ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.2 by dl, Tue Mar 8 12:27:06 2005 UTC vs.
Revision 1.118 by jsr166, Sun Nov 20 07:24:11 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77 <     * The array in which the elements of in the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
77 >     * The array in which the elements of the deque are stored.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private transient int tail;
96 >    transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
101 <     */
102 <    private static final int MIN_INITIAL_CAPACITY = 8;
103 <
104 <    // ******  Array allocation and resizing utilities ******
105 <
106 <    /**
107 <     * Allocate empty array to hold the given number of elements.
108 <     *
109 <     * @param numElements  the number of elements to hold.
110 <     */
111 <    private void allocateElements(int numElements) {  
112 <        int initialCapacity = MIN_INITIAL_CAPACITY;
113 <        // Find the best power of two to hold elements.
114 <        // Tests "<=" because arrays aren't kept full.
115 <        if (numElements >= initialCapacity) {
116 <            initialCapacity = numElements;
117 <            initialCapacity |= (initialCapacity >>>  1);
118 <            initialCapacity |= (initialCapacity >>>  2);
119 <            initialCapacity |= (initialCapacity >>>  4);
120 <            initialCapacity |= (initialCapacity >>>  8);
121 <            initialCapacity |= (initialCapacity >>> 16);
122 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && elements[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(elements, head,
126 >                             elements, head + newSpace,
127 >                             oldCapacity - head);
128 >            Arrays.fill(elements, head, head + newSpace, null);
129 >            head += newSpace;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
179 <     * Constructs an empty array deque with the an initial capacity
179 >     * Constructs an empty array deque with an initial capacity
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 175 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) distance -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is diambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
278  
279      /**
280 <     * Inserts the specified element to the front this deque.
280 >     * Inserts the specified element at the front of this deque.
281       *
282 <     * @param e the element to insert
283 <     * @throws NullPointerException if <tt>e</tt> is null
282 >     * @param e the element to add
283 >     * @throws NullPointerException if the specified element is null
284       */
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 <        if (head == tail)
290 <            doubleCapacity();
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290 >        if (head == tail)
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
296 <     * Inserts the specified element to the end this deque.
202 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
296 >     * Inserts the specified element at the end of this deque.
297       *
298 <     * @param e the element to insert
299 <     * @throws NullPointerException if <tt>e</tt> is null
298 >     * <p>This method is equivalent to {@link #add}.
299 >     *
300 >     * @param e the element to add
301 >     * @throws NullPointerException if the specified element is null
302       */
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311      }
312  
313      /**
314 <     * Retrieves and removes the first element of this deque, or
315 <     * <tt>null</tt> if this deque is empty.
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318       *
319 <     * @return the first element of this deque, or <tt>null</tt> if
320 <     *     this deque is empty
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323       */
324 <    public E pollFirst() {
325 <        int h = head;
326 <        E result = elements[h]; // Element is null if deque empty
327 <        if (result == null)
328 <            return null;
329 <        elements[h] = null;     // Must null out slot
330 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        c.forEach(this::addLast);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
334 <     * Retrieves and removes the last element of this deque, or
235 <     * <tt>null</tt> if this deque is empty.
334 >     * Inserts the specified element at the front of this deque.
335       *
336 <     * @return the last element of this deque, or <tt>null</tt> if
337 <     *     this deque is empty
338 <     */
240 <    public E pollLast() {
241 <        int t = (tail - 1) & (elements.length - 1);
242 <        E result = elements[t];
243 <        if (result == null)
244 <            return null;
245 <        elements[t] = null;
246 <        tail = t;
247 <        return result;
248 <    }
249 <
250 <    /**
251 <     * Inserts the specified element to the front this deque.
252 <     *
253 <     * @param e the element to insert
254 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
255 <     * @throws NullPointerException if <tt>e</tt> is null
336 >     * @param e the element to add
337 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
338 >     * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerFirst(E e) {
341          addFirst(e);
# Line 260 | Line 343 | public class ArrayDeque<E> extends Abstr
343      }
344  
345      /**
346 <     * Inserts the specified element to the end this deque.
346 >     * Inserts the specified element at the end of this deque.
347       *
348 <     * @param e the element to insert
349 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
350 <     * @throws NullPointerException if <tt>e</tt> is null
348 >     * @param e the element to add
349 >     * @return {@code true} (as specified by {@link Deque#offerLast})
350 >     * @throws NullPointerException if the specified element is null
351       */
352      public boolean offerLast(E e) {
353          addLast(e);
# Line 272 | Line 355 | public class ArrayDeque<E> extends Abstr
355      }
356  
357      /**
358 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
358 >     * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
369 >     * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379 <    /**
380 <     * Retrieves, but does not remove, the first element of this deque,
381 <     * returning <tt>null</tt> if this deque is empty.
382 <     *
383 <     * @return the first element of this deque, or <tt>null</tt> if
384 <     *     this deque is empty
385 <     */
386 <    public E peekFirst() {
387 <        return elements[head]; // elements[head] is null if deque empty
379 >    public E pollFirst() {
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391 <    /**
392 <     * Retrieves, but does not remove, the last element of this deque,
393 <     * returning <tt>null</tt> if this deque is empty.
394 <     *
395 <     * @return the last element of this deque, or <tt>null</tt> if this deque
396 <     *     is empty
397 <     */
398 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
391 >    public E pollLast() {
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
402 >     * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return x;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
413 >     * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        E x = elements[(tail - 1) & (elements.length - 1)];
417 <        if (x == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return x;
420 >        // checkInvariants();
421 >        return e;
422 >    }
423 >
424 >    public E peekFirst() {
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427 >    }
428 >
429 >    public E peekLast() {
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
436       * Removes the first occurrence of the specified element in this
437 <     * deque (when traversing the deque from head to tail).  If the deque
438 <     * does not contain the element, it is unchanged.
439 <     *
440 <     * @param e element to be removed from this deque, if present
441 <     * @return <tt>true</tt> if the deque contained the specified element
442 <     */
443 <    public boolean removeFirstOccurrence(Object e) {
444 <        if (e == null)
445 <            return false;
446 <        int mask = elements.length - 1;
447 <        int i = head;
448 <        E x;
449 <        while ( (x = elements[i]) != null) {
450 <            if (e.equals(x)) {
451 <                delete(i);
452 <                return true;
437 >     * deque (when traversing the deque from head to tail).
438 >     * If the deque does not contain the element, it is unchanged.
439 >     * More formally, removes the first element {@code e} such that
440 >     * {@code o.equals(e)} (if such an element exists).
441 >     * Returns {@code true} if this deque contained the specified element
442 >     * (or equivalently, if this deque changed as a result of the call).
443 >     *
444 >     * @param o element to be removed from this deque, if present
445 >     * @return {@code true} if the deque contained the specified element
446 >     */
447 >    public boolean removeFirstOccurrence(Object o) {
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
375            i = (i + 1) & mask;
459          }
460          return false;
461      }
462  
463      /**
464       * Removes the last occurrence of the specified element in this
465 <     * deque (when traversing the deque from head to tail).  If the deque
466 <     * does not contain the element, it is unchanged.
467 <     *
468 <     * @param e element to be removed from this deque, if present
469 <     * @return <tt>true</tt> if the deque contained the specified element
470 <     */
471 <    public boolean removeLastOccurrence(Object e) {
472 <        if (e == null)
473 <            return false;
474 <        int mask = elements.length - 1;
475 <        int i = (tail - 1) & mask;
476 <        E x;
477 <        while ( (x = elements[i]) != null) {
478 <            if (e.equals(x)) {
479 <                delete(i);
480 <                return true;
465 >     * deque (when traversing the deque from head to tail).
466 >     * If the deque does not contain the element, it is unchanged.
467 >     * More formally, removes the last element {@code e} such that
468 >     * {@code o.equals(e)} (if such an element exists).
469 >     * Returns {@code true} if this deque contained the specified element
470 >     * (or equivalently, if this deque changed as a result of the call).
471 >     *
472 >     * @param o element to be removed from this deque, if present
473 >     * @return {@code true} if the deque contained the specified element
474 >     */
475 >    public boolean removeLastOccurrence(Object o) {
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
399            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 404 | Line 491 | public class ArrayDeque<E> extends Abstr
491      // *** Queue methods ***
492  
493      /**
494 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
494 >     * Inserts the specified element at the end of this deque.
495       *
496       * <p>This method is equivalent to {@link #addLast}.
497       *
498 <     * @param e the element to insert
499 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
500 <     * @throws NullPointerException if <tt>e</tt> is null
498 >     * @param e the element to add
499 >     * @return {@code true} (as specified by {@link Collection#add})
500 >     * @throws NullPointerException if the specified element is null
501       */
502      public boolean add(E e) {
503          addLast(e);
# Line 431 | Line 505 | public class ArrayDeque<E> extends Abstr
505      }
506  
507      /**
508 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
508 >     * Inserts the specified element at the end of this deque.
509       *
510 <     * <p>This method is equivalent to {@link #pollFirst}.
510 >     * <p>This method is equivalent to {@link #offerLast}.
511       *
512 <     * @return the first element of this deque, or <tt>null</tt> if
513 <     *     this deque is empty
512 >     * @param e the element to add
513 >     * @return {@code true} (as specified by {@link Queue#offer})
514 >     * @throws NullPointerException if the specified element is null
515       */
516 <    public E poll() {
517 <        return pollFirst();
516 >    public boolean offer(E e) {
517 >        return offerLast(e);
518      }
519  
520      /**
521       * Retrieves and removes the head of the queue represented by this deque.
522 <     * This method differs from the <tt>poll</tt> method in that it throws an
522 >     *
523 >     * This method differs from {@link #poll poll} only in that it throws an
524       * exception if this deque is empty.
525       *
526       * <p>This method is equivalent to {@link #removeFirst}.
527       *
528       * @return the head of the queue represented by this deque
529 <     * @throws NoSuchElementException if this deque is empty
529 >     * @throws NoSuchElementException {@inheritDoc}
530       */
531      public E remove() {
532          return removeFirst();
533      }
534  
535      /**
536 <     * Retrieves, but does not remove, the head of the queue represented by
537 <     * this deque, returning <tt>null</tt> if this deque is empty.
536 >     * Retrieves and removes the head of the queue represented by this deque
537 >     * (in other words, the first element of this deque), or returns
538 >     * {@code null} if this deque is empty.
539       *
540 <     * <p>This method is equivalent to {@link #peekFirst}
540 >     * <p>This method is equivalent to {@link #pollFirst}.
541       *
542       * @return the head of the queue represented by this deque, or
543 <     *     <tt>null</tt> if this deque is empty
543 >     *         {@code null} if this deque is empty
544       */
545 <    public E peek() {
546 <        return peekFirst();
545 >    public E poll() {
546 >        return pollFirst();
547      }
548  
549      /**
550       * Retrieves, but does not remove, the head of the queue represented by
551 <     * this deque.  This method differs from the <tt>peek</tt> method only in
551 >     * this deque.  This method differs from {@link #peek peek} only in
552       * that it throws an exception if this deque is empty.
553       *
554 <     * <p>This method is equivalent to {@link #getFirst}
554 >     * <p>This method is equivalent to {@link #getFirst}.
555       *
556       * @return the head of the queue represented by this deque
557 <     * @throws NoSuchElementException if this deque is empty
557 >     * @throws NoSuchElementException {@inheritDoc}
558       */
559      public E element() {
560          return getFirst();
561      }
562  
563 +    /**
564 +     * Retrieves, but does not remove, the head of the queue represented by
565 +     * this deque, or returns {@code null} if this deque is empty.
566 +     *
567 +     * <p>This method is equivalent to {@link #peekFirst}.
568 +     *
569 +     * @return the head of the queue represented by this deque, or
570 +     *         {@code null} if this deque is empty
571 +     */
572 +    public E peek() {
573 +        return peekFirst();
574 +    }
575 +
576      // *** Stack methods ***
577  
578      /**
579       * Pushes an element onto the stack represented by this deque.  In other
580 <     * words, inserts the element to the front this deque.
580 >     * words, inserts the element at the front of this deque.
581       *
582       * <p>This method is equivalent to {@link #addFirst}.
583       *
584       * @param e the element to push
585 <     * @throws NullPointerException if <tt>e</tt> is null
585 >     * @throws NullPointerException if the specified element is null
586       */
587      public void push(E e) {
588          addFirst(e);
# Line 508 | Line 595 | public class ArrayDeque<E> extends Abstr
595       * <p>This method is equivalent to {@link #removeFirst()}.
596       *
597       * @return the element at the front of this deque (which is the top
598 <     *     of the stack represented by this deque)
599 <     * @throws NoSuchElementException if this deque is empty
598 >     *         of the stack represented by this deque)
599 >     * @throws NoSuchElementException {@inheritDoc}
600       */
601      public E pop() {
602          return removeFirst();
603      }
604  
605      /**
606 <     * Remove the element at the specified position in the elements array,
607 <     * adjusting head, tail, and size as necessary.  This can result in
608 <     * motion of elements backwards or forwards in the array.
609 <     *
610 <     * <p>This method is called delete rather than remove to emphasize the
611 <     * that its semantics differ from those of List.remove(int).
612 <     *
613 <     * @return true if elements moved backwards
614 <     */
615 <    private boolean delete(int i) {
616 <        // Case 1: Deque doesn't wrap
617 <        // Case 2: Deque does wrap and removed element is in the head portion
618 <        if ((head < tail || tail == 0) || i >= head) {
619 <            System.arraycopy(elements, head, elements, head + 1, i - head);
620 <            elements[head] = null;
621 <            head = (head + 1) & (elements.length - 1);
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609 >     *
610 >     * <p>This method is called delete rather than remove to emphasize
611 >     * that its semantics differ from those of {@link List#remove(int)}.
612 >     *
613 >     * @return true if elements near tail moved backwards
614 >     */
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624 >        if (front < back) {
625 >            // move front elements forwards
626 >            if (h <= i) {
627 >                System.arraycopy(es, h, es, h + 1, front);
628 >            } else { // Wrap around
629 >                System.arraycopy(es, 0, es, 1, i);
630 >                es[0] = es[capacity - 1];
631 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
632 >            }
633 >            es[h] = null;
634 >            head = inc(h, capacity);
635 >            // checkInvariants();
636              return false;
637 +        } else {
638 +            // move back elements backwards
639 +            tail = dec(t, capacity);
640 +            if (i <= tail) {
641 +                System.arraycopy(es, i + 1, es, i, back);
642 +            } else { // Wrap around
643 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644 +                es[capacity - 1] = es[0];
645 +                System.arraycopy(es, 1, es, 0, t - 1);
646 +            }
647 +            es[tail] = null;
648 +            // checkInvariants();
649 +            return true;
650          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
651      }
652  
653      // *** Collection Methods ***
# Line 550 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this collection contains no elements.
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670          return head == tail;
# Line 567 | Line 675 | public class ArrayDeque<E> extends Abstr
675       * will be ordered from first (head) to last (tail).  This is the same
676       * order that elements would be dequeued (via successive calls to
677       * {@link #remove} or popped (via successive calls to {@link #pop}).
678 <     *
679 <     * @return an <tt>Iterator</tt> over the elements in this deque
678 >     *
679 >     * @return an iterator over the elements in this deque
680       */
681      public Iterator<E> iterator() {
682          return new DeqIterator();
683      }
684  
685 +    public Iterator<E> descendingIterator() {
686 +        return new DescendingIterator();
687 +    }
688 +
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701  
702 <        public boolean hasNext() {
703 <            return cursor != fence;
702 >        DeqIterator() { cursor = head; }
703 >
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            E result;
601 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            // This check doesn't catch all possible comodifications,
712 <            // but does catch the ones that corrupt traversal
605 <            if (tail != fence || (result = elements[cursor]) == null)
606 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            cursor = inc(cursor, es.length);
715 >            remaining--;
716 >            return e;
717 >        }
718 >
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                cursor = dec(cursor, elements.length);
722          }
723  
724 <        public void remove() {
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet))
616 <                cursor--;
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729 <            fence = tail;
729 >        }
730 >
731 >        public void forEachRemaining(Consumer<? super E> action) {
732 >            Objects.requireNonNull(action);
733 >            int r;
734 >            if ((r = remaining) <= 0)
735 >                return;
736 >            remaining = 0;
737 >            final Object[] es = elements;
738 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 >                throw new ConcurrentModificationException();
740 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 >                 ; i = 0, to = end) {
742 >                for (; i < to; i++)
743 >                    action.accept(elementAt(es, i));
744 >                if (to == end) {
745 >                    if (end != tail)
746 >                        throw new ConcurrentModificationException();
747 >                    lastRet = dec(end, es.length);
748 >                    break;
749 >                }
750 >            }
751 >        }
752 >    }
753 >
754 >    private class DescendingIterator extends DeqIterator {
755 >        DescendingIterator() { cursor = dec(tail, elements.length); }
756 >
757 >        public final E next() {
758 >            if (remaining <= 0)
759 >                throw new NoSuchElementException();
760 >            final Object[] es = elements;
761 >            E e = nonNullElementAt(es, cursor);
762 >            lastRet = cursor;
763 >            cursor = dec(cursor, es.length);
764 >            remaining--;
765 >            return e;
766 >        }
767 >
768 >        void postDelete(boolean leftShifted) {
769 >            if (!leftShifted)
770 >                cursor = inc(cursor, elements.length);
771 >        }
772 >
773 >        public final void forEachRemaining(Consumer<? super E> action) {
774 >            Objects.requireNonNull(action);
775 >            int r;
776 >            if ((r = remaining) <= 0)
777 >                return;
778 >            remaining = 0;
779 >            final Object[] es = elements;
780 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 >                throw new ConcurrentModificationException();
782 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
783 >                 ; i = es.length - 1, to = end) {
784 >                // hotspot generates faster code than for: i >= to !
785 >                for (; i > to - 1; i--)
786 >                    action.accept(elementAt(es, i));
787 >                if (to == end) {
788 >                    if (end != head)
789 >                        throw new ConcurrentModificationException();
790 >                    lastRet = end;
791 >                    break;
792 >                }
793 >            }
794          }
795      }
796  
797      /**
798 <     * Returns <tt>true</tt> if this deque contains the specified
799 <     * element.  More formally, returns <tt>true</tt> if and only if this
800 <     * deque contains at least one element <tt>e</tt> such that
801 <     * <tt>e.equals(o)</tt>.
798 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
799 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
800 >     * deque.
801 >     *
802 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
803 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
804 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
805 >     * the reporting of additional characteristic values.
806 >     *
807 >     * @return a {@code Spliterator} over the elements in this deque
808 >     * @since 1.8
809 >     */
810 >    public Spliterator<E> spliterator() {
811 >        return new DeqSpliterator();
812 >    }
813 >
814 >    final class DeqSpliterator implements Spliterator<E> {
815 >        private int fence;      // -1 until first use
816 >        private int cursor;     // current index, modified on traverse/split
817 >
818 >        /** Constructs late-binding spliterator over all elements. */
819 >        DeqSpliterator() {
820 >            this.fence = -1;
821 >        }
822 >
823 >        /** Constructs spliterator over the given range. */
824 >        DeqSpliterator(int origin, int fence) {
825 >            this.cursor = origin;
826 >            this.fence = fence;
827 >        }
828 >
829 >        /** Ensures late-binding initialization; then returns fence. */
830 >        private int getFence() { // force initialization
831 >            int t;
832 >            if ((t = fence) < 0) {
833 >                t = fence = tail;
834 >                cursor = head;
835 >            }
836 >            return t;
837 >        }
838 >
839 >        public DeqSpliterator trySplit() {
840 >            final Object[] es = elements;
841 >            final int i, n;
842 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 >                ? null
844 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
845 >        }
846 >
847 >        public void forEachRemaining(Consumer<? super E> action) {
848 >            if (action == null)
849 >                throw new NullPointerException();
850 >            final int end = getFence(), cursor = this.cursor;
851 >            final Object[] es = elements;
852 >            if (cursor != end) {
853 >                this.cursor = end;
854 >                // null check at both ends of range is sufficient
855 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 >                    throw new ConcurrentModificationException();
857 >                for (int i = cursor, to = (i <= end) ? end : es.length;
858 >                     ; i = 0, to = end) {
859 >                    for (; i < to; i++)
860 >                        action.accept(elementAt(es, i));
861 >                    if (to == end) break;
862 >                }
863 >            }
864 >        }
865 >
866 >        public boolean tryAdvance(Consumer<? super E> action) {
867 >            if (action == null)
868 >                throw new NullPointerException();
869 >            final int t, i;
870 >            if ((t = getFence()) == (i = cursor))
871 >                return false;
872 >            final Object[] es = elements;
873 >            cursor = inc(i, es.length);
874 >            action.accept(nonNullElementAt(es, i));
875 >            return true;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return sub(getFence(), cursor, elements.length);
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.NONNULL
884 >                | Spliterator.ORDERED
885 >                | Spliterator.SIZED
886 >                | Spliterator.SUBSIZED;
887 >        }
888 >    }
889 >
890 >    public void forEach(Consumer<? super E> action) {
891 >        Objects.requireNonNull(action);
892 >        final Object[] es = elements;
893 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
894 >             ; i = 0, to = end) {
895 >            for (; i < to; i++)
896 >                action.accept(elementAt(es, i));
897 >            if (to == end) {
898 >                if (end != tail) throw new ConcurrentModificationException();
899 >                break;
900 >            }
901 >        }
902 >        // checkInvariants();
903 >    }
904 >
905 >    /**
906 >     * Replaces each element of this deque with the result of applying the
907 >     * operator to that element, as specified by {@link List#replaceAll}.
908 >     *
909 >     * @param operator the operator to apply to each element
910 >     * @since TBD
911 >     */
912 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
913 >        Objects.requireNonNull(operator);
914 >        final Object[] es = elements;
915 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
916 >             ; i = 0, to = end) {
917 >            for (; i < to; i++)
918 >                es[i] = operator.apply(elementAt(es, i));
919 >            if (to == end) {
920 >                if (end != tail) throw new ConcurrentModificationException();
921 >                break;
922 >            }
923 >        }
924 >        // checkInvariants();
925 >    }
926 >
927 >    /**
928 >     * @throws NullPointerException {@inheritDoc}
929 >     */
930 >    public boolean removeIf(Predicate<? super E> filter) {
931 >        Objects.requireNonNull(filter);
932 >        return bulkRemove(filter);
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean removeAll(Collection<?> c) {
939 >        Objects.requireNonNull(c);
940 >        return bulkRemove(e -> c.contains(e));
941 >    }
942 >
943 >    /**
944 >     * @throws NullPointerException {@inheritDoc}
945 >     */
946 >    public boolean retainAll(Collection<?> c) {
947 >        Objects.requireNonNull(c);
948 >        return bulkRemove(e -> !c.contains(e));
949 >    }
950 >
951 >    /** Implementation of bulk remove methods. */
952 >    private boolean bulkRemove(Predicate<? super E> filter) {
953 >        // checkInvariants();
954 >        final Object[] es = elements;
955 >        // Optimize for initial run of survivors
956 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
957 >             ; i = 0, to = end) {
958 >            for (; i < to; i++)
959 >                if (filter.test(elementAt(es, i)))
960 >                    return bulkRemoveModified(filter, i);
961 >            if (to == end) {
962 >                if (end != tail) throw new ConcurrentModificationException();
963 >                break;
964 >            }
965 >        }
966 >        return false;
967 >    }
968 >
969 >    // A tiny bit set implementation
970 >
971 >    private static long[] nBits(int n) {
972 >        return new long[((n - 1) >> 6) + 1];
973 >    }
974 >    private static void setBit(long[] bits, int i) {
975 >        bits[i >> 6] |= 1L << i;
976 >    }
977 >    private static boolean isClear(long[] bits, int i) {
978 >        return (bits[i >> 6] & (1L << i)) == 0;
979 >    }
980 >
981 >    /**
982 >     * Helper for bulkRemove, in case of at least one deletion.
983 >     * Tolerate predicates that reentrantly access the collection for
984 >     * read (but writers still get CME), so traverse once to find
985 >     * elements to delete, a second pass to physically expunge.
986 >     *
987 >     * @param beg valid index of first element to be deleted
988 >     */
989 >    private boolean bulkRemoveModified(
990 >        Predicate<? super E> filter, final int beg) {
991 >        final Object[] es = elements;
992 >        final int capacity = es.length;
993 >        final int end = tail;
994 >        final long[] deathRow = nBits(sub(end, beg, capacity));
995 >        deathRow[0] = 1L;   // set bit 0
996 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
997 >             ; i = 0, to = end, k -= capacity) {
998 >            for (; i < to; i++)
999 >                if (filter.test(elementAt(es, i)))
1000 >                    setBit(deathRow, i - k);
1001 >            if (to == end) break;
1002 >        }
1003 >        // a two-finger traversal, with hare i reading, tortoise w writing
1004 >        int w = beg;
1005 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1006 >             ; w = 0) { // w rejoins i on second leg
1007 >            // In this loop, i and w are on the same leg, with i > w
1008 >            for (; i < to; i++)
1009 >                if (isClear(deathRow, i - k))
1010 >                    es[w++] = es[i];
1011 >            if (to == end) break;
1012 >            // In this loop, w is on the first leg, i on the second
1013 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1014 >                if (isClear(deathRow, i - k))
1015 >                    es[w++] = es[i];
1016 >            if (i >= to) {
1017 >                if (w == capacity) w = 0; // "corner" case
1018 >                break;
1019 >            }
1020 >        }
1021 >        if (end != tail) throw new ConcurrentModificationException();
1022 >        circularClear(es, tail = w, end);
1023 >        // checkInvariants();
1024 >        return true;
1025 >    }
1026 >
1027 >    /**
1028 >     * Returns {@code true} if this deque contains the specified element.
1029 >     * More formally, returns {@code true} if and only if this deque contains
1030 >     * at least one element {@code e} such that {@code o.equals(e)}.
1031       *
1032       * @param o object to be checked for containment in this deque
1033 <     * @return <tt>true</tt> if this deque contains the specified element
1033 >     * @return {@code true} if this deque contains the specified element
1034       */
1035      public boolean contains(Object o) {
1036 <        if (o == null)
1037 <            return false;
1038 <        int mask = elements.length - 1;
1039 <        int i = head;
1040 <        E x;
1041 <        while ( (x = elements[i]) != null) {
1042 <            if (o.equals(x))
1043 <                return true;
1044 <            i = (i + 1) & mask;
1036 >        if (o != null) {
1037 >            final Object[] es = elements;
1038 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1039 >                 ; i = 0, to = end) {
1040 >                for (; i < to; i++)
1041 >                    if (o.equals(es[i]))
1042 >                        return true;
1043 >                if (to == end) break;
1044 >            }
1045          }
1046          return false;
1047      }
1048  
1049      /**
1050       * Removes a single instance of the specified element from this deque.
1051 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1051 >     * If the deque does not contain the element, it is unchanged.
1052 >     * More formally, removes the first element {@code e} such that
1053 >     * {@code o.equals(e)} (if such an element exists).
1054 >     * Returns {@code true} if this deque contained the specified element
1055 >     * (or equivalently, if this deque changed as a result of the call).
1056       *
1057 <     * @param e element to be removed from this deque, if present
1058 <     * @return <tt>true</tt> if this deque contained the specified element
1057 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1058 >     *
1059 >     * @param o element to be removed from this deque, if present
1060 >     * @return {@code true} if this deque contained the specified element
1061       */
1062 <    public boolean remove(Object e) {
1063 <        return removeFirstOccurrence(e);
1062 >    public boolean remove(Object o) {
1063 >        return removeFirstOccurrence(o);
1064      }
1065  
1066      /**
1067       * Removes all of the elements from this deque.
1068 +     * The deque will be empty after this call returns.
1069       */
1070      public void clear() {
1071 <        int h = head;
1072 <        int t = tail;
1073 <        if (h != t) { // clear all cells
1074 <            head = tail = 0;
1075 <            int i = h;
1076 <            int mask = elements.length - 1;
1077 <            do {
1078 <                elements[i] = null;
1079 <                i = (i + 1) & mask;
1080 <            } while(i != t);
1071 >        circularClear(elements, head, tail);
1072 >        head = tail = 0;
1073 >        // checkInvariants();
1074 >    }
1075 >
1076 >    /**
1077 >     * Nulls out slots starting at array index i, upto index end.
1078 >     */
1079 >    private static void circularClear(Object[] es, int i, int end) {
1080 >        for (int to = (i <= end) ? end : es.length;
1081 >             ; i = 0, to = end) {
1082 >            Arrays.fill(es, i, to, null);
1083 >            if (to == end) break;
1084          }
1085      }
1086  
1087      /**
1088 <     * Returns an array containing all of the elements in this list
1089 <     * in the correct order.
1088 >     * Returns an array containing all of the elements in this deque
1089 >     * in proper sequence (from first to last element).
1090       *
1091 <     * @return an array containing all of the elements in this list
1092 <     *         in the correct order
1091 >     * <p>The returned array will be "safe" in that no references to it are
1092 >     * maintained by this deque.  (In other words, this method must allocate
1093 >     * a new array).  The caller is thus free to modify the returned array.
1094 >     *
1095 >     * <p>This method acts as bridge between array-based and collection-based
1096 >     * APIs.
1097 >     *
1098 >     * @return an array containing all of the elements in this deque
1099       */
1100      public Object[] toArray() {
1101 <        return copyElements(new Object[size()]);
1101 >        return toArray(Object[].class);
1102 >    }
1103 >
1104 >    private <T> T[] toArray(Class<T[]> klazz) {
1105 >        final Object[] es = elements;
1106 >        final T[] a;
1107 >        final int size = size(), head = this.head, end;
1108 >        final int len = Math.min(size, es.length - head);
1109 >        if ((end = head + size) >= 0) {
1110 >            a = Arrays.copyOfRange(es, head, end, klazz);
1111 >        } else {
1112 >            // integer overflow!
1113 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1114 >            System.arraycopy(es, head, a, 0, len);
1115 >        }
1116 >        if (tail < head)
1117 >            System.arraycopy(es, 0, a, len, tail);
1118 >        return a;
1119      }
1120  
1121      /**
1122 <     * Returns an array containing all of the elements in this deque in the
1123 <     * correct order; the runtime type of the returned array is that of the
1124 <     * specified array.  If the deque fits in the specified array, it is
1125 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1126 <     * type of the specified array and the size of this deque.
1122 >     * Returns an array containing all of the elements in this deque in
1123 >     * proper sequence (from first to last element); the runtime type of the
1124 >     * returned array is that of the specified array.  If the deque fits in
1125 >     * the specified array, it is returned therein.  Otherwise, a new array
1126 >     * is allocated with the runtime type of the specified array and the
1127 >     * size of this deque.
1128 >     *
1129 >     * <p>If this deque fits in the specified array with room to spare
1130 >     * (i.e., the array has more elements than this deque), the element in
1131 >     * the array immediately following the end of the deque is set to
1132 >     * {@code null}.
1133 >     *
1134 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1135 >     * array-based and collection-based APIs.  Further, this method allows
1136 >     * precise control over the runtime type of the output array, and may,
1137 >     * under certain circumstances, be used to save allocation costs.
1138 >     *
1139 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1140 >     * The following code can be used to dump the deque into a newly
1141 >     * allocated array of {@code String}:
1142 >     *
1143 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1144       *
1145 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1146 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1145 >     * Note that {@code toArray(new Object[0])} is identical in function to
1146 >     * {@code toArray()}.
1147       *
1148       * @param a the array into which the elements of the deque are to
1149 <     *          be stored, if it is big enough; otherwise, a new array of the
1150 <     *          same runtime type is allocated for this purpose
1151 <     * @return an array containing the elements of the deque
1152 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1153 <     *         of the runtime type of every element in this deque
1149 >     *          be stored, if it is big enough; otherwise, a new array of the
1150 >     *          same runtime type is allocated for this purpose
1151 >     * @return an array containing all of the elements in this deque
1152 >     * @throws ArrayStoreException if the runtime type of the specified array
1153 >     *         is not a supertype of the runtime type of every element in
1154 >     *         this deque
1155 >     * @throws NullPointerException if the specified array is null
1156       */
1157 +    @SuppressWarnings("unchecked")
1158      public <T> T[] toArray(T[] a) {
1159 <        int size = size();
1160 <        if (a.length < size)
1161 <            a = (T[])java.lang.reflect.Array.newInstance(
1162 <                    a.getClass().getComponentType(), size);
1163 <        copyElements(a);
1164 <        if (a.length > size)
1159 >        final int size;
1160 >        if ((size = size()) > a.length)
1161 >            return toArray((Class<T[]>) a.getClass());
1162 >        final Object[] es = elements;
1163 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1164 >             ; i = 0, len = tail) {
1165 >            System.arraycopy(es, i, a, j, len);
1166 >            if ((j += len) == size) break;
1167 >        }
1168 >        if (size < a.length)
1169              a[size] = null;
1170          return a;
1171      }
# Line 718 | Line 1178 | public class ArrayDeque<E> extends Abstr
1178       * @return a copy of this deque
1179       */
1180      public ArrayDeque<E> clone() {
1181 <        try {
1181 >        try {
1182 >            @SuppressWarnings("unchecked")
1183              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1184 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1184 >            result.elements = Arrays.copyOf(elements, elements.length);
1185              return result;
1186 <
728 <        } catch (CloneNotSupportedException e) {
1186 >        } catch (CloneNotSupportedException e) {
1187              throw new AssertionError();
1188          }
1189      }
1190  
733    /**
734     * Appease the serialization gods.
735     */
1191      private static final long serialVersionUID = 2340985798034038923L;
1192  
1193      /**
1194 <     * Serialize this deque.
1194 >     * Saves this deque to a stream (that is, serializes it).
1195       *
1196 <     * @serialData The current size (<tt>int</tt>) of the deque,
1196 >     * @param s the stream
1197 >     * @throws java.io.IOException if an I/O error occurs
1198 >     * @serialData The current size ({@code int}) of the deque,
1199       * followed by all of its elements (each an object reference) in
1200       * first-to-last order.
1201       */
1202 <    private void writeObject(ObjectOutputStream s) throws IOException {
1202 >    private void writeObject(java.io.ObjectOutputStream s)
1203 >            throws java.io.IOException {
1204          s.defaultWriteObject();
1205  
1206          // Write out size
1207 <        int size = size();
750 <        s.writeInt(size);
1207 >        s.writeInt(size());
1208  
1209          // Write out elements in order.
1210 <        int i = head;
1211 <        int mask = elements.length - 1;
1212 <        for (int j = 0; j < size; j++) {
1213 <            s.writeObject(elements[i]);
1214 <            i = (i + 1) & mask;
1210 >        final Object[] es = elements;
1211 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1212 >             ; i = 0, to = end) {
1213 >            for (; i < to; i++)
1214 >                s.writeObject(es[i]);
1215 >            if (to == end) break;
1216          }
1217      }
1218  
1219      /**
1220 <     * Deserialize this deque.
1220 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1221 >     * @param s the stream
1222 >     * @throws ClassNotFoundException if the class of a serialized object
1223 >     *         could not be found
1224 >     * @throws java.io.IOException if an I/O error occurs
1225       */
1226 <    private void readObject(ObjectInputStream s)
1227 <            throws IOException, ClassNotFoundException {
1226 >    private void readObject(java.io.ObjectInputStream s)
1227 >            throws java.io.IOException, ClassNotFoundException {
1228          s.defaultReadObject();
1229  
1230          // Read in size and allocate array
1231          int size = s.readInt();
1232 <        allocateElements(size);
1233 <        head = 0;
772 <        tail = size;
1232 >        elements = new Object[size + 1];
1233 >        this.tail = size;
1234  
1235          // Read in all elements in the proper order.
1236          for (int i = 0; i < size; i++)
1237 <            elements[i] = (E)s.readObject();
1237 >            elements[i] = s.readObject();
1238 >    }
1239  
1240 +    /** debugging */
1241 +    void checkInvariants() {
1242 +        // Use head and tail fields with empty slot at tail strategy.
1243 +        // head == tail disambiguates to "empty".
1244 +        try {
1245 +            int capacity = elements.length;
1246 +            // assert head >= 0 && head < capacity;
1247 +            // assert tail >= 0 && tail < capacity;
1248 +            // assert capacity > 0;
1249 +            // assert size() < capacity;
1250 +            // assert head == tail || elements[head] != null;
1251 +            // assert elements[tail] == null;
1252 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1253 +        } catch (Throwable t) {
1254 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1255 +                              head, tail, elements.length);
1256 +            System.err.printf("elements=%s%n",
1257 +                              Arrays.toString(elements));
1258 +            throw t;
1259 +        }
1260      }
1261 +
1262   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines