ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.1 by dl, Tue Dec 28 12:14:07 2004 UTC vs.
Revision 1.113 by jsr166, Sun Nov 13 02:10:09 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 12 | Line 16 | import java.io.*;
16   * usage.  They are not thread-safe; in the absence of external
17   * synchronization, they do not support concurrent access by multiple threads.
18   * Null elements are prohibited.  This class is likely to be faster than
19 < * {@link Stack} when used as as a stack, and faster than {@link LinkedList}
19 > * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75 <     * The array in which the elements of in the deque are stored.
76 <     * The capacity of the deque is the length of this array, which is
77 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
75 >     * The array in which the elements of the deque are stored.
76 >     * We guarantee that all array cells not holding deque elements
77 >     * are always null.
78       */
79 <    private transient E[] elements;
79 >    transient Object[] elements;
80  
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number equal to tail if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87 <    private transient int head;
87 >    transient int head;
88  
89      /**
90       * The index at which the next element would be added to the tail
91       * of the deque (via addLast(E), add(E), or push(E)).
92       */
93 <    private transient int tail;
93 >    transient int tail;
94  
95      /**
96 <     * The minimum capacity that we'll use for a newly created deque.
97 <     * Must be a power of 2.
98 <     */
99 <    private static final int MIN_INITIAL_CAPACITY = 8;
100 <
101 <    // ******  Array allocation and resizing utilities ******
102 <
103 <    /**
104 <     * Allocate empty array to hold the given number of elements.
105 <     *
106 <     * @param numElements  the number of elements to hold.
107 <     */
108 <    private void allocateElements(int numElements) {  
109 <        int initialCapacity = MIN_INITIAL_CAPACITY;
110 <        // Find the best power of two to hold elements.
111 <        // Tests "<=" because arrays aren't kept full.
112 <        if (numElements >= initialCapacity) {
113 <            initialCapacity = numElements;
114 <            initialCapacity |= (initialCapacity >>>  1);
115 <            initialCapacity |= (initialCapacity >>>  2);
116 <            initialCapacity |= (initialCapacity >>>  4);
117 <            initialCapacity |= (initialCapacity >>>  8);
118 <            initialCapacity |= (initialCapacity >>> 16);
119 <            initialCapacity++;
96 >     * The maximum size of array to allocate.
97 >     * Some VMs reserve some header words in an array.
98 >     * Attempts to allocate larger arrays may result in
99 >     * OutOfMemoryError: Requested array size exceeds VM limit
100 >     */
101 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102 >
103 >    /**
104 >     * Increases the capacity of this deque by at least the given amount.
105 >     *
106 >     * @param needed the required minimum extra capacity; must be positive
107 >     */
108 >    private void grow(int needed) {
109 >        // overflow-conscious code
110 >        final int oldCapacity = elements.length;
111 >        int newCapacity;
112 >        // Double capacity if small; else grow by 50%
113 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 >        if (jump < needed
115 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 >            newCapacity = newCapacity(needed, jump);
117 >        elements = Arrays.copyOf(elements, newCapacity);
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120 >            // wrap around; slide first leg forward to end of array
121 >            int newSpace = newCapacity - oldCapacity;
122 >            System.arraycopy(elements, head,
123 >                             elements, head + newSpace,
124 >                             oldCapacity - head);
125 >            Arrays.fill(elements, head, head + newSpace, null);
126 >            head += newSpace;
127 >        }
128 >        // checkInvariants();
129 >    }
130  
131 <            if (initialCapacity < 0)   // Too many elements, must back off
132 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
131 >    /** Capacity calculation for edge conditions, especially overflow. */
132 >    private int newCapacity(int needed, int jump) {
133 >        final int oldCapacity = elements.length, minCapacity;
134 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 >            if (minCapacity < 0)
136 >                throw new IllegalStateException("Sorry, deque too big");
137 >            return Integer.MAX_VALUE;
138          }
139 <        elements = (E[]) new Object[initialCapacity];
139 >        if (needed > jump)
140 >            return minCapacity;
141 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 >            ? oldCapacity + jump
143 >            : MAX_ARRAY_SIZE;
144      }
145  
146      /**
147 <     * Double the capacity of this deque.  Call only when full, i.e.,
148 <     * when head and tail have wrapped around to become equal.
147 >     * Increases the internal storage of this collection, if necessary,
148 >     * to ensure that it can hold at least the given number of elements.
149 >     *
150 >     * @param minCapacity the desired minimum capacity
151 >     * @since TBD
152       */
153 <    private void doubleCapacity() {
154 <        assert head == tail;
155 <        int p = head;
156 <        int n = elements.length;
157 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157 >        // checkInvariants();
158      }
159  
160      /**
161 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
161 >     * Minimizes the internal storage of this collection.
162       *
163 <     * @return its argument
163 >     * @since TBD
164       */
165 <    private <T> T[] copyElements(T[] a) {
166 <        if (head < tail) {
167 <            System.arraycopy(elements, head, a, 0, size());
168 <        } else if (head > tail) {
169 <            int headPortionLen = elements.length - head;
170 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169 >            head = 0;
170 >            tail = size;
171          }
172 <        return a;
172 >        // checkInvariants();
173      }
174  
175      /**
176 <     * Constructs an empty array deque with the an initial capacity
176 >     * Constructs an empty array deque with an initial capacity
177       * sufficient to hold 16 elements.
178       */
179      public ArrayDeque() {
180 <        elements = (E[]) new Object[16];
180 >        elements = new Object[16];
181      }
182  
183      /**
184       * Constructs an empty array deque with an initial capacity
185       * sufficient to hold the specified number of elements.
186       *
187 <     * @param numElements  lower bound on initial capacity of the deque
187 >     * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        allocateElements(numElements);
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 175 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        allocateElements(c.size());
204 >        elements = new Object[c.size() + 1];
205          addAll(c);
206      }
207  
208 +    /**
209 +     * Increments i, mod modulus.
210 +     * Precondition and postcondition: 0 <= i < modulus.
211 +     */
212 +    static final int inc(int i, int modulus) {
213 +        if (++i >= modulus) i = 0;
214 +        return i;
215 +    }
216 +
217 +    /**
218 +     * Decrements i, mod modulus.
219 +     * Precondition and postcondition: 0 <= i < modulus.
220 +     */
221 +    static final int dec(int i, int modulus) {
222 +        if (--i < 0) i = modulus - 1;
223 +        return i;
224 +    }
225 +
226 +    /**
227 +     * Adds i and j, mod modulus.
228 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 +     */
230 +    static final int add(int i, int j, int modulus) {
231 +        if ((i += j) - modulus >= 0) i -= modulus;
232 +        return i;
233 +    }
234 +
235 +    /**
236 +     * Subtracts j from i, mod modulus.
237 +     * Index i must be logically ahead of j.
238 +     * Returns the "circular distance" from j to i.
239 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 +     */
241 +    static final int sub(int i, int j, int modulus) {
242 +        if ((i -= j) < 0) i += modulus;
243 +        return i;
244 +    }
245 +
246 +    /**
247 +     * Returns element at array index i.
248 +     * This is a slight abuse of generics, accepted by javac.
249 +     */
250 +    @SuppressWarnings("unchecked")
251 +    static final <E> E elementAt(Object[] es, int i) {
252 +        return (E) es[i];
253 +    }
254 +
255 +    /**
256 +     * A version of elementAt that checks for null elements.
257 +     * This check doesn't catch all possible comodifications,
258 +     * but does catch ones that corrupt traversal.
259 +     */
260 +    static final <E> E nonNullElementAt(Object[] es, int i) {
261 +        @SuppressWarnings("unchecked") E e = (E) es[i];
262 +        if (e == null)
263 +            throw new ConcurrentModificationException();
264 +        return e;
265 +    }
266 +
267      // The main insertion and extraction methods are addFirst,
268      // addLast, pollFirst, pollLast. The other methods are defined in
269      // terms of these.
270  
271      /**
272 <     * Inserts the specified element to the front this deque.
272 >     * Inserts the specified element at the front of this deque.
273       *
274 <     * @param e the element to insert
275 <     * @throws NullPointerException if <tt>e</tt> is null
274 >     * @param e the element to add
275 >     * @throws NullPointerException if the specified element is null
276       */
277      public void addFirst(E e) {
278          if (e == null)
279              throw new NullPointerException();
280 <        elements[head = (head - 1) & (elements.length - 1)] = e;
281 <        if (head == tail)
282 <            doubleCapacity();
280 >        final Object[] es = elements;
281 >        es[head = dec(head, es.length)] = e;
282 >        if (head == tail)
283 >            grow(1);
284 >        // checkInvariants();
285      }
286  
287      /**
288 <     * Inserts the specified element to the end this deque.
202 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
288 >     * Inserts the specified element at the end of this deque.
289       *
290 <     * @param e the element to insert
291 <     * @throws NullPointerException if <tt>e</tt> is null
290 >     * <p>This method is equivalent to {@link #add}.
291 >     *
292 >     * @param e the element to add
293 >     * @throws NullPointerException if the specified element is null
294       */
295      public void addLast(E e) {
296          if (e == null)
297              throw new NullPointerException();
298 <        elements[tail] = e;
299 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
300 <            doubleCapacity();
298 >        final Object[] es = elements;
299 >        es[tail] = e;
300 >        if (head == (tail = inc(tail, es.length)))
301 >            grow(1);
302 >        // checkInvariants();
303      }
304  
305      /**
306 <     * Retrieves and removes the first element of this deque, or
307 <     * <tt>null</tt> if this deque is empty.
306 >     * Adds all of the elements in the specified collection at the end
307 >     * of this deque, as if by calling {@link #addLast} on each one,
308 >     * in the order that they are returned by the collection's
309 >     * iterator.
310       *
311 <     * @return the first element of this deque, or <tt>null</tt> if
312 <     *     this deque is empty
311 >     * @param c the elements to be inserted into this deque
312 >     * @return {@code true} if this deque changed as a result of the call
313 >     * @throws NullPointerException if the specified collection or any
314 >     *         of its elements are null
315       */
316 <    public E pollFirst() {
317 <        int h = head;
318 <        E result = elements[h]; // Element is null if deque empty
319 <        if (result == null)
320 <            return null;
321 <        elements[h] = null;     // Must null out slot
322 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
316 >    public boolean addAll(Collection<? extends E> c) {
317 >        final int s = size(), needed;
318 >        if ((needed = s + c.size() - elements.length + 1) > 0)
319 >            grow(needed);
320 >        c.forEach(e -> addLast(e));
321 >        // checkInvariants();
322 >        return size() > s;
323      }
324  
325      /**
326 <     * Retrieves and removes the last element of this deque, or
235 <     * <tt>null</tt> if this deque is empty.
326 >     * Inserts the specified element at the front of this deque.
327       *
328 <     * @return the last element of this deque, or <tt>null</tt> if
329 <     *     this deque is empty
330 <     */
240 <    public E pollLast() {
241 <        int t = (tail - 1) & (elements.length - 1);
242 <        E result = elements[t];
243 <        if (result == null)
244 <            return null;
245 <        elements[t] = null;
246 <        tail = t;
247 <        return result;
248 <    }
249 <
250 <    /**
251 <     * Inserts the specified element to the front this deque.
252 <     *
253 <     * @param e the element to insert
254 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
255 <     * @throws NullPointerException if <tt>e</tt> is null
328 >     * @param e the element to add
329 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
330 >     * @throws NullPointerException if the specified element is null
331       */
332      public boolean offerFirst(E e) {
333          addFirst(e);
# Line 260 | Line 335 | public class ArrayDeque<E> extends Abstr
335      }
336  
337      /**
338 <     * Inserts the specified element to the end this deque.
338 >     * Inserts the specified element at the end of this deque.
339       *
340 <     * @param e the element to insert
341 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
342 <     * @throws NullPointerException if <tt>e</tt> is null
340 >     * @param e the element to add
341 >     * @return {@code true} (as specified by {@link Deque#offerLast})
342 >     * @throws NullPointerException if the specified element is null
343       */
344      public boolean offerLast(E e) {
345          addLast(e);
# Line 272 | Line 347 | public class ArrayDeque<E> extends Abstr
347      }
348  
349      /**
350 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
350 >     * @throws NoSuchElementException {@inheritDoc}
351       */
352      public E removeFirst() {
353 <        E x = pollFirst();
354 <        if (x == null)
353 >        E e = pollFirst();
354 >        if (e == null)
355              throw new NoSuchElementException();
356 <        return x;
356 >        // checkInvariants();
357 >        return e;
358      }
359  
360      /**
361 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
361 >     * @throws NoSuchElementException {@inheritDoc}
362       */
363      public E removeLast() {
364 <        E x = pollLast();
365 <        if (x == null)
364 >        E e = pollLast();
365 >        if (e == null)
366              throw new NoSuchElementException();
367 <        return x;
367 >        // checkInvariants();
368 >        return e;
369      }
370  
371 <    /**
372 <     * Retrieves, but does not remove, the first element of this deque,
373 <     * returning <tt>null</tt> if this deque is empty.
374 <     *
375 <     * @return the first element of this deque, or <tt>null</tt> if
376 <     *     this deque is empty
377 <     */
378 <    public E peekFirst() {
379 <        return elements[head]; // elements[head] is null if deque empty
371 >    public E pollFirst() {
372 >        final Object[] es;
373 >        final int h;
374 >        E e = elementAt(es = elements, h = head);
375 >        if (e != null) {
376 >            es[h] = null;
377 >            head = inc(h, es.length);
378 >        }
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383 <    /**
384 <     * Retrieves, but does not remove, the last element of this deque,
385 <     * returning <tt>null</tt> if this deque is empty.
386 <     *
387 <     * @return the last element of this deque, or <tt>null</tt> if this deque
388 <     *     is empty
389 <     */
390 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
383 >    public E pollLast() {
384 >        final Object[] es;
385 >        final int t;
386 >        E e = elementAt(es = elements, t = dec(tail, es.length));
387 >        if (e != null)
388 >            es[tail = t] = null;
389 >        // checkInvariants();
390 >        return e;
391      }
392  
393      /**
394 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
394 >     * @throws NoSuchElementException {@inheritDoc}
395       */
396      public E getFirst() {
397 <        E x = elements[head];
398 <        if (x == null)
397 >        E e = elementAt(elements, head);
398 >        if (e == null)
399              throw new NoSuchElementException();
400 <        return x;
400 >        // checkInvariants();
401 >        return e;
402      }
403  
404      /**
405 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
405 >     * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getLast() {
408 <        E x = elements[(tail - 1) & (elements.length - 1)];
409 <        if (x == null)
408 >        final Object[] es = elements;
409 >        E e = elementAt(es, dec(tail, es.length));
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return x;
412 >        // checkInvariants();
413 >        return e;
414 >    }
415 >
416 >    public E peekFirst() {
417 >        // checkInvariants();
418 >        return elementAt(elements, head);
419 >    }
420 >
421 >    public E peekLast() {
422 >        // checkInvariants();
423 >        final Object[] es;
424 >        return elementAt(es = elements, dec(tail, es.length));
425      }
426  
427      /**
428       * Removes the first occurrence of the specified element in this
429 <     * deque (when traversing the deque from head to tail).  If the deque
430 <     * does not contain the element, it is unchanged.
431 <     *
432 <     * @param e element to be removed from this deque, if present
433 <     * @return <tt>true</tt> if the deque contained the specified element
434 <     */
435 <    public boolean removeFirstOccurrence(Object e) {
436 <        if (e == null)
437 <            return false;
438 <        int mask = elements.length - 1;
439 <        int i = head;
440 <        E x;
441 <        while ( (x = elements[i]) != null) {
442 <            if (e.equals(x)) {
443 <                delete(i);
444 <                return true;
429 >     * deque (when traversing the deque from head to tail).
430 >     * If the deque does not contain the element, it is unchanged.
431 >     * More formally, removes the first element {@code e} such that
432 >     * {@code o.equals(e)} (if such an element exists).
433 >     * Returns {@code true} if this deque contained the specified element
434 >     * (or equivalently, if this deque changed as a result of the call).
435 >     *
436 >     * @param o element to be removed from this deque, if present
437 >     * @return {@code true} if the deque contained the specified element
438 >     */
439 >    public boolean removeFirstOccurrence(Object o) {
440 >        if (o != null) {
441 >            final Object[] es = elements;
442 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
443 >                 ; i = 0, to = end) {
444 >                for (; i < to; i++)
445 >                    if (o.equals(es[i])) {
446 >                        delete(i);
447 >                        return true;
448 >                    }
449 >                if (to == end) break;
450              }
375            i = (i + 1) & mask;
451          }
452          return false;
453      }
454  
455      /**
456       * Removes the last occurrence of the specified element in this
457 <     * deque (when traversing the deque from head to tail).  If the deque
458 <     * does not contain the element, it is unchanged.
459 <     *
460 <     * @param e element to be removed from this deque, if present
461 <     * @return <tt>true</tt> if the deque contained the specified element
462 <     */
463 <    public boolean removeLastOccurrence(Object e) {
464 <        if (e == null)
465 <            return false;
466 <        int mask = elements.length - 1;
467 <        int i = (tail - 1) & mask;
468 <        E x;
469 <        while ( (x = elements[i]) != null) {
470 <            if (e.equals(x)) {
471 <                delete(i);
472 <                return true;
457 >     * deque (when traversing the deque from head to tail).
458 >     * If the deque does not contain the element, it is unchanged.
459 >     * More formally, removes the last element {@code e} such that
460 >     * {@code o.equals(e)} (if such an element exists).
461 >     * Returns {@code true} if this deque contained the specified element
462 >     * (or equivalently, if this deque changed as a result of the call).
463 >     *
464 >     * @param o element to be removed from this deque, if present
465 >     * @return {@code true} if the deque contained the specified element
466 >     */
467 >    public boolean removeLastOccurrence(Object o) {
468 >        if (o != null) {
469 >            final Object[] es = elements;
470 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
471 >                 ; i = es.length, to = end) {
472 >                for (i--; i > to - 1; i--)
473 >                    if (o.equals(es[i])) {
474 >                        delete(i);
475 >                        return true;
476 >                    }
477 >                if (to == end) break;
478              }
399            i = (i - 1) & mask;
479          }
480          return false;
481      }
# Line 404 | Line 483 | public class ArrayDeque<E> extends Abstr
483      // *** Queue methods ***
484  
485      /**
486 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
486 >     * Inserts the specified element at the end of this deque.
487       *
488       * <p>This method is equivalent to {@link #addLast}.
489       *
490 <     * @param e the element to insert
491 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
492 <     * @throws NullPointerException if <tt>e</tt> is null
490 >     * @param e the element to add
491 >     * @return {@code true} (as specified by {@link Collection#add})
492 >     * @throws NullPointerException if the specified element is null
493       */
494      public boolean add(E e) {
495          addLast(e);
# Line 431 | Line 497 | public class ArrayDeque<E> extends Abstr
497      }
498  
499      /**
500 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
500 >     * Inserts the specified element at the end of this deque.
501       *
502 <     * <p>This method is equivalent to {@link #pollFirst}.
502 >     * <p>This method is equivalent to {@link #offerLast}.
503       *
504 <     * @return the first element of this deque, or <tt>null</tt> if
505 <     *     this deque is empty
504 >     * @param e the element to add
505 >     * @return {@code true} (as specified by {@link Queue#offer})
506 >     * @throws NullPointerException if the specified element is null
507       */
508 <    public E poll() {
509 <        return pollFirst();
508 >    public boolean offer(E e) {
509 >        return offerLast(e);
510      }
511  
512      /**
513       * Retrieves and removes the head of the queue represented by this deque.
514 <     * This method differs from the <tt>poll</tt> method in that it throws an
514 >     *
515 >     * This method differs from {@link #poll poll} only in that it throws an
516       * exception if this deque is empty.
517       *
518       * <p>This method is equivalent to {@link #removeFirst}.
519       *
520       * @return the head of the queue represented by this deque
521 <     * @throws NoSuchElementException if this deque is empty
521 >     * @throws NoSuchElementException {@inheritDoc}
522       */
523      public E remove() {
524          return removeFirst();
525      }
526  
527      /**
528 <     * Retrieves, but does not remove, the head of the queue represented by
529 <     * this deque, returning <tt>null</tt> if this deque is empty.
528 >     * Retrieves and removes the head of the queue represented by this deque
529 >     * (in other words, the first element of this deque), or returns
530 >     * {@code null} if this deque is empty.
531       *
532 <     * <p>This method is equivalent to {@link #peekFirst}
532 >     * <p>This method is equivalent to {@link #pollFirst}.
533       *
534       * @return the head of the queue represented by this deque, or
535 <     *     <tt>null</tt> if this deque is empty
535 >     *         {@code null} if this deque is empty
536       */
537 <    public E peek() {
538 <        return peekFirst();
537 >    public E poll() {
538 >        return pollFirst();
539      }
540  
541      /**
542       * Retrieves, but does not remove, the head of the queue represented by
543 <     * this deque.  This method differs from the <tt>peek</tt> method only in
543 >     * this deque.  This method differs from {@link #peek peek} only in
544       * that it throws an exception if this deque is empty.
545       *
546 <     * <p>This method is equivalent to {@link #getFirst}
546 >     * <p>This method is equivalent to {@link #getFirst}.
547       *
548       * @return the head of the queue represented by this deque
549 <     * @throws NoSuchElementException if this deque is empty
549 >     * @throws NoSuchElementException {@inheritDoc}
550       */
551      public E element() {
552          return getFirst();
553      }
554  
555 +    /**
556 +     * Retrieves, but does not remove, the head of the queue represented by
557 +     * this deque, or returns {@code null} if this deque is empty.
558 +     *
559 +     * <p>This method is equivalent to {@link #peekFirst}.
560 +     *
561 +     * @return the head of the queue represented by this deque, or
562 +     *         {@code null} if this deque is empty
563 +     */
564 +    public E peek() {
565 +        return peekFirst();
566 +    }
567 +
568      // *** Stack methods ***
569  
570      /**
571       * Pushes an element onto the stack represented by this deque.  In other
572 <     * words, inserts the element to the front this deque.
572 >     * words, inserts the element at the front of this deque.
573       *
574       * <p>This method is equivalent to {@link #addFirst}.
575       *
576       * @param e the element to push
577 <     * @throws NullPointerException if <tt>e</tt> is null
577 >     * @throws NullPointerException if the specified element is null
578       */
579      public void push(E e) {
580          addFirst(e);
# Line 503 | Line 582 | public class ArrayDeque<E> extends Abstr
582  
583      /**
584       * Pops an element from the stack represented by this deque.  In other
585 <     * words, removes and returns the the first element of this deque.
585 >     * words, removes and returns the first element of this deque.
586       *
587       * <p>This method is equivalent to {@link #removeFirst()}.
588       *
589       * @return the element at the front of this deque (which is the top
590 <     *     of the stack represented by this deque)
591 <     * @throws NoSuchElementException if this deque is empty
590 >     *         of the stack represented by this deque)
591 >     * @throws NoSuchElementException {@inheritDoc}
592       */
593      public E pop() {
594          return removeFirst();
595      }
596  
597      /**
598 <     * Remove the element at the specified position in the elements array,
599 <     * adjusting head, tail, and size as necessary.  This can result in
600 <     * motion of elements backwards or forwards in the array.
601 <     *
602 <     * <p>This method is called delete rather than remove to emphasize the
603 <     * that that its semantics differ from those of List.remove(int).
604 <     *
605 <     * @return true if elements moved backwards
606 <     */
607 <    private boolean delete(int i) {
608 <        // Case 1: Deque doesn't wrap
609 <        // Case 2: Deque does wrap and removed element is in the head portion
610 <        if ((head < tail || tail == 0) || i >= head) {
611 <            System.arraycopy(elements, head, elements, head + 1, i - head);
612 <            elements[head] = null;
613 <            head = (head + 1) & (elements.length - 1);
598 >     * Removes the element at the specified position in the elements array.
599 >     * This can result in forward or backwards motion of array elements.
600 >     * We optimize for least element motion.
601 >     *
602 >     * <p>This method is called delete rather than remove to emphasize
603 >     * that its semantics differ from those of {@link List#remove(int)}.
604 >     *
605 >     * @return true if elements near tail moved backwards
606 >     */
607 >    boolean delete(int i) {
608 >        // checkInvariants();
609 >        final Object[] es = elements;
610 >        final int capacity = es.length;
611 >        final int h = head;
612 >        // number of elements before to-be-deleted elt
613 >        final int front = sub(i, h, capacity);
614 >        final int back = size() - front - 1; // number of elements after
615 >        if (front < back) {
616 >            // move front elements forwards
617 >            if (h <= i) {
618 >                System.arraycopy(es, h, es, h + 1, front);
619 >            } else { // Wrap around
620 >                System.arraycopy(es, 0, es, 1, i);
621 >                es[0] = es[capacity - 1];
622 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
623 >            }
624 >            es[h] = null;
625 >            head = inc(h, capacity);
626 >            // checkInvariants();
627              return false;
628 +        } else {
629 +            // move back elements backwards
630 +            tail = dec(tail, capacity);
631 +            if (i <= tail) {
632 +                System.arraycopy(es, i + 1, es, i, back);
633 +            } else { // Wrap around
634 +                int firstLeg = capacity - (i + 1);
635 +                System.arraycopy(es, i + 1, es, i, firstLeg);
636 +                es[capacity - 1] = es[0];
637 +                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
638 +            }
639 +            es[tail] = null;
640 +            // checkInvariants();
641 +            return true;
642          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
643      }
644  
645      // *** Collection Methods ***
# Line 550 | Line 650 | public class ArrayDeque<E> extends Abstr
650       * @return the number of elements in this deque
651       */
652      public int size() {
653 <        return (tail - head) & (elements.length - 1);
653 >        return sub(tail, head, elements.length);
654      }
655  
656      /**
657 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
657 >     * Returns {@code true} if this deque contains no elements.
658       *
659 <     * @return <tt>true</tt> if this collection contains no elements.
659 >     * @return {@code true} if this deque contains no elements
660       */
661      public boolean isEmpty() {
662          return head == tail;
# Line 567 | Line 667 | public class ArrayDeque<E> extends Abstr
667       * will be ordered from first (head) to last (tail).  This is the same
668       * order that elements would be dequeued (via successive calls to
669       * {@link #remove} or popped (via successive calls to {@link #pop}).
670 <     *
671 <     * @return an <tt>Iterator</tt> over the elements in this deque
670 >     *
671 >     * @return an iterator over the elements in this deque
672       */
673      public Iterator<E> iterator() {
674          return new DeqIterator();
675      }
676  
677 +    public Iterator<E> descendingIterator() {
678 +        return new DescendingIterator();
679 +    }
680 +
681      private class DeqIterator implements Iterator<E> {
682 <        /**
683 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
682 >        /** Index of element to be returned by subsequent call to next. */
683 >        int cursor;
684  
685 <        /**
686 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
685 >        /** Number of elements yet to be returned. */
686 >        int remaining = size();
687  
688          /**
689           * Index of element returned by most recent call to next.
690           * Reset to -1 if element is deleted by a call to remove.
691           */
692 <        private int lastRet = -1;
692 >        int lastRet = -1;
693  
694 <        public boolean hasNext() {
695 <            return cursor != fence;
694 >        DeqIterator() { cursor = head; }
695 >
696 >        public final boolean hasNext() {
697 >            return remaining > 0;
698          }
699  
700          public E next() {
701 <            E result;
601 <            if (cursor == fence)
701 >            if (remaining <= 0)
702                  throw new NoSuchElementException();
703 <            // This check doesn't catch all possible comodifications,
704 <            // but does catch the ones that corrupt traversal
605 <            if (tail != fence || (result = elements[cursor]) == null)
606 <                throw new ConcurrentModificationException();
703 >            final Object[] es = elements;
704 >            E e = nonNullElementAt(es, cursor);
705              lastRet = cursor;
706 <            cursor = (cursor + 1) & (elements.length - 1);
707 <            return result;
706 >            cursor = inc(cursor, es.length);
707 >            remaining--;
708 >            return e;
709 >        }
710 >
711 >        void postDelete(boolean leftShifted) {
712 >            if (leftShifted)
713 >                cursor = dec(cursor, elements.length);
714          }
715  
716 <        public void remove() {
716 >        public final void remove() {
717              if (lastRet < 0)
718                  throw new IllegalStateException();
719 <            if (delete(lastRet))
616 <                cursor--;
719 >            postDelete(delete(lastRet));
720              lastRet = -1;
721 <            fence = tail;
721 >        }
722 >
723 >        public void forEachRemaining(Consumer<? super E> action) {
724 >            Objects.requireNonNull(action);
725 >            int r;
726 >            if ((r = remaining) <= 0)
727 >                return;
728 >            remaining = 0;
729 >            final Object[] es = elements;
730 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
731 >                throw new ConcurrentModificationException();
732 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
733 >                 ; i = 0, to = end) {
734 >                for (; i < to; i++)
735 >                    action.accept(elementAt(es, i));
736 >                if (to == end) {
737 >                    if (end != tail)
738 >                        throw new ConcurrentModificationException();
739 >                    lastRet = dec(end, es.length);
740 >                    break;
741 >                }
742 >            }
743 >        }
744 >    }
745 >
746 >    private class DescendingIterator extends DeqIterator {
747 >        DescendingIterator() { cursor = dec(tail, elements.length); }
748 >
749 >        public final E next() {
750 >            if (remaining <= 0)
751 >                throw new NoSuchElementException();
752 >            final Object[] es = elements;
753 >            E e = nonNullElementAt(es, cursor);
754 >            lastRet = cursor;
755 >            cursor = dec(cursor, es.length);
756 >            remaining--;
757 >            return e;
758 >        }
759 >
760 >        void postDelete(boolean leftShifted) {
761 >            if (!leftShifted)
762 >                cursor = inc(cursor, elements.length);
763 >        }
764 >
765 >        public final void forEachRemaining(Consumer<? super E> action) {
766 >            Objects.requireNonNull(action);
767 >            int r;
768 >            if ((r = remaining) <= 0)
769 >                return;
770 >            remaining = 0;
771 >            final Object[] es = elements;
772 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
773 >                throw new ConcurrentModificationException();
774 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
775 >                 ; i = es.length - 1, to = end) {
776 >                // hotspot generates faster code than for: i >= to !
777 >                for (; i > to - 1; i--)
778 >                    action.accept(elementAt(es, i));
779 >                if (to == end) {
780 >                    if (end != head)
781 >                        throw new ConcurrentModificationException();
782 >                    lastRet = end;
783 >                    break;
784 >                }
785 >            }
786          }
787      }
788  
789      /**
790 <     * Returns <tt>true</tt> if this deque contains the specified
791 <     * element.  More formally, returns <tt>true</tt> if and only if this
792 <     * deque contains at least one element <tt>e</tt> such that
793 <     * <tt>e.equals(o)</tt>.
790 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
791 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
792 >     * deque.
793 >     *
794 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
795 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
796 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
797 >     * the reporting of additional characteristic values.
798 >     *
799 >     * @return a {@code Spliterator} over the elements in this deque
800 >     * @since 1.8
801 >     */
802 >    public Spliterator<E> spliterator() {
803 >        return new DeqSpliterator();
804 >    }
805 >
806 >    final class DeqSpliterator implements Spliterator<E> {
807 >        private int fence;      // -1 until first use
808 >        private int cursor;     // current index, modified on traverse/split
809 >
810 >        /** Constructs late-binding spliterator over all elements. */
811 >        DeqSpliterator() {
812 >            this.fence = -1;
813 >        }
814 >
815 >        /** Constructs spliterator over the given range. */
816 >        DeqSpliterator(int origin, int fence) {
817 >            this.cursor = origin;
818 >            this.fence = fence;
819 >        }
820 >
821 >        /** Ensures late-binding initialization; then returns fence. */
822 >        private int getFence() { // force initialization
823 >            int t;
824 >            if ((t = fence) < 0) {
825 >                t = fence = tail;
826 >                cursor = head;
827 >            }
828 >            return t;
829 >        }
830 >
831 >        public DeqSpliterator trySplit() {
832 >            final Object[] es = elements;
833 >            final int i, n;
834 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
835 >                ? null
836 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
837 >        }
838 >
839 >        public void forEachRemaining(Consumer<? super E> action) {
840 >            if (action == null)
841 >                throw new NullPointerException();
842 >            final int end = getFence(), cursor = this.cursor;
843 >            final Object[] es = elements;
844 >            if (cursor != end) {
845 >                this.cursor = end;
846 >                // null check at both ends of range is sufficient
847 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
848 >                    throw new ConcurrentModificationException();
849 >                for (int i = cursor, to = (i <= end) ? end : es.length;
850 >                     ; i = 0, to = end) {
851 >                    for (; i < to; i++)
852 >                        action.accept(elementAt(es, i));
853 >                    if (to == end) break;
854 >                }
855 >            }
856 >        }
857 >
858 >        public boolean tryAdvance(Consumer<? super E> action) {
859 >            if (action == null)
860 >                throw new NullPointerException();
861 >            int t, i;
862 >            if ((t = fence) < 0) t = getFence();
863 >            if (t == (i = cursor))
864 >                return false;
865 >            final Object[] es;
866 >            action.accept(nonNullElementAt(es = elements, i));
867 >            cursor = inc(i, es.length);
868 >            return true;
869 >        }
870 >
871 >        public long estimateSize() {
872 >            return sub(getFence(), cursor, elements.length);
873 >        }
874 >
875 >        public int characteristics() {
876 >            return Spliterator.NONNULL
877 >                | Spliterator.ORDERED
878 >                | Spliterator.SIZED
879 >                | Spliterator.SUBSIZED;
880 >        }
881 >    }
882 >
883 >    public void forEach(Consumer<? super E> action) {
884 >        Objects.requireNonNull(action);
885 >        final Object[] es = elements;
886 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
887 >             ; i = 0, to = end) {
888 >            for (; i < to; i++)
889 >                action.accept(elementAt(es, i));
890 >            if (to == end) {
891 >                if (end != tail) throw new ConcurrentModificationException();
892 >                break;
893 >            }
894 >        }
895 >        // checkInvariants();
896 >    }
897 >
898 >    /**
899 >     * Replaces each element of this deque with the result of applying the
900 >     * operator to that element, as specified by {@link List#replaceAll}.
901 >     *
902 >     * @param operator the operator to apply to each element
903 >     * @since TBD
904 >     */
905 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
906 >        Objects.requireNonNull(operator);
907 >        final Object[] es = elements;
908 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
909 >             ; i = 0, to = end) {
910 >            for (; i < to; i++)
911 >                es[i] = operator.apply(elementAt(es, i));
912 >            if (to == end) {
913 >                if (end != tail) throw new ConcurrentModificationException();
914 >                break;
915 >            }
916 >        }
917 >        // checkInvariants();
918 >    }
919 >
920 >    /**
921 >     * @throws NullPointerException {@inheritDoc}
922 >     */
923 >    public boolean removeIf(Predicate<? super E> filter) {
924 >        Objects.requireNonNull(filter);
925 >        return bulkRemove(filter);
926 >    }
927 >
928 >    /**
929 >     * @throws NullPointerException {@inheritDoc}
930 >     */
931 >    public boolean removeAll(Collection<?> c) {
932 >        Objects.requireNonNull(c);
933 >        return bulkRemove(e -> c.contains(e));
934 >    }
935 >
936 >    /**
937 >     * @throws NullPointerException {@inheritDoc}
938 >     */
939 >    public boolean retainAll(Collection<?> c) {
940 >        Objects.requireNonNull(c);
941 >        return bulkRemove(e -> !c.contains(e));
942 >    }
943 >
944 >    /** Implementation of bulk remove methods. */
945 >    private boolean bulkRemove(Predicate<? super E> filter) {
946 >        // checkInvariants();
947 >        final Object[] es = elements;
948 >        // Optimize for initial run of survivors
949 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
950 >             ; i = 0, to = end) {
951 >            for (; i < to; i++)
952 >                if (filter.test(elementAt(es, i)))
953 >                    return bulkRemoveModified(filter, i);
954 >            if (to == end) {
955 >                if (end != tail) throw new ConcurrentModificationException();
956 >                break;
957 >            }
958 >        }
959 >        return false;
960 >    }
961 >
962 >    // A tiny bit set implementation
963 >
964 >    private static long[] nBits(int n) {
965 >        return new long[((n - 1) >> 6) + 1];
966 >    }
967 >    private static void setBit(long[] bits, int i) {
968 >        bits[i >> 6] |= 1L << i;
969 >    }
970 >    private static boolean isClear(long[] bits, int i) {
971 >        return (bits[i >> 6] & (1L << i)) == 0;
972 >    }
973 >
974 >    /**
975 >     * Helper for bulkRemove, in case of at least one deletion.
976 >     * Tolerate predicates that reentrantly access the collection for
977 >     * read (but writers still get CME), so traverse once to find
978 >     * elements to delete, a second pass to physically expunge.
979 >     *
980 >     * @param beg valid index of first element to be deleted
981 >     */
982 >    private boolean bulkRemoveModified(
983 >        Predicate<? super E> filter, final int beg) {
984 >        final Object[] es = elements;
985 >        final int capacity = es.length;
986 >        final int end = tail;
987 >        final long[] deathRow = nBits(sub(end, beg, capacity));
988 >        deathRow[0] = 1L;   // set bit 0
989 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
990 >             ; i = 0, to = end, k -= capacity) {
991 >            for (; i < to; i++)
992 >                if (filter.test(elementAt(es, i)))
993 >                    setBit(deathRow, i - k);
994 >            if (to == end) break;
995 >        }
996 >        // a two-finger traversal, with hare i reading, tortoise w writing
997 >        int w = beg;
998 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
999 >             ; w = 0) { // w rejoins i on second leg
1000 >            // In this loop, i and w are on the same leg, with i > w
1001 >            for (; i < to; i++)
1002 >                if (isClear(deathRow, i - k))
1003 >                    es[w++] = es[i];
1004 >            if (to == end) break;
1005 >            // In this loop, w is on the first leg, i on the second
1006 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1007 >                if (isClear(deathRow, i - k))
1008 >                    es[w++] = es[i];
1009 >            if (i >= to) {
1010 >                if (w == capacity) w = 0; // "corner" case
1011 >                break;
1012 >            }
1013 >        }
1014 >        if (end != tail) throw new ConcurrentModificationException();
1015 >        circularClear(es, tail = w, end);
1016 >        // checkInvariants();
1017 >        return true;
1018 >    }
1019 >
1020 >    /**
1021 >     * Returns {@code true} if this deque contains the specified element.
1022 >     * More formally, returns {@code true} if and only if this deque contains
1023 >     * at least one element {@code e} such that {@code o.equals(e)}.
1024       *
1025       * @param o object to be checked for containment in this deque
1026 <     * @return <tt>true</tt> if this deque contains the specified element
1026 >     * @return {@code true} if this deque contains the specified element
1027       */
1028      public boolean contains(Object o) {
1029 <        if (o == null)
1030 <            return false;
1031 <        int mask = elements.length - 1;
1032 <        int i = head;
1033 <        E x;
1034 <        while ( (x = elements[i]) != null) {
1035 <            if (o.equals(x))
1036 <                return true;
1037 <            i = (i + 1) & mask;
1029 >        if (o != null) {
1030 >            final Object[] es = elements;
1031 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1032 >                 ; i = 0, to = end) {
1033 >                for (; i < to; i++)
1034 >                    if (o.equals(es[i]))
1035 >                        return true;
1036 >                if (to == end) break;
1037 >            }
1038          }
1039          return false;
1040      }
1041  
1042      /**
1043       * Removes a single instance of the specified element from this deque.
1044 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1044 >     * If the deque does not contain the element, it is unchanged.
1045 >     * More formally, removes the first element {@code e} such that
1046 >     * {@code o.equals(e)} (if such an element exists).
1047 >     * Returns {@code true} if this deque contained the specified element
1048 >     * (or equivalently, if this deque changed as a result of the call).
1049       *
1050 <     * @param e element to be removed from this deque, if present
1051 <     * @return <tt>true</tt> if this deque contained the specified element
1050 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1051 >     *
1052 >     * @param o element to be removed from this deque, if present
1053 >     * @return {@code true} if this deque contained the specified element
1054       */
1055 <    public boolean remove(Object e) {
1056 <        return removeFirstOccurrence(e);
1055 >    public boolean remove(Object o) {
1056 >        return removeFirstOccurrence(o);
1057      }
1058  
1059      /**
1060       * Removes all of the elements from this deque.
1061 +     * The deque will be empty after this call returns.
1062       */
1063      public void clear() {
1064 <        int h = head;
1065 <        int t = tail;
1066 <        if (h != t) { // clear all cells
1067 <            head = tail = 0;
1068 <            int i = h;
1069 <            int mask = elements.length - 1;
1070 <            do {
1071 <                elements[i] = null;
1072 <                i = (i + 1) & mask;
1073 <            } while(i != t);
1064 >        circularClear(elements, head, tail);
1065 >        head = tail = 0;
1066 >        // checkInvariants();
1067 >    }
1068 >
1069 >    /**
1070 >     * Nulls out slots starting at array index i, upto index end.
1071 >     */
1072 >    private static void circularClear(Object[] es, int i, int end) {
1073 >        for (int to = (i <= end) ? end : es.length;
1074 >             ; i = 0, to = end) {
1075 >            Arrays.fill(es, i, to, null);
1076 >            if (to == end) break;
1077          }
1078      }
1079  
1080      /**
1081 <     * Returns an array containing all of the elements in this list
1082 <     * in the correct order.
1081 >     * Returns an array containing all of the elements in this deque
1082 >     * in proper sequence (from first to last element).
1083       *
1084 <     * @return an array containing all of the elements in this list
1085 <     *         in the correct order
1084 >     * <p>The returned array will be "safe" in that no references to it are
1085 >     * maintained by this deque.  (In other words, this method must allocate
1086 >     * a new array).  The caller is thus free to modify the returned array.
1087 >     *
1088 >     * <p>This method acts as bridge between array-based and collection-based
1089 >     * APIs.
1090 >     *
1091 >     * @return an array containing all of the elements in this deque
1092       */
1093      public Object[] toArray() {
1094 <        return copyElements(new Object[size()]);
1094 >        return toArray(Object[].class);
1095 >    }
1096 >
1097 >    private <T> T[] toArray(Class<T[]> klazz) {
1098 >        final Object[] es = elements;
1099 >        final T[] a;
1100 >        final int size = size(), head = this.head, end;
1101 >        final int len = Math.min(size, es.length - head);
1102 >        if ((end = head + size) >= 0) {
1103 >            a = Arrays.copyOfRange(es, head, end, klazz);
1104 >        } else {
1105 >            // integer overflow!
1106 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1107 >            System.arraycopy(es, head, a, 0, len);
1108 >        }
1109 >        if (tail < head)
1110 >            System.arraycopy(es, 0, a, len, tail);
1111 >        return a;
1112      }
1113  
1114      /**
1115 <     * Returns an array containing all of the elements in this deque in the
1116 <     * correct order; the runtime type of the returned array is that of the
1117 <     * specified array.  If the deque fits in the specified array, it is
1118 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1119 <     * type of the specified array and the size of this deque.
1115 >     * Returns an array containing all of the elements in this deque in
1116 >     * proper sequence (from first to last element); the runtime type of the
1117 >     * returned array is that of the specified array.  If the deque fits in
1118 >     * the specified array, it is returned therein.  Otherwise, a new array
1119 >     * is allocated with the runtime type of the specified array and the
1120 >     * size of this deque.
1121 >     *
1122 >     * <p>If this deque fits in the specified array with room to spare
1123 >     * (i.e., the array has more elements than this deque), the element in
1124 >     * the array immediately following the end of the deque is set to
1125 >     * {@code null}.
1126 >     *
1127 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1128 >     * array-based and collection-based APIs.  Further, this method allows
1129 >     * precise control over the runtime type of the output array, and may,
1130 >     * under certain circumstances, be used to save allocation costs.
1131 >     *
1132 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1133 >     * The following code can be used to dump the deque into a newly
1134 >     * allocated array of {@code String}:
1135 >     *
1136 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1137       *
1138 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1139 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1138 >     * Note that {@code toArray(new Object[0])} is identical in function to
1139 >     * {@code toArray()}.
1140       *
1141       * @param a the array into which the elements of the deque are to
1142 <     *          be stored, if it is big enough; otherwise, a new array of the
1143 <     *          same runtime type is allocated for this purpose
1144 <     * @return an array containing the elements of the deque
1145 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1146 <     *         of the runtime type of every element in this deque
1142 >     *          be stored, if it is big enough; otherwise, a new array of the
1143 >     *          same runtime type is allocated for this purpose
1144 >     * @return an array containing all of the elements in this deque
1145 >     * @throws ArrayStoreException if the runtime type of the specified array
1146 >     *         is not a supertype of the runtime type of every element in
1147 >     *         this deque
1148 >     * @throws NullPointerException if the specified array is null
1149       */
1150 +    @SuppressWarnings("unchecked")
1151      public <T> T[] toArray(T[] a) {
1152 <        int size = size();
1153 <        if (a.length < size)
1154 <            a = (T[])java.lang.reflect.Array.newInstance(
1155 <                    a.getClass().getComponentType(), size);
1156 <        copyElements(a);
1157 <        if (a.length > size)
1152 >        final int size;
1153 >        if ((size = size()) > a.length)
1154 >            return toArray((Class<T[]>) a.getClass());
1155 >        final Object[] es = elements;
1156 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1157 >             ; i = 0, len = tail) {
1158 >            System.arraycopy(es, i, a, j, len);
1159 >            if ((j += len) == size) break;
1160 >        }
1161 >        if (size < a.length)
1162              a[size] = null;
1163          return a;
1164      }
# Line 718 | Line 1171 | public class ArrayDeque<E> extends Abstr
1171       * @return a copy of this deque
1172       */
1173      public ArrayDeque<E> clone() {
1174 <        try {
1174 >        try {
1175 >            @SuppressWarnings("unchecked")
1176              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1177 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1177 >            result.elements = Arrays.copyOf(elements, elements.length);
1178              return result;
1179 <
728 <        } catch (CloneNotSupportedException e) {
1179 >        } catch (CloneNotSupportedException e) {
1180              throw new AssertionError();
1181          }
1182      }
1183  
733    /**
734     * Appease the serialization gods.
735     */
1184      private static final long serialVersionUID = 2340985798034038923L;
1185  
1186      /**
1187 <     * Serialize this deque.
1187 >     * Saves this deque to a stream (that is, serializes it).
1188       *
1189 <     * @serialData The current size (<tt>int</tt>) of the deque,
1189 >     * @param s the stream
1190 >     * @throws java.io.IOException if an I/O error occurs
1191 >     * @serialData The current size ({@code int}) of the deque,
1192       * followed by all of its elements (each an object reference) in
1193       * first-to-last order.
1194       */
1195 <    private void writeObject(ObjectOutputStream s) throws IOException {
1195 >    private void writeObject(java.io.ObjectOutputStream s)
1196 >            throws java.io.IOException {
1197          s.defaultWriteObject();
1198  
1199          // Write out size
1200 <        int size = size();
750 <        s.writeInt(size);
1200 >        s.writeInt(size());
1201  
1202          // Write out elements in order.
1203 <        int i = head;
1204 <        int mask = elements.length - 1;
1205 <        for (int j = 0; j < size; j++) {
1206 <            s.writeObject(elements[i]);
1207 <            i = (i + 1) & mask;
1203 >        final Object[] es = elements;
1204 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1205 >             ; i = 0, to = end) {
1206 >            for (; i < to; i++)
1207 >                s.writeObject(es[i]);
1208 >            if (to == end) break;
1209          }
1210      }
1211  
1212      /**
1213 <     * Deserialize this deque.
1213 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1214 >     * @param s the stream
1215 >     * @throws ClassNotFoundException if the class of a serialized object
1216 >     *         could not be found
1217 >     * @throws java.io.IOException if an I/O error occurs
1218       */
1219 <    private void readObject(ObjectInputStream s)
1220 <            throws IOException, ClassNotFoundException {
1219 >    private void readObject(java.io.ObjectInputStream s)
1220 >            throws java.io.IOException, ClassNotFoundException {
1221          s.defaultReadObject();
1222  
1223          // Read in size and allocate array
1224          int size = s.readInt();
1225 <        allocateElements(size);
1226 <        head = 0;
772 <        tail = size;
1225 >        elements = new Object[size + 1];
1226 >        this.tail = size;
1227  
1228          // Read in all elements in the proper order.
1229          for (int i = 0; i < size; i++)
1230 <            elements[i] = (E)s.readObject();
1230 >            elements[i] = s.readObject();
1231 >    }
1232  
1233 +    /** debugging */
1234 +    void checkInvariants() {
1235 +        try {
1236 +            int capacity = elements.length;
1237 +            // assert head >= 0 && head < capacity;
1238 +            // assert tail >= 0 && tail < capacity;
1239 +            // assert capacity > 0;
1240 +            // assert size() < capacity;
1241 +            // assert head == tail || elements[head] != null;
1242 +            // assert elements[tail] == null;
1243 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1244 +        } catch (Throwable t) {
1245 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1246 +                              head, tail, elements.length);
1247 +            System.err.printf("elements=%s%n",
1248 +                              Arrays.toString(elements));
1249 +            throw t;
1250 +        }
1251      }
1252 +
1253   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines