ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.56 by jsr166, Thu Jul 18 17:48:28 2013 UTC vs.
Revision 1.121 by jsr166, Mon Nov 21 15:30:44 2016 UTC

# Line 4 | Line 4
4   */
5  
6   package java.util;
7 +
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 < import java.util.stream.Stream;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 52 | Line 54 | import java.util.stream.Stream;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
56 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77       * The array in which the elements of the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
65 <     * full, except transiently within an addX method where it is
66 <     * resized (see doubleCapacity) immediately upon becoming full,
67 <     * thus avoiding head and tail wrapping around to equal each
68 <     * other.  We also guarantee that all array cells not holding
69 <     * deque elements are always null.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    transient Object[] elements; // non-private to simplify nested class access
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89      transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96      transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103       */
104 <    private static final int MIN_INITIAL_CAPACITY = 8;
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105  
106 <    // ******  Array allocation and resizing utilities ******
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && elements[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(elements, head,
126 >                             elements, head + newSpace,
127 >                             oldCapacity - head);
128 >            Arrays.fill(elements, head, head + newSpace, null);
129 >            head += newSpace;
130 >        }
131 >        // checkInvariants();
132 >    }
133 >
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141 >        }
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147 >    }
148  
149      /**
150 <     * Allocates empty array to hold the given number of elements.
151 <     *
152 <     * @param numElements  the number of elements to hold
153 <     */
154 <    private void allocateElements(int numElements) {
155 <        int initialCapacity = MIN_INITIAL_CAPACITY;
156 <        // Find the best power of two to hold elements.
157 <        // Tests "<=" because arrays aren't kept full.
158 <        if (numElements >= initialCapacity) {
159 <            initialCapacity = numElements;
160 <            initialCapacity |= (initialCapacity >>>  1);
106 <            initialCapacity |= (initialCapacity >>>  2);
107 <            initialCapacity |= (initialCapacity >>>  4);
108 <            initialCapacity |= (initialCapacity >>>  8);
109 <            initialCapacity |= (initialCapacity >>> 16);
110 <            initialCapacity++;
111 <
112 <            if (initialCapacity < 0)   // Too many elements, must back off
113 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
114 <        }
115 <        elements = new Object[initialCapacity];
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155 >     */
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
165 <     * when head and tail have wrapped around to become equal.
166 <     */
167 <    private void doubleCapacity() {
168 <        assert head == tail;
169 <        int p = head;
170 <        int n = elements.length;
171 <        int r = n - p; // number of elements to the right of p
172 <        int newCapacity = n << 1;
173 <        if (newCapacity < 0)
174 <            throw new IllegalStateException("Sorry, deque too big");
175 <        Object[] a = new Object[newCapacity];
131 <        System.arraycopy(elements, p, a, 0, r);
132 <        System.arraycopy(elements, 0, a, r, p);
133 <        elements = a;
134 <        head = 0;
135 <        tail = n;
164 >     * Minimizes the internal storage of this collection.
165 >     *
166 >     * @since TBD
167 >     */
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174 >        }
175 >        // checkInvariants();
176      }
177  
178      /**
# Line 147 | Line 187 | public class ArrayDeque<E> extends Abstr
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 164 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) distance -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is diambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
# Line 181 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
# Line 197 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        c.forEach(this::addLast);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
# Line 230 | Line 358 | public class ArrayDeque<E> extends Abstr
358       * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369       * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379      public E pollFirst() {
380 <        int h = head;
381 <        @SuppressWarnings("unchecked")
382 <        E result = (E) elements[h];
383 <        // Element is null if deque empty
384 <        if (result == null)
385 <            return null;
386 <        elements[h] = null;     // Must null out slot
387 <        head = (h + 1) & (elements.length - 1);
388 <        return result;
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391      public E pollLast() {
392 <        int t = (tail - 1) & (elements.length - 1);
393 <        @SuppressWarnings("unchecked")
394 <        E result = (E) elements[t];
395 <        if (result == null)
396 <            return null;
397 <        elements[t] = null;
398 <        tail = t;
269 <        return result;
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        @SuppressWarnings("unchecked")
406 <        E result = (E) elements[head];
278 <        if (result == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return result;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413       * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        @SuppressWarnings("unchecked")
417 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
418 <        if (result == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return result;
420 >        // checkInvariants();
421 >        return e;
422      }
423  
294    @SuppressWarnings("unchecked")
424      public E peekFirst() {
425 <        // elements[head] is null if deque empty
426 <        return (E) elements[head];
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427      }
428  
300    @SuppressWarnings("unchecked")
429      public E peekLast() {
430 <        return (E) elements[(tail - 1) & (elements.length - 1)];
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
# Line 315 | Line 445 | public class ArrayDeque<E> extends Abstr
445       * @return {@code true} if the deque contained the specified element
446       */
447      public boolean removeFirstOccurrence(Object o) {
448 <        if (o == null)
449 <            return false;
450 <        int mask = elements.length - 1;
451 <        int i = head;
452 <        Object x;
453 <        while ( (x = elements[i]) != null) {
454 <            if (o.equals(x)) {
455 <                delete(i);
456 <                return true;
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
328            i = (i + 1) & mask;
459          }
460          return false;
461      }
# Line 343 | Line 473 | public class ArrayDeque<E> extends Abstr
473       * @return {@code true} if the deque contained the specified element
474       */
475      public boolean removeLastOccurrence(Object o) {
476 <        if (o == null)
477 <            return false;
478 <        int mask = elements.length - 1;
479 <        int i = (tail - 1) & mask;
480 <        Object x;
481 <        while ( (x = elements[i]) != null) {
482 <            if (o.equals(x)) {
483 <                delete(i);
484 <                return true;
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
356            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 472 | Line 602 | public class ArrayDeque<E> extends Abstr
602          return removeFirst();
603      }
604  
475    private void checkInvariants() {
476        assert elements[tail] == null;
477        assert head == tail ? elements[head] == null :
478            (elements[head] != null &&
479             elements[(tail - 1) & (elements.length - 1)] != null);
480        assert elements[(head - 1) & (elements.length - 1)] == null;
481    }
482
605      /**
606 <     * Removes the element at the specified position in the elements array,
607 <     * adjusting head and tail as necessary.  This can result in motion of
608 <     * elements backwards or forwards in the array.
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609       *
610       * <p>This method is called delete rather than remove to emphasize
611       * that its semantics differ from those of {@link List#remove(int)}.
612       *
613 <     * @return true if elements moved backwards
613 >     * @return true if elements near tail moved backwards
614       */
615 <    private boolean delete(int i) {
616 <        checkInvariants();
617 <        final Object[] elements = this.elements;
618 <        final int mask = elements.length - 1;
619 <        final int h = head;
620 <        final int t = tail;
621 <        final int front = (i - h) & mask;
622 <        final int back  = (t - i) & mask;
623 <
502 <        // Invariant: head <= i < tail mod circularity
503 <        if (front >= ((t - h) & mask))
504 <            throw new ConcurrentModificationException();
505 <
506 <        // Optimize for least element motion
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624          if (front < back) {
625 +            // move front elements forwards
626              if (h <= i) {
627 <                System.arraycopy(elements, h, elements, h + 1, front);
627 >                System.arraycopy(es, h, es, h + 1, front);
628              } else { // Wrap around
629 <                System.arraycopy(elements, 0, elements, 1, i);
630 <                elements[0] = elements[mask];
631 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
629 >                System.arraycopy(es, 0, es, 1, i);
630 >                es[0] = es[capacity - 1];
631 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
632              }
633 <            elements[h] = null;
634 <            head = (h + 1) & mask;
633 >            es[h] = null;
634 >            head = inc(h, capacity);
635 >            // checkInvariants();
636              return false;
637          } else {
638 <            if (i < t) { // Copy the null tail as well
639 <                System.arraycopy(elements, i + 1, elements, i, back);
640 <                tail = t - 1;
638 >            // move back elements backwards
639 >            tail = dec(t, capacity);
640 >            if (i <= tail) {
641 >                System.arraycopy(es, i + 1, es, i, back);
642              } else { // Wrap around
643 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
644 <                elements[mask] = elements[0];
645 <                System.arraycopy(elements, 1, elements, 0, t);
526 <                tail = (t - 1) & mask;
643 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644 >                es[capacity - 1] = es[0];
645 >                System.arraycopy(es, 1, es, 0, t - 1);
646              }
647 +            es[tail] = null;
648 +            // checkInvariants();
649              return true;
650          }
651      }
# Line 537 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
# Line 566 | Line 687 | public class ArrayDeque<E> extends Abstr
687      }
688  
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
571 <         */
572 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
576 <         * iterator and also to check for comodification.
577 <         */
578 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701 >
702 >        DeqIterator() { cursor = head; }
703  
704 <        public boolean hasNext() {
705 <            return cursor != fence;
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            @SuppressWarnings("unchecked")
712 <            E result = (E) elements[cursor];
595 <            // This check doesn't catch all possible comodifications,
596 <            // but does catch the ones that corrupt traversal
597 <            if (tail != fence || result == null)
598 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            cursor = inc(cursor, es.length);
715 >            remaining--;
716 >            return e;
717 >        }
718 >
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                cursor = dec(cursor, elements.length);
722          }
723  
724 <        public void remove() {
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
608 <                cursor = (cursor - 1) & (elements.length - 1);
609 <                fence = tail;
610 <            }
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729          }
730 +
731 +        public void forEachRemaining(Consumer<? super E> action) {
732 +            Objects.requireNonNull(action);
733 +            int r;
734 +            if ((r = remaining) <= 0)
735 +                return;
736 +            remaining = 0;
737 +            final Object[] es = elements;
738 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 +                throw new ConcurrentModificationException();
740 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 +                 ; i = 0, to = end) {
742 +                for (; i < to; i++)
743 +                    action.accept(elementAt(es, i));
744 +                if (to == end) {
745 +                    if (end != tail)
746 +                        throw new ConcurrentModificationException();
747 +                    lastRet = dec(end, es.length);
748 +                    break;
749 +                }
750 +            }
751 +        }
752 +    }
753 +
754 +    private class DescendingIterator extends DeqIterator {
755 +        DescendingIterator() { cursor = dec(tail, elements.length); }
756 +
757 +        public final E next() {
758 +            if (remaining <= 0)
759 +                throw new NoSuchElementException();
760 +            final Object[] es = elements;
761 +            E e = nonNullElementAt(es, cursor);
762 +            lastRet = cursor;
763 +            cursor = dec(cursor, es.length);
764 +            remaining--;
765 +            return e;
766 +        }
767 +
768 +        void postDelete(boolean leftShifted) {
769 +            if (!leftShifted)
770 +                cursor = inc(cursor, elements.length);
771 +        }
772 +
773 +        public final void forEachRemaining(Consumer<? super E> action) {
774 +            Objects.requireNonNull(action);
775 +            int r;
776 +            if ((r = remaining) <= 0)
777 +                return;
778 +            remaining = 0;
779 +            final Object[] es = elements;
780 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 +                throw new ConcurrentModificationException();
782 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
783 +                 ; i = es.length - 1, to = end) {
784 +                // hotspot generates faster code than for: i >= to !
785 +                for (; i > to - 1; i--)
786 +                    action.accept(elementAt(es, i));
787 +                if (to == end) {
788 +                    if (end != head)
789 +                        throw new ConcurrentModificationException();
790 +                    lastRet = end;
791 +                    break;
792 +                }
793 +            }
794 +        }
795      }
796  
797      /**
798 <     * This class is nearly a mirror-image of DeqIterator, using tail
799 <     * instead of head for initial cursor, and head instead of tail
800 <     * for fence.
801 <     */
802 <    private class DescendingIterator implements Iterator<E> {
803 <        private int cursor = tail;
804 <        private int fence = head;
805 <        private int lastRet = -1;
798 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
799 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
800 >     * deque.
801 >     *
802 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
803 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
804 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
805 >     * the reporting of additional characteristic values.
806 >     *
807 >     * @return a {@code Spliterator} over the elements in this deque
808 >     * @since 1.8
809 >     */
810 >    public Spliterator<E> spliterator() {
811 >        return new DeqSpliterator();
812 >    }
813 >
814 >    final class DeqSpliterator implements Spliterator<E> {
815 >        private int fence;      // -1 until first use
816 >        private int cursor;     // current index, modified on traverse/split
817  
818 <        public boolean hasNext() {
819 <            return cursor != fence;
818 >        /** Constructs late-binding spliterator over all elements. */
819 >        DeqSpliterator() {
820 >            this.fence = -1;
821          }
822  
823 <        public E next() {
824 <            if (cursor == fence)
825 <                throw new NoSuchElementException();
826 <            cursor = (cursor - 1) & (elements.length - 1);
633 <            @SuppressWarnings("unchecked")
634 <            E result = (E) elements[cursor];
635 <            if (head != fence || result == null)
636 <                throw new ConcurrentModificationException();
637 <            lastRet = cursor;
638 <            return result;
823 >        /** Constructs spliterator over the given range. */
824 >        DeqSpliterator(int origin, int fence) {
825 >            this.cursor = origin;
826 >            this.fence = fence;
827          }
828  
829 <        public void remove() {
830 <            if (lastRet < 0)
831 <                throw new IllegalStateException();
832 <            if (!delete(lastRet)) {
833 <                cursor = (cursor + 1) & (elements.length - 1);
834 <                fence = head;
829 >        /** Ensures late-binding initialization; then returns fence. */
830 >        private int getFence() { // force initialization
831 >            int t;
832 >            if ((t = fence) < 0) {
833 >                t = fence = tail;
834 >                cursor = head;
835 >            }
836 >            return t;
837 >        }
838 >
839 >        public DeqSpliterator trySplit() {
840 >            final Object[] es = elements;
841 >            final int i, n;
842 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 >                ? null
844 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
845 >        }
846 >
847 >        public void forEachRemaining(Consumer<? super E> action) {
848 >            if (action == null)
849 >                throw new NullPointerException();
850 >            final int end = getFence(), cursor = this.cursor;
851 >            final Object[] es = elements;
852 >            if (cursor != end) {
853 >                this.cursor = end;
854 >                // null check at both ends of range is sufficient
855 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 >                    throw new ConcurrentModificationException();
857 >                for (int i = cursor, to = (i <= end) ? end : es.length;
858 >                     ; i = 0, to = end) {
859 >                    for (; i < to; i++)
860 >                        action.accept(elementAt(es, i));
861 >                    if (to == end) break;
862 >                }
863 >            }
864 >        }
865 >
866 >        public boolean tryAdvance(Consumer<? super E> action) {
867 >            Objects.requireNonNull(action);
868 >            final Object[] es = elements;
869 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
870 >            final int i;
871 >            if ((i = cursor) == fence)
872 >                return false;
873 >            E e = nonNullElementAt(es, i);
874 >            cursor = inc(i, es.length);
875 >            action.accept(e);
876 >            return true;
877 >        }
878 >
879 >        public long estimateSize() {
880 >            return sub(getFence(), cursor, elements.length);
881 >        }
882 >
883 >        public int characteristics() {
884 >            return Spliterator.NONNULL
885 >                | Spliterator.ORDERED
886 >                | Spliterator.SIZED
887 >                | Spliterator.SUBSIZED;
888 >        }
889 >    }
890 >
891 >    public void forEach(Consumer<? super E> action) {
892 >        Objects.requireNonNull(action);
893 >        final Object[] es = elements;
894 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
895 >             ; i = 0, to = end) {
896 >            for (; i < to; i++)
897 >                action.accept(elementAt(es, i));
898 >            if (to == end) {
899 >                if (end != tail) throw new ConcurrentModificationException();
900 >                break;
901 >            }
902 >        }
903 >        // checkInvariants();
904 >    }
905 >
906 >    /**
907 >     * Replaces each element of this deque with the result of applying the
908 >     * operator to that element, as specified by {@link List#replaceAll}.
909 >     *
910 >     * @param operator the operator to apply to each element
911 >     * @since TBD
912 >     */
913 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
914 >        Objects.requireNonNull(operator);
915 >        final Object[] es = elements;
916 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
917 >             ; i = 0, to = end) {
918 >            for (; i < to; i++)
919 >                es[i] = operator.apply(elementAt(es, i));
920 >            if (to == end) {
921 >                if (end != tail) throw new ConcurrentModificationException();
922 >                break;
923 >            }
924 >        }
925 >        // checkInvariants();
926 >    }
927 >
928 >    /**
929 >     * @throws NullPointerException {@inheritDoc}
930 >     */
931 >    public boolean removeIf(Predicate<? super E> filter) {
932 >        Objects.requireNonNull(filter);
933 >        return bulkRemove(filter);
934 >    }
935 >
936 >    /**
937 >     * @throws NullPointerException {@inheritDoc}
938 >     */
939 >    public boolean removeAll(Collection<?> c) {
940 >        Objects.requireNonNull(c);
941 >        return bulkRemove(e -> c.contains(e));
942 >    }
943 >
944 >    /**
945 >     * @throws NullPointerException {@inheritDoc}
946 >     */
947 >    public boolean retainAll(Collection<?> c) {
948 >        Objects.requireNonNull(c);
949 >        return bulkRemove(e -> !c.contains(e));
950 >    }
951 >
952 >    /** Implementation of bulk remove methods. */
953 >    private boolean bulkRemove(Predicate<? super E> filter) {
954 >        // checkInvariants();
955 >        final Object[] es = elements;
956 >        // Optimize for initial run of survivors
957 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
958 >             ; i = 0, to = end) {
959 >            for (; i < to; i++)
960 >                if (filter.test(elementAt(es, i)))
961 >                    return bulkRemoveModified(filter, i);
962 >            if (to == end) {
963 >                if (end != tail) throw new ConcurrentModificationException();
964 >                break;
965 >            }
966 >        }
967 >        return false;
968 >    }
969 >
970 >    // A tiny bit set implementation
971 >
972 >    private static long[] nBits(int n) {
973 >        return new long[((n - 1) >> 6) + 1];
974 >    }
975 >    private static void setBit(long[] bits, int i) {
976 >        bits[i >> 6] |= 1L << i;
977 >    }
978 >    private static boolean isClear(long[] bits, int i) {
979 >        return (bits[i >> 6] & (1L << i)) == 0;
980 >    }
981 >
982 >    /**
983 >     * Helper for bulkRemove, in case of at least one deletion.
984 >     * Tolerate predicates that reentrantly access the collection for
985 >     * read (but writers still get CME), so traverse once to find
986 >     * elements to delete, a second pass to physically expunge.
987 >     *
988 >     * @param beg valid index of first element to be deleted
989 >     */
990 >    private boolean bulkRemoveModified(
991 >        Predicate<? super E> filter, final int beg) {
992 >        final Object[] es = elements;
993 >        final int capacity = es.length;
994 >        final int end = tail;
995 >        final long[] deathRow = nBits(sub(end, beg, capacity));
996 >        deathRow[0] = 1L;   // set bit 0
997 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
998 >             ; i = 0, to = end, k -= capacity) {
999 >            for (; i < to; i++)
1000 >                if (filter.test(elementAt(es, i)))
1001 >                    setBit(deathRow, i - k);
1002 >            if (to == end) break;
1003 >        }
1004 >        // a two-finger traversal, with hare i reading, tortoise w writing
1005 >        int w = beg;
1006 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1007 >             ; w = 0) { // w rejoins i on second leg
1008 >            // In this loop, i and w are on the same leg, with i > w
1009 >            for (; i < to; i++)
1010 >                if (isClear(deathRow, i - k))
1011 >                    es[w++] = es[i];
1012 >            if (to == end) break;
1013 >            // In this loop, w is on the first leg, i on the second
1014 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1015 >                if (isClear(deathRow, i - k))
1016 >                    es[w++] = es[i];
1017 >            if (i >= to) {
1018 >                if (w == capacity) w = 0; // "corner" case
1019 >                break;
1020              }
648            lastRet = -1;
1021          }
1022 +        if (end != tail) throw new ConcurrentModificationException();
1023 +        circularClear(es, tail = w, end);
1024 +        // checkInvariants();
1025 +        return true;
1026      }
1027  
1028      /**
# Line 658 | Line 1034 | public class ArrayDeque<E> extends Abstr
1034       * @return {@code true} if this deque contains the specified element
1035       */
1036      public boolean contains(Object o) {
1037 <        if (o == null)
1038 <            return false;
1039 <        int mask = elements.length - 1;
1040 <        int i = head;
1041 <        Object x;
1042 <        while ( (x = elements[i]) != null) {
1043 <            if (o.equals(x))
1044 <                return true;
1045 <            i = (i + 1) & mask;
1037 >        if (o != null) {
1038 >            final Object[] es = elements;
1039 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1040 >                 ; i = 0, to = end) {
1041 >                for (; i < to; i++)
1042 >                    if (o.equals(es[i]))
1043 >                        return true;
1044 >                if (to == end) break;
1045 >            }
1046          }
1047          return false;
1048      }
# Line 693 | Line 1069 | public class ArrayDeque<E> extends Abstr
1069       * The deque will be empty after this call returns.
1070       */
1071      public void clear() {
1072 <        int h = head;
1073 <        int t = tail;
1074 <        if (h != t) { // clear all cells
1075 <            head = tail = 0;
1076 <            int i = h;
1077 <            int mask = elements.length - 1;
1078 <            do {
1079 <                elements[i] = null;
1080 <                i = (i + 1) & mask;
1081 <            } while (i != t);
1072 >        circularClear(elements, head, tail);
1073 >        head = tail = 0;
1074 >        // checkInvariants();
1075 >    }
1076 >
1077 >    /**
1078 >     * Nulls out slots starting at array index i, upto index end.
1079 >     */
1080 >    private static void circularClear(Object[] es, int i, int end) {
1081 >        for (int to = (i <= end) ? end : es.length;
1082 >             ; i = 0, to = end) {
1083 >            Arrays.fill(es, i, to, null);
1084 >            if (to == end) break;
1085          }
1086      }
1087  
# Line 720 | Line 1099 | public class ArrayDeque<E> extends Abstr
1099       * @return an array containing all of the elements in this deque
1100       */
1101      public Object[] toArray() {
1102 <        final int head = this.head;
1103 <        final int tail = this.tail;
1104 <        boolean wrap = (tail < head);
1105 <        int end = wrap ? tail + elements.length : tail;
1106 <        Object[] a = Arrays.copyOfRange(elements, head, end);
1107 <        if (wrap)
1108 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1102 >        return toArray(Object[].class);
1103 >    }
1104 >
1105 >    private <T> T[] toArray(Class<T[]> klazz) {
1106 >        final Object[] es = elements;
1107 >        final T[] a;
1108 >        final int head = this.head, tail = this.tail, end;
1109 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1110 >            // Uses null extension feature of copyOfRange
1111 >            a = Arrays.copyOfRange(es, head, end, klazz);
1112 >        } else {
1113 >            // integer overflow!
1114 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1115 >            System.arraycopy(es, head, a, 0, es.length - head);
1116 >        }
1117 >        if (end != tail)
1118 >            System.arraycopy(es, 0, a, es.length - head, tail);
1119          return a;
1120      }
1121  
# Line 752 | Line 1141 | public class ArrayDeque<E> extends Abstr
1141       * The following code can be used to dump the deque into a newly
1142       * allocated array of {@code String}:
1143       *
1144 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1144 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1145       *
1146       * Note that {@code toArray(new Object[0])} is identical in function to
1147       * {@code toArray()}.
# Line 768 | Line 1157 | public class ArrayDeque<E> extends Abstr
1157       */
1158      @SuppressWarnings("unchecked")
1159      public <T> T[] toArray(T[] a) {
1160 <        final int head = this.head;
1161 <        final int tail = this.tail;
1162 <        boolean wrap = (tail < head);
1163 <        int size = (tail - head) + (wrap ? elements.length : 0);
1164 <        int firstLeg = size - (wrap ? tail : 0);
1165 <        int len = a.length;
1166 <        if (size > len) {
1167 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
779 <                                         a.getClass());
780 <        } else {
781 <            System.arraycopy(elements, head, a, 0, firstLeg);
782 <            if (size < len)
783 <                a[size] = null;
1160 >        final int size;
1161 >        if ((size = size()) > a.length)
1162 >            return toArray((Class<T[]>) a.getClass());
1163 >        final Object[] es = elements;
1164 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1165 >             ; i = 0, len = tail) {
1166 >            System.arraycopy(es, i, a, j, len);
1167 >            if ((j += len) == size) break;
1168          }
1169 <        if (wrap)
1170 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1169 >        if (size < a.length)
1170 >            a[size] = null;
1171          return a;
1172      }
1173  
# Line 811 | Line 1195 | public class ArrayDeque<E> extends Abstr
1195       * Saves this deque to a stream (that is, serializes it).
1196       *
1197       * @param s the stream
1198 +     * @throws java.io.IOException if an I/O error occurs
1199       * @serialData The current size ({@code int}) of the deque,
1200       * followed by all of its elements (each an object reference) in
1201       * first-to-last order.
# Line 823 | Line 1208 | public class ArrayDeque<E> extends Abstr
1208          s.writeInt(size());
1209  
1210          // Write out elements in order.
1211 <        int mask = elements.length - 1;
1212 <        for (int i = head; i != tail; i = (i + 1) & mask)
1213 <            s.writeObject(elements[i]);
1211 >        final Object[] es = elements;
1212 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1213 >             ; i = 0, to = end) {
1214 >            for (; i < to; i++)
1215 >                s.writeObject(es[i]);
1216 >            if (to == end) break;
1217 >        }
1218      }
1219  
1220      /**
1221       * Reconstitutes this deque from a stream (that is, deserializes it).
1222       * @param s the stream
1223 +     * @throws ClassNotFoundException if the class of a serialized object
1224 +     *         could not be found
1225 +     * @throws java.io.IOException if an I/O error occurs
1226       */
1227      private void readObject(java.io.ObjectInputStream s)
1228              throws java.io.IOException, ClassNotFoundException {
# Line 838 | Line 1230 | public class ArrayDeque<E> extends Abstr
1230  
1231          // Read in size and allocate array
1232          int size = s.readInt();
1233 <        allocateElements(size);
1234 <        head = 0;
843 <        tail = size;
1233 >        elements = new Object[size + 1];
1234 >        this.tail = size;
1235  
1236          // Read in all elements in the proper order.
1237          for (int i = 0; i < size; i++)
1238              elements[i] = s.readObject();
1239      }
1240  
1241 <    public Spliterator<E> spliterator() {
1242 <        return new DeqSpliterator<E>(this, -1, -1);
1243 <    }
1244 <
1245 <    static final class DeqSpliterator<E> implements Spliterator<E> {
1246 <        private final ArrayDeque<E> deq;
1247 <        private int fence;  // -1 until first use
1248 <        private int index;  // current index, modified on traverse/split
1249 <
1250 <        /** Creates new spliterator covering the given array and range */
1251 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
1252 <            this.deq = deq;
1253 <            this.index = origin;
1254 <            this.fence = fence;
1255 <        }
1256 <
1257 <        private int getFence() { // force initialization
1258 <            int t;
1259 <            if ((t = fence) < 0) {
869 <                t = fence = deq.tail;
870 <                index = deq.head;
871 <            }
872 <            return t;
873 <        }
874 <
875 <        public Spliterator<E> trySplit() {
876 <            int t = getFence(), h = index, n = deq.elements.length;
877 <            if (h != t && ((h + 1) & (n - 1)) != t) {
878 <                if (h > t)
879 <                    t += n;
880 <                int m = ((h + t) >>> 1) & (n - 1);
881 <                return new DeqSpliterator<>(deq, h, index = m);
882 <            }
883 <            return null;
884 <        }
885 <
886 <        public void forEachRemaining(Consumer<? super E> consumer) {
887 <            if (consumer == null)
888 <                throw new NullPointerException();
889 <            Object[] a = deq.elements;
890 <            int m = a.length - 1, f = getFence(), i = index;
891 <            index = f;
892 <            while (i != f) {
893 <                @SuppressWarnings("unchecked") E e = (E)a[i];
894 <                i = (i + 1) & m;
895 <                if (e == null)
896 <                    throw new ConcurrentModificationException();
897 <                consumer.accept(e);
898 <            }
899 <        }
900 <
901 <        public boolean tryAdvance(Consumer<? super E> consumer) {
902 <            if (consumer == null)
903 <                throw new NullPointerException();
904 <            Object[] a = deq.elements;
905 <            int m = a.length - 1, f = getFence(), i = index;
906 <            if (i != fence) {
907 <                @SuppressWarnings("unchecked") E e = (E)a[i];
908 <                index = (i + 1) & m;
909 <                if (e == null)
910 <                    throw new ConcurrentModificationException();
911 <                consumer.accept(e);
912 <                return true;
913 <            }
914 <            return false;
915 <        }
916 <
917 <        public long estimateSize() {
918 <            int n = getFence() - index;
919 <            if (n < 0)
920 <                n += deq.elements.length;
921 <            return (long) n;
922 <        }
923 <
924 <        @Override
925 <        public int characteristics() {
926 <            return Spliterator.ORDERED | Spliterator.SIZED |
927 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1241 >    /** debugging */
1242 >    void checkInvariants() {
1243 >        // Use head and tail fields with empty slot at tail strategy.
1244 >        // head == tail disambiguates to "empty".
1245 >        try {
1246 >            int capacity = elements.length;
1247 >            // assert head >= 0 && head < capacity;
1248 >            // assert tail >= 0 && tail < capacity;
1249 >            // assert capacity > 0;
1250 >            // assert size() < capacity;
1251 >            // assert head == tail || elements[head] != null;
1252 >            // assert elements[tail] == null;
1253 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1254 >        } catch (Throwable t) {
1255 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1256 >                              head, tail, elements.length);
1257 >            System.err.printf("elements=%s%n",
1258 >                              Arrays.toString(elements));
1259 >            throw t;
1260          }
1261      }
1262  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines