ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.13 by jsr166, Wed May 18 00:46:42 2005 UTC vs.
Revision 1.119 by jsr166, Sun Nov 20 08:30:56 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 34 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 44 | Line 50 | import java.io.*;
50   * Iterator} interfaces.
51   *
52   * <p>This class is a member of the
53 < * <a href="{@docRoot}/../guide/collections/index.html">
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
52 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77       * The array in which the elements of the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
61 <     * full, except transiently within an addX method where it is
62 <     * resized (see doubleCapacity) immediately upon becoming full,
63 <     * thus avoiding head and tail wrapping around to equal each
64 <     * other.  We also guarantee that all array cells not holding
65 <     * deque elements are always null.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private transient int tail;
96 >    transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
101 <     */
102 <    private static final int MIN_INITIAL_CAPACITY = 8;
103 <
104 <    // ******  Array allocation and resizing utilities ******
105 <
106 <    /**
107 <     * Allocate empty array to hold the given number of elements.
108 <     *
109 <     * @param numElements  the number of elements to hold
110 <     */
111 <    private void allocateElements(int numElements) {
112 <        int initialCapacity = MIN_INITIAL_CAPACITY;
113 <        // Find the best power of two to hold elements.
114 <        // Tests "<=" because arrays aren't kept full.
115 <        if (numElements >= initialCapacity) {
116 <            initialCapacity = numElements;
117 <            initialCapacity |= (initialCapacity >>>  1);
118 <            initialCapacity |= (initialCapacity >>>  2);
119 <            initialCapacity |= (initialCapacity >>>  4);
120 <            initialCapacity |= (initialCapacity >>>  8);
121 <            initialCapacity |= (initialCapacity >>> 16);
122 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && elements[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(elements, head,
126 >                             elements, head + newSpace,
127 >                             oldCapacity - head);
128 >            Arrays.fill(elements, head, head + newSpace, null);
129 >            head += newSpace;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
123 <        int newCapacity = n << 1;
124 <        if (newCapacity < 0)
125 <            throw new IllegalStateException("Sorry, deque too big");
126 <        Object[] a = new Object[newCapacity];
127 <        System.arraycopy(elements, p, a, 0, r);
128 <        System.arraycopy(elements, 0, a, r, p);
129 <        elements = (E[])a;
130 <        head = 0;
131 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copies the elements from our element array into the specified array,
136 <     * in order (from first to last element in the deque).  It is assumed
137 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
147 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
# Line 154 | Line 180 | public class ArrayDeque<E> extends Abstr
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 178 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) distance -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is diambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
# Line 195 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
296       * Inserts the specified element at the end of this deque.
297 <     * This method is equivalent to {@link #add} and {@link #push}.
297 >     *
298 >     * <p>This method is equivalent to {@link #add}.
299       *
300       * @param e the element to add
301       * @throws NullPointerException if the specified element is null
# Line 210 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        c.forEach(this::addLast);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
334       * Inserts the specified element at the front of this deque.
335       *
336       * @param e the element to add
337 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
337 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
338       * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerFirst(E e) {
# Line 231 | Line 346 | public class ArrayDeque<E> extends Abstr
346       * Inserts the specified element at the end of this deque.
347       *
348       * @param e the element to add
349 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
349 >     * @return {@code true} (as specified by {@link Deque#offerLast})
350       * @throws NullPointerException if the specified element is null
351       */
352      public boolean offerLast(E e) {
# Line 243 | Line 358 | public class ArrayDeque<E> extends Abstr
358       * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369       * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379      public E pollFirst() {
380 <        int h = head;
381 <        E result = elements[h]; // Element is null if deque empty
382 <        if (result == null)
383 <            return null;
384 <        elements[h] = null;     // Must null out slot
385 <        head = (h + 1) & (elements.length - 1);
386 <        return result;
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391      public E pollLast() {
392 <        int t = (tail - 1) & (elements.length - 1);
393 <        E result = elements[t];
394 <        if (result == null)
395 <            return null;
396 <        elements[t] = null;
397 <        tail = t;
398 <        return result;
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return x;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413       * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        E x = elements[(tail - 1) & (elements.length - 1)];
417 <        if (x == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return x;
420 >        // checkInvariants();
421 >        return e;
422      }
423  
424      public E peekFirst() {
425 <        return elements[head]; // elements[head] is null if deque empty
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427      }
428  
429      public E peekLast() {
430 <        return elements[(tail - 1) & (elements.length - 1)];
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
436       * Removes the first occurrence of the specified element in this
437       * deque (when traversing the deque from head to tail).
438       * If the deque does not contain the element, it is unchanged.
439 <     * More formally, removes the first element <tt>e</tt> such that
440 <     * <tt>o.equals(e)</tt> (if such an element exists).
441 <     * Returns <tt>true</tt> if this deque contained the specified element
439 >     * More formally, removes the first element {@code e} such that
440 >     * {@code o.equals(e)} (if such an element exists).
441 >     * Returns {@code true} if this deque contained the specified element
442       * (or equivalently, if this deque changed as a result of the call).
443       *
444       * @param o element to be removed from this deque, if present
445 <     * @return <tt>true</tt> if the deque contained the specified element
445 >     * @return {@code true} if the deque contained the specified element
446       */
447      public boolean removeFirstOccurrence(Object o) {
448 <        if (o == null)
449 <            return false;
450 <        int mask = elements.length - 1;
451 <        int i = head;
452 <        E x;
453 <        while ( (x = elements[i]) != null) {
454 <            if (o.equals(x)) {
455 <                delete(i);
456 <                return true;
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
333            i = (i + 1) & mask;
459          }
460          return false;
461      }
# Line 339 | Line 464 | public class ArrayDeque<E> extends Abstr
464       * Removes the last occurrence of the specified element in this
465       * deque (when traversing the deque from head to tail).
466       * If the deque does not contain the element, it is unchanged.
467 <     * More formally, removes the last element <tt>e</tt> such that
468 <     * <tt>o.equals(e)</tt> (if such an element exists).
469 <     * Returns <tt>true</tt> if this deque contained the specified element
467 >     * More formally, removes the last element {@code e} such that
468 >     * {@code o.equals(e)} (if such an element exists).
469 >     * Returns {@code true} if this deque contained the specified element
470       * (or equivalently, if this deque changed as a result of the call).
471       *
472       * @param o element to be removed from this deque, if present
473 <     * @return <tt>true</tt> if the deque contained the specified element
473 >     * @return {@code true} if the deque contained the specified element
474       */
475      public boolean removeLastOccurrence(Object o) {
476 <        if (o == null)
477 <            return false;
478 <        int mask = elements.length - 1;
479 <        int i = (tail - 1) & mask;
480 <        E x;
481 <        while ( (x = elements[i]) != null) {
482 <            if (o.equals(x)) {
483 <                delete(i);
484 <                return true;
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
361            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 371 | Line 496 | public class ArrayDeque<E> extends Abstr
496       * <p>This method is equivalent to {@link #addLast}.
497       *
498       * @param e the element to add
499 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
499 >     * @return {@code true} (as specified by {@link Collection#add})
500       * @throws NullPointerException if the specified element is null
501       */
502      public boolean add(E e) {
# Line 385 | Line 510 | public class ArrayDeque<E> extends Abstr
510       * <p>This method is equivalent to {@link #offerLast}.
511       *
512       * @param e the element to add
513 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
513 >     * @return {@code true} (as specified by {@link Queue#offer})
514       * @throws NullPointerException if the specified element is null
515       */
516      public boolean offer(E e) {
# Line 394 | Line 519 | public class ArrayDeque<E> extends Abstr
519  
520      /**
521       * Retrieves and removes the head of the queue represented by this deque.
522 <     * This method differs from {@link #poll} only in that it throws an
522 >     *
523 >     * This method differs from {@link #poll poll} only in that it throws an
524       * exception if this deque is empty.
525       *
526       * <p>This method is equivalent to {@link #removeFirst}.
# Line 409 | Line 535 | public class ArrayDeque<E> extends Abstr
535      /**
536       * Retrieves and removes the head of the queue represented by this deque
537       * (in other words, the first element of this deque), or returns
538 <     * <tt>null</tt> if this deque is empty.
538 >     * {@code null} if this deque is empty.
539       *
540       * <p>This method is equivalent to {@link #pollFirst}.
541       *
542       * @return the head of the queue represented by this deque, or
543 <     *         <tt>null</tt> if this deque is empty
543 >     *         {@code null} if this deque is empty
544       */
545      public E poll() {
546          return pollFirst();
# Line 422 | Line 548 | public class ArrayDeque<E> extends Abstr
548  
549      /**
550       * Retrieves, but does not remove, the head of the queue represented by
551 <     * this deque.  This method differs from {@link #peek} only in that it
552 <     * throws an exception if this deque is empty.
551 >     * this deque.  This method differs from {@link #peek peek} only in
552 >     * that it throws an exception if this deque is empty.
553       *
554       * <p>This method is equivalent to {@link #getFirst}.
555       *
# Line 436 | Line 562 | public class ArrayDeque<E> extends Abstr
562  
563      /**
564       * Retrieves, but does not remove, the head of the queue represented by
565 <     * this deque, or returns <tt>null</tt> if this deque is empty.
565 >     * this deque, or returns {@code null} if this deque is empty.
566       *
567       * <p>This method is equivalent to {@link #peekFirst}.
568       *
569       * @return the head of the queue represented by this deque, or
570 <     *         <tt>null</tt> if this deque is empty
570 >     *         {@code null} if this deque is empty
571       */
572      public E peek() {
573          return peekFirst();
# Line 477 | Line 603 | public class ArrayDeque<E> extends Abstr
603      }
604  
605      /**
606 <     * Removes the element at the specified position in the elements array,
607 <     * adjusting head and tail as necessary.  This can result in motion of
608 <     * elements backwards or forwards in the array.
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609       *
610       * <p>This method is called delete rather than remove to emphasize
611       * that its semantics differ from those of {@link List#remove(int)}.
612       *
613 <     * @return true if elements moved backwards
613 >     * @return true if elements near tail moved backwards
614       */
615 <    private boolean delete(int i) {
616 <        int mask = elements.length - 1;
617 <
618 <        // Invariant: head <= i < tail mod circularity
619 <        if (((i - head) & mask) >= ((tail - head) & mask))
620 <            throw new ConcurrentModificationException();
621 <
622 <        // Case 1: Deque doesn't wrap
623 <        // Case 2: Deque does wrap and removed element is in the head portion
624 <        if (i >= head) {
625 <            System.arraycopy(elements, head, elements, head + 1, i - head);
626 <            elements[head] = null;
627 <            head = (head + 1) & mask;
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624 >        if (front < back) {
625 >            // move front elements forwards
626 >            if (h <= i) {
627 >                System.arraycopy(es, h, es, h + 1, front);
628 >            } else { // Wrap around
629 >                System.arraycopy(es, 0, es, 1, i);
630 >                es[0] = es[capacity - 1];
631 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
632 >            }
633 >            es[h] = null;
634 >            head = inc(h, capacity);
635 >            // checkInvariants();
636              return false;
637 +        } else {
638 +            // move back elements backwards
639 +            tail = dec(t, capacity);
640 +            if (i <= tail) {
641 +                System.arraycopy(es, i + 1, es, i, back);
642 +            } else { // Wrap around
643 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644 +                es[capacity - 1] = es[0];
645 +                System.arraycopy(es, 1, es, 0, t - 1);
646 +            }
647 +            es[tail] = null;
648 +            // checkInvariants();
649 +            return true;
650          }
504
505        // Case 3: Deque wraps and removed element is in the tail portion
506        tail--;
507        System.arraycopy(elements, i + 1, elements, i, tail - i);
508        elements[tail] = null;
509        return true;
651      }
652  
653      // *** Collection Methods ***
# Line 517 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this deque contains no elements.
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this deque contains no elements
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670          return head == tail;
# Line 535 | Line 676 | public class ArrayDeque<E> extends Abstr
676       * order that elements would be dequeued (via successive calls to
677       * {@link #remove} or popped (via successive calls to {@link #pop}).
678       *
679 <     * @return an <tt>Iterator</tt> over the elements in this deque
679 >     * @return an iterator over the elements in this deque
680       */
681      public Iterator<E> iterator() {
682          return new DeqIterator();
683      }
684  
685 +    public Iterator<E> descendingIterator() {
686 +        return new DescendingIterator();
687 +    }
688 +
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
547 <         */
548 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
552 <         * iterator and also to check for comodification.
553 <         */
554 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701  
702 <        public boolean hasNext() {
703 <            return cursor != fence;
702 >        DeqIterator() { cursor = head; }
703 >
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            E result;
568 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            // This check doesn't catch all possible comodifications,
712 <            // but does catch the ones that corrupt traversal
572 <            if (tail != fence || (result = elements[cursor]) == null)
573 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            cursor = inc(cursor, es.length);
715 >            remaining--;
716 >            return e;
717 >        }
718 >
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                cursor = dec(cursor, elements.length);
722          }
723  
724 <        public void remove() {
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet))
583 <                cursor--;
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729 <            fence = tail;
729 >        }
730 >
731 >        public void forEachRemaining(Consumer<? super E> action) {
732 >            Objects.requireNonNull(action);
733 >            int r;
734 >            if ((r = remaining) <= 0)
735 >                return;
736 >            remaining = 0;
737 >            final Object[] es = elements;
738 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 >                throw new ConcurrentModificationException();
740 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 >                 ; i = 0, to = end) {
742 >                for (; i < to; i++)
743 >                    action.accept(elementAt(es, i));
744 >                if (to == end) {
745 >                    if (end != tail)
746 >                        throw new ConcurrentModificationException();
747 >                    lastRet = dec(end, es.length);
748 >                    break;
749 >                }
750 >            }
751 >        }
752 >    }
753 >
754 >    private class DescendingIterator extends DeqIterator {
755 >        DescendingIterator() { cursor = dec(tail, elements.length); }
756 >
757 >        public final E next() {
758 >            if (remaining <= 0)
759 >                throw new NoSuchElementException();
760 >            final Object[] es = elements;
761 >            E e = nonNullElementAt(es, cursor);
762 >            lastRet = cursor;
763 >            cursor = dec(cursor, es.length);
764 >            remaining--;
765 >            return e;
766 >        }
767 >
768 >        void postDelete(boolean leftShifted) {
769 >            if (!leftShifted)
770 >                cursor = inc(cursor, elements.length);
771 >        }
772 >
773 >        public final void forEachRemaining(Consumer<? super E> action) {
774 >            Objects.requireNonNull(action);
775 >            int r;
776 >            if ((r = remaining) <= 0)
777 >                return;
778 >            remaining = 0;
779 >            final Object[] es = elements;
780 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 >                throw new ConcurrentModificationException();
782 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
783 >                 ; i = es.length - 1, to = end) {
784 >                // hotspot generates faster code than for: i >= to !
785 >                for (; i > to - 1; i--)
786 >                    action.accept(elementAt(es, i));
787 >                if (to == end) {
788 >                    if (end != head)
789 >                        throw new ConcurrentModificationException();
790 >                    lastRet = end;
791 >                    break;
792 >                }
793 >            }
794          }
795      }
796  
797      /**
798 <     * Returns <tt>true</tt> if this deque contains the specified element.
799 <     * More formally, returns <tt>true</tt> if and only if this deque contains
800 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
798 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
799 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
800 >     * deque.
801 >     *
802 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
803 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
804 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
805 >     * the reporting of additional characteristic values.
806 >     *
807 >     * @return a {@code Spliterator} over the elements in this deque
808 >     * @since 1.8
809 >     */
810 >    public Spliterator<E> spliterator() {
811 >        return new DeqSpliterator();
812 >    }
813 >
814 >    final class DeqSpliterator implements Spliterator<E> {
815 >        private int fence;      // -1 until first use
816 >        private int cursor;     // current index, modified on traverse/split
817 >
818 >        /** Constructs late-binding spliterator over all elements. */
819 >        DeqSpliterator() {
820 >            this.fence = -1;
821 >        }
822 >
823 >        /** Constructs spliterator over the given range. */
824 >        DeqSpliterator(int origin, int fence) {
825 >            this.cursor = origin;
826 >            this.fence = fence;
827 >        }
828 >
829 >        /** Ensures late-binding initialization; then returns fence. */
830 >        private int getFence() { // force initialization
831 >            int t;
832 >            if ((t = fence) < 0) {
833 >                t = fence = tail;
834 >                cursor = head;
835 >            }
836 >            return t;
837 >        }
838 >
839 >        public DeqSpliterator trySplit() {
840 >            final Object[] es = elements;
841 >            final int i, n;
842 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 >                ? null
844 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
845 >        }
846 >
847 >        public void forEachRemaining(Consumer<? super E> action) {
848 >            if (action == null)
849 >                throw new NullPointerException();
850 >            final int end = getFence(), cursor = this.cursor;
851 >            final Object[] es = elements;
852 >            if (cursor != end) {
853 >                this.cursor = end;
854 >                // null check at both ends of range is sufficient
855 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 >                    throw new ConcurrentModificationException();
857 >                for (int i = cursor, to = (i <= end) ? end : es.length;
858 >                     ; i = 0, to = end) {
859 >                    for (; i < to; i++)
860 >                        action.accept(elementAt(es, i));
861 >                    if (to == end) break;
862 >                }
863 >            }
864 >        }
865 >
866 >        public boolean tryAdvance(Consumer<? super E> action) {
867 >            if (action == null)
868 >                throw new NullPointerException();
869 >            final int t, i;
870 >            if ((t = getFence()) == (i = cursor))
871 >                return false;
872 >            final Object[] es = elements;
873 >            cursor = inc(i, es.length);
874 >            action.accept(nonNullElementAt(es, i));
875 >            return true;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return sub(getFence(), cursor, elements.length);
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.NONNULL
884 >                | Spliterator.ORDERED
885 >                | Spliterator.SIZED
886 >                | Spliterator.SUBSIZED;
887 >        }
888 >    }
889 >
890 >    public void forEach(Consumer<? super E> action) {
891 >        Objects.requireNonNull(action);
892 >        final Object[] es = elements;
893 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
894 >             ; i = 0, to = end) {
895 >            for (; i < to; i++)
896 >                action.accept(elementAt(es, i));
897 >            if (to == end) {
898 >                if (end != tail) throw new ConcurrentModificationException();
899 >                break;
900 >            }
901 >        }
902 >        // checkInvariants();
903 >    }
904 >
905 >    /**
906 >     * Replaces each element of this deque with the result of applying the
907 >     * operator to that element, as specified by {@link List#replaceAll}.
908 >     *
909 >     * @param operator the operator to apply to each element
910 >     * @since TBD
911 >     */
912 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
913 >        Objects.requireNonNull(operator);
914 >        final Object[] es = elements;
915 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
916 >             ; i = 0, to = end) {
917 >            for (; i < to; i++)
918 >                es[i] = operator.apply(elementAt(es, i));
919 >            if (to == end) {
920 >                if (end != tail) throw new ConcurrentModificationException();
921 >                break;
922 >            }
923 >        }
924 >        // checkInvariants();
925 >    }
926 >
927 >    /**
928 >     * @throws NullPointerException {@inheritDoc}
929 >     */
930 >    public boolean removeIf(Predicate<? super E> filter) {
931 >        Objects.requireNonNull(filter);
932 >        return bulkRemove(filter);
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean removeAll(Collection<?> c) {
939 >        Objects.requireNonNull(c);
940 >        return bulkRemove(e -> c.contains(e));
941 >    }
942 >
943 >    /**
944 >     * @throws NullPointerException {@inheritDoc}
945 >     */
946 >    public boolean retainAll(Collection<?> c) {
947 >        Objects.requireNonNull(c);
948 >        return bulkRemove(e -> !c.contains(e));
949 >    }
950 >
951 >    /** Implementation of bulk remove methods. */
952 >    private boolean bulkRemove(Predicate<? super E> filter) {
953 >        // checkInvariants();
954 >        final Object[] es = elements;
955 >        // Optimize for initial run of survivors
956 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
957 >             ; i = 0, to = end) {
958 >            for (; i < to; i++)
959 >                if (filter.test(elementAt(es, i)))
960 >                    return bulkRemoveModified(filter, i);
961 >            if (to == end) {
962 >                if (end != tail) throw new ConcurrentModificationException();
963 >                break;
964 >            }
965 >        }
966 >        return false;
967 >    }
968 >
969 >    // A tiny bit set implementation
970 >
971 >    private static long[] nBits(int n) {
972 >        return new long[((n - 1) >> 6) + 1];
973 >    }
974 >    private static void setBit(long[] bits, int i) {
975 >        bits[i >> 6] |= 1L << i;
976 >    }
977 >    private static boolean isClear(long[] bits, int i) {
978 >        return (bits[i >> 6] & (1L << i)) == 0;
979 >    }
980 >
981 >    /**
982 >     * Helper for bulkRemove, in case of at least one deletion.
983 >     * Tolerate predicates that reentrantly access the collection for
984 >     * read (but writers still get CME), so traverse once to find
985 >     * elements to delete, a second pass to physically expunge.
986 >     *
987 >     * @param beg valid index of first element to be deleted
988 >     */
989 >    private boolean bulkRemoveModified(
990 >        Predicate<? super E> filter, final int beg) {
991 >        final Object[] es = elements;
992 >        final int capacity = es.length;
993 >        final int end = tail;
994 >        final long[] deathRow = nBits(sub(end, beg, capacity));
995 >        deathRow[0] = 1L;   // set bit 0
996 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
997 >             ; i = 0, to = end, k -= capacity) {
998 >            for (; i < to; i++)
999 >                if (filter.test(elementAt(es, i)))
1000 >                    setBit(deathRow, i - k);
1001 >            if (to == end) break;
1002 >        }
1003 >        // a two-finger traversal, with hare i reading, tortoise w writing
1004 >        int w = beg;
1005 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1006 >             ; w = 0) { // w rejoins i on second leg
1007 >            // In this loop, i and w are on the same leg, with i > w
1008 >            for (; i < to; i++)
1009 >                if (isClear(deathRow, i - k))
1010 >                    es[w++] = es[i];
1011 >            if (to == end) break;
1012 >            // In this loop, w is on the first leg, i on the second
1013 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1014 >                if (isClear(deathRow, i - k))
1015 >                    es[w++] = es[i];
1016 >            if (i >= to) {
1017 >                if (w == capacity) w = 0; // "corner" case
1018 >                break;
1019 >            }
1020 >        }
1021 >        if (end != tail) throw new ConcurrentModificationException();
1022 >        circularClear(es, tail = w, end);
1023 >        // checkInvariants();
1024 >        return true;
1025 >    }
1026 >
1027 >    /**
1028 >     * Returns {@code true} if this deque contains the specified element.
1029 >     * More formally, returns {@code true} if and only if this deque contains
1030 >     * at least one element {@code e} such that {@code o.equals(e)}.
1031       *
1032       * @param o object to be checked for containment in this deque
1033 <     * @return <tt>true</tt> if this deque contains the specified element
1033 >     * @return {@code true} if this deque contains the specified element
1034       */
1035      public boolean contains(Object o) {
1036 <        if (o == null)
1037 <            return false;
1038 <        int mask = elements.length - 1;
1039 <        int i = head;
1040 <        E x;
1041 <        while ( (x = elements[i]) != null) {
1042 <            if (o.equals(x))
1043 <                return true;
1044 <            i = (i + 1) & mask;
1036 >        if (o != null) {
1037 >            final Object[] es = elements;
1038 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1039 >                 ; i = 0, to = end) {
1040 >                for (; i < to; i++)
1041 >                    if (o.equals(es[i]))
1042 >                        return true;
1043 >                if (to == end) break;
1044 >            }
1045          }
1046          return false;
1047      }
# Line 611 | Line 1049 | public class ArrayDeque<E> extends Abstr
1049      /**
1050       * Removes a single instance of the specified element from this deque.
1051       * If the deque does not contain the element, it is unchanged.
1052 <     * More formally, removes the first element <tt>e</tt> such that
1053 <     * <tt>o.equals(e)</tt> (if such an element exists).
1054 <     * Returns <tt>true</tt> if this deque contained the specified element
1052 >     * More formally, removes the first element {@code e} such that
1053 >     * {@code o.equals(e)} (if such an element exists).
1054 >     * Returns {@code true} if this deque contained the specified element
1055       * (or equivalently, if this deque changed as a result of the call).
1056       *
1057 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1057 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1058       *
1059       * @param o element to be removed from this deque, if present
1060 <     * @return <tt>true</tt> if this deque contained the specified element
1060 >     * @return {@code true} if this deque contained the specified element
1061       */
1062      public boolean remove(Object o) {
1063          return removeFirstOccurrence(o);
# Line 630 | Line 1068 | public class ArrayDeque<E> extends Abstr
1068       * The deque will be empty after this call returns.
1069       */
1070      public void clear() {
1071 <        int h = head;
1072 <        int t = tail;
1073 <        if (h != t) { // clear all cells
1074 <            head = tail = 0;
1075 <            int i = h;
1076 <            int mask = elements.length - 1;
1077 <            do {
1078 <                elements[i] = null;
1079 <                i = (i + 1) & mask;
1080 <            } while (i != t);
1071 >        circularClear(elements, head, tail);
1072 >        head = tail = 0;
1073 >        // checkInvariants();
1074 >    }
1075 >
1076 >    /**
1077 >     * Nulls out slots starting at array index i, upto index end.
1078 >     */
1079 >    private static void circularClear(Object[] es, int i, int end) {
1080 >        for (int to = (i <= end) ? end : es.length;
1081 >             ; i = 0, to = end) {
1082 >            Arrays.fill(es, i, to, null);
1083 >            if (to == end) break;
1084          }
1085      }
1086  
# Line 657 | Line 1098 | public class ArrayDeque<E> extends Abstr
1098       * @return an array containing all of the elements in this deque
1099       */
1100      public Object[] toArray() {
1101 <        return copyElements(new Object[size()]);
1101 >        return toArray(Object[].class);
1102 >    }
1103 >
1104 >    private <T> T[] toArray(Class<T[]> klazz) {
1105 >        final Object[] es = elements;
1106 >        final T[] a;
1107 >        final int head = this.head, tail = this.tail, end;
1108 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1109 >            a = Arrays.copyOfRange(es, head, end, klazz);
1110 >        } else {
1111 >            // integer overflow!
1112 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1113 >            System.arraycopy(es, head, a, 0, es.length - head);
1114 >        }
1115 >        if (end != tail)
1116 >            System.arraycopy(es, 0, a, es.length - head, tail);
1117 >        return a;
1118      }
1119  
1120      /**
# Line 671 | Line 1128 | public class ArrayDeque<E> extends Abstr
1128       * <p>If this deque fits in the specified array with room to spare
1129       * (i.e., the array has more elements than this deque), the element in
1130       * the array immediately following the end of the deque is set to
1131 <     * <tt>null</tt>.
1131 >     * {@code null}.
1132       *
1133       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1134       * array-based and collection-based APIs.  Further, this method allows
1135       * precise control over the runtime type of the output array, and may,
1136       * under certain circumstances, be used to save allocation costs.
1137       *
1138 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1138 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1139       * The following code can be used to dump the deque into a newly
1140 <     * allocated array of <tt>String</tt>:
1140 >     * allocated array of {@code String}:
1141       *
1142 <     * <pre>
686 <     *     String[] y = x.toArray(new String[0]);</pre>
1142 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1143       *
1144 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1145 <     * <tt>toArray()</tt>.
1144 >     * Note that {@code toArray(new Object[0])} is identical in function to
1145 >     * {@code toArray()}.
1146       *
1147       * @param a the array into which the elements of the deque are to
1148       *          be stored, if it is big enough; otherwise, a new array of the
# Line 697 | Line 1153 | public class ArrayDeque<E> extends Abstr
1153       *         this deque
1154       * @throws NullPointerException if the specified array is null
1155       */
1156 +    @SuppressWarnings("unchecked")
1157      public <T> T[] toArray(T[] a) {
1158 <        int size = size();
1159 <        if (a.length < size)
1160 <            a = (T[])java.lang.reflect.Array.newInstance(
1161 <                    a.getClass().getComponentType(), size);
1162 <        copyElements(a);
1163 <        if (a.length > size)
1158 >        final int size;
1159 >        if ((size = size()) > a.length)
1160 >            return toArray((Class<T[]>) a.getClass());
1161 >        final Object[] es = elements;
1162 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1163 >             ; i = 0, len = tail) {
1164 >            System.arraycopy(es, i, a, j, len);
1165 >            if ((j += len) == size) break;
1166 >        }
1167 >        if (size < a.length)
1168              a[size] = null;
1169          return a;
1170      }
# Line 717 | Line 1178 | public class ArrayDeque<E> extends Abstr
1178       */
1179      public ArrayDeque<E> clone() {
1180          try {
1181 +            @SuppressWarnings("unchecked")
1182              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1183 <            // These two lines are currently faster than cloning the array:
722 <            result.elements = (E[]) new Object[elements.length];
723 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1183 >            result.elements = Arrays.copyOf(elements, elements.length);
1184              return result;
725
1185          } catch (CloneNotSupportedException e) {
1186              throw new AssertionError();
1187          }
1188      }
1189  
731    /**
732     * Appease the serialization gods.
733     */
1190      private static final long serialVersionUID = 2340985798034038923L;
1191  
1192      /**
1193 <     * Serialize this deque.
1193 >     * Saves this deque to a stream (that is, serializes it).
1194       *
1195 <     * @serialData The current size (<tt>int</tt>) of the deque,
1195 >     * @param s the stream
1196 >     * @throws java.io.IOException if an I/O error occurs
1197 >     * @serialData The current size ({@code int}) of the deque,
1198       * followed by all of its elements (each an object reference) in
1199       * first-to-last order.
1200       */
1201 <    private void writeObject(ObjectOutputStream s) throws IOException {
1201 >    private void writeObject(java.io.ObjectOutputStream s)
1202 >            throws java.io.IOException {
1203          s.defaultWriteObject();
1204  
1205          // Write out size
1206 <        int size = size();
748 <        s.writeInt(size);
1206 >        s.writeInt(size());
1207  
1208          // Write out elements in order.
1209 <        int i = head;
1210 <        int mask = elements.length - 1;
1211 <        for (int j = 0; j < size; j++) {
1212 <            s.writeObject(elements[i]);
1213 <            i = (i + 1) & mask;
1209 >        final Object[] es = elements;
1210 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1211 >             ; i = 0, to = end) {
1212 >            for (; i < to; i++)
1213 >                s.writeObject(es[i]);
1214 >            if (to == end) break;
1215          }
1216      }
1217  
1218      /**
1219 <     * Deserialize this deque.
1219 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1220 >     * @param s the stream
1221 >     * @throws ClassNotFoundException if the class of a serialized object
1222 >     *         could not be found
1223 >     * @throws java.io.IOException if an I/O error occurs
1224       */
1225 <    private void readObject(ObjectInputStream s)
1226 <            throws IOException, ClassNotFoundException {
1225 >    private void readObject(java.io.ObjectInputStream s)
1226 >            throws java.io.IOException, ClassNotFoundException {
1227          s.defaultReadObject();
1228  
1229          // Read in size and allocate array
1230          int size = s.readInt();
1231 <        allocateElements(size);
1232 <        head = 0;
770 <        tail = size;
1231 >        elements = new Object[size + 1];
1232 >        this.tail = size;
1233  
1234          // Read in all elements in the proper order.
1235          for (int i = 0; i < size; i++)
1236 <            elements[i] = (E)s.readObject();
1236 >            elements[i] = s.readObject();
1237 >    }
1238  
1239 +    /** debugging */
1240 +    void checkInvariants() {
1241 +        // Use head and tail fields with empty slot at tail strategy.
1242 +        // head == tail disambiguates to "empty".
1243 +        try {
1244 +            int capacity = elements.length;
1245 +            // assert head >= 0 && head < capacity;
1246 +            // assert tail >= 0 && tail < capacity;
1247 +            // assert capacity > 0;
1248 +            // assert size() < capacity;
1249 +            // assert head == tail || elements[head] != null;
1250 +            // assert elements[tail] == null;
1251 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1252 +        } catch (Throwable t) {
1253 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1254 +                              head, tail, elements.length);
1255 +            System.err.printf("elements=%s%n",
1256 +                              Arrays.toString(elements));
1257 +            throw t;
1258 +        }
1259      }
1260 +
1261   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines