)
1134 >        final int size;
1135 >        if ((size = size()) > a.length)
1136 >            return toArray((Class<T[]>) a.getClass());
1137 >        final Object[] es = elements;
1138 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1139 >             ; i = 0, len = tail) {
1140 >            System.arraycopy(es, i, a, j, len);
1141 >            if ((j += len) == size) break;
1142 >        }
1143 >        if (size < a.length)
1144              a[size] = null;
1145          return a;
1146      }
# Line 840 | Line 1168 | public class ArrayDeque<E> extends Abstr
1168      /**
1169       * Saves this deque to a stream (that is, serializes it).
1170       *
1171 +     * @param s the stream
1172 +     * @throws java.io.IOException if an I/O error occurs
1173       * @serialData The current size ({@code int}) of the deque,
1174       * followed by all of its elements (each an object reference) in
1175       * first-to-last order.
# Line 852 | Line 1182 | public class ArrayDeque<E> extends Abstr
1182          s.writeInt(size());
1183  
1184          // Write out elements in order.
1185 <        int mask = elements.length - 1;
1186 <        for (int i = head; i != tail; i = (i + 1) & mask)
1187 <            s.writeObject(elements[i]);
1185 >        final Object[] es = elements;
1186 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1187 >             ; i = 0, to = end) {
1188 >            for (; i < to; i++)
1189 >                s.writeObject(es[i]);
1190 >            if (to == end) break;
1191 >        }
1192      }
1193  
1194      /**
1195       * Reconstitutes this deque from a stream (that is, deserializes it).
1196 +     * @param s the stream
1197 +     * @throws ClassNotFoundException if the class of a serialized object
1198 +     *         could not be found
1199 +     * @throws java.io.IOException if an I/O error occurs
1200       */
1201      private void readObject(java.io.ObjectInputStream s)
1202              throws java.io.IOException, ClassNotFoundException {
# Line 866 | Line 1204 | public class ArrayDeque<E> extends Abstr
1204  
1205          // Read in size and allocate array
1206          int size = s.readInt();
1207 <        allocateElements(size);
1208 <        head = 0;
871 <        tail = size;
1207 >        elements = new Object[size + 1];
1208 >        this.tail = size;
1209  
1210          // Read in all elements in the proper order.
1211          for (int i = 0; i < size; i++)
1212              elements[i] = s.readObject();
1213      }
1214  
1215 <    public Stream<E> stream() {
1216 <        int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
1217 <        return Streams.stream
1218 <            (() -> new DeqSpliterator<E>(this, head, tail), flags);
1219 <    }
1220 <    public Stream<E> parallelStream() {
1221 <        int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
1222 <        return Streams.parallelStream
1223 <            (() -> new DeqSpliterator<E>(this, head, tail), flags);
1224 <    }
1225 <
1226 <
1227 <    static final class DeqSpliterator<E> implements Spliterator<E>, Iterator<E> {
1228 <        private final ArrayDeque<E> deq;
1229 <        private final Object[] array;
1230 <        private final int fence;  // initially tail
1231 <        private int index;        // current index, modified on traverse/split
895 <
896 <        /** Create new spliterator covering the given array and range */
897 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
898 <            this.deq = deq; this.array = deq.elements;
899 <            this.index = origin; this.fence = fence;
900 <        }
901 <
902 <        public DeqSpliterator<E> trySplit() {
903 <            int n = array.length;
904 <            int h = index, t = fence;
905 <            if (h != t && ((h + 1) & (n - 1)) != t) {
906 <                if (h > t)
907 <                    t += n;
908 <                int m = ((h + t) >>> 1) & (n - 1);
909 <                return new DeqSpliterator<E>(deq, h, index = m);
910 <            }
911 <            return null;
912 <        }
913 <
914 <        @SuppressWarnings("unchecked")
915 <        public void forEach(Block<? super E> block) {
916 <            if (block == null)
917 <                throw new NullPointerException();
918 <            Object[] a = array;
919 <            if (a != deq.elements)
920 <                throw new ConcurrentModificationException();
921 <            int m = a.length - 1, f = fence, i = index;
922 <            index = f;
923 <            while (i != f) {
924 <                Object e = a[i];
925 <                if (e == null)
926 <                    throw new ConcurrentModificationException();
927 <                block.accept((E)e);
928 <                i = (i + 1) & m;
929 <            }
930 <        }
931 <
932 <        @SuppressWarnings("unchecked")
933 <        public boolean tryAdvance(Block<? super E> block) {
934 <            if (block == null)
935 <                throw new NullPointerException();
936 <            Object[] a = array;
937 <            if (a != deq.elements)
938 <                throw new ConcurrentModificationException();
939 <            int m = a.length - 1, i = index;
940 <            if (i != fence) {
941 <                Object e = a[i];
942 <                if (e == null)
943 <                    throw new ConcurrentModificationException();
944 <                block.accept((E)e);
945 <                index = (i + 1) & m;
946 <                return true;
947 <            }
948 <            return false;
949 <        }
950 <
951 <        // Iterator support
952 <        public Iterator<E> iterator() {
953 <            return this;
954 <        }
955 <
956 <        public boolean hasNext() {
957 <            return index >= 0 && index != fence;
958 <        }
959 <
960 <        @SuppressWarnings("unchecked")
961 <            public E next() {
962 <            if (index < 0 || index == fence)
963 <                throw new NoSuchElementException();
964 <            Object[] a = array;
965 <            if (a != deq.elements)
966 <                throw new ConcurrentModificationException();
967 <            Object e = a[index];
968 <            if (e == null)
969 <                throw new ConcurrentModificationException();
970 <            index = (index + 1) & (a.length - 1);
971 <            return (E) e;
972 <        }
973 <
974 <        public void remove() { throw new UnsupportedOperationException(); }
975 <
976 <        // Other spliterator methods
977 <        public long estimateSize() {
978 <            int n = fence - index;
979 <            if (n < 0)
980 <                n += array.length;
981 <            return (long)n;
1215 >    /** debugging */
1216 >    void checkInvariants() {
1217 >        try {
1218 >            int capacity = elements.length;
1219 >            // assert head >= 0 && head < capacity;
1220 >            // assert tail >= 0 && tail < capacity;
1221 >            // assert capacity > 0;
1222 >            // assert size() < capacity;
1223 >            // assert head == tail || elements[head] != null;
1224 >            // assert elements[tail] == null;
1225 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1226 >        } catch (Throwable t) {
1227 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1228 >                              head, tail, elements.length);
1229 >            System.err.printf("elements=%s%n",
1230 >                              Arrays.toString(elements));
1231 >            throw t;
1232          }
983        public boolean hasExactSize() { return true; }
984        public boolean hasExactSplits() { return true; }
1233      }
1234  
1235   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines