ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.62 by jsr166, Wed Dec 31 09:37:19 2014 UTC vs.
Revision 1.133 by jsr166, Sat Feb 24 22:04:18 2018 UTC

# Line 7 | Line 7 | package java.util;
7  
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 + import java.util.function.Predicate;
11 + import java.util.function.UnaryOperator;
12 + import jdk.internal.misc.SharedSecrets;
13  
14   /**
15   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 48 | Line 51 | import java.util.function.Consumer;
51   * Iterator} interfaces.
52   *
53   * <p>This class is a member of the
54 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
55   * Java Collections Framework</a>.
56   *
57   * @author  Josh Bloch and Doug Lea
55 * @since   1.6
58   * @param <E> the type of elements held in this deque
59 + * @since   1.6
60   */
61   public class ArrayDeque<E> extends AbstractCollection<E>
62                             implements Deque<E>, Cloneable, Serializable
63   {
64 +    /*
65 +     * VMs excel at optimizing simple array loops where indices are
66 +     * incrementing or decrementing over a valid slice, e.g.
67 +     *
68 +     * for (int i = start; i < end; i++) ... elements[i]
69 +     *
70 +     * Because in a circular array, elements are in general stored in
71 +     * two disjoint such slices, we help the VM by writing unusual
72 +     * nested loops for all traversals over the elements.  Having only
73 +     * one hot inner loop body instead of two or three eases human
74 +     * maintenance and encourages VM loop inlining into the caller.
75 +     */
76 +
77      /**
78       * The array in which the elements of the deque are stored.
79 <     * The capacity of the deque is the length of this array, which is
80 <     * always a power of two. The array is never allowed to become
65 <     * full, except transiently within an addX method where it is
66 <     * resized (see doubleCapacity) immediately upon becoming full,
67 <     * thus avoiding head and tail wrapping around to equal each
68 <     * other.  We also guarantee that all array cells not holding
69 <     * deque elements are always null.
79 >     * All array cells not holding deque elements are always null.
80 >     * The array always has at least one null slot (at tail).
81       */
82 <    transient Object[] elements; // non-private to simplify nested class access
82 >    transient Object[] elements;
83  
84      /**
85       * The index of the element at the head of the deque (which is the
86       * element that would be removed by remove() or pop()); or an
87 <     * arbitrary number equal to tail if the deque is empty.
87 >     * arbitrary number 0 <= head < elements.length equal to tail if
88 >     * the deque is empty.
89       */
90      transient int head;
91  
92      /**
93       * The index at which the next element would be added to the tail
94 <     * of the deque (via addLast(E), add(E), or push(E)).
94 >     * of the deque (via addLast(E), add(E), or push(E));
95 >     * elements[tail] is always null.
96       */
97      transient int tail;
98  
99      /**
100 <     * The minimum capacity that we'll use for a newly created deque.
101 <     * Must be a power of 2.
100 >     * The maximum size of array to allocate.
101 >     * Some VMs reserve some header words in an array.
102 >     * Attempts to allocate larger arrays may result in
103 >     * OutOfMemoryError: Requested array size exceeds VM limit
104       */
105 <    private static final int MIN_INITIAL_CAPACITY = 8;
105 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
106  
107 <    // ******  Array allocation and resizing utilities ******
107 >    /**
108 >     * Increases the capacity of this deque by at least the given amount.
109 >     *
110 >     * @param needed the required minimum extra capacity; must be positive
111 >     */
112 >    private void grow(int needed) {
113 >        // overflow-conscious code
114 >        final int oldCapacity = elements.length;
115 >        int newCapacity;
116 >        // Double capacity if small; else grow by 50%
117 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
118 >        if (jump < needed
119 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
120 >            newCapacity = newCapacity(needed, jump);
121 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
122 >        // Exceptionally, here tail == head needs to be disambiguated
123 >        if (tail < head || (tail == head && es[head] != null)) {
124 >            // wrap around; slide first leg forward to end of array
125 >            int newSpace = newCapacity - oldCapacity;
126 >            System.arraycopy(es, head,
127 >                             es, head + newSpace,
128 >                             oldCapacity - head);
129 >            for (int i = head, to = (head += newSpace); i < to; i++)
130 >                es[i] = null;
131 >        }
132 >        // checkInvariants();
133 >    }
134 >
135 >    /** Capacity calculation for edge conditions, especially overflow. */
136 >    private int newCapacity(int needed, int jump) {
137 >        final int oldCapacity = elements.length, minCapacity;
138 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
139 >            if (minCapacity < 0)
140 >                throw new IllegalStateException("Sorry, deque too big");
141 >            return Integer.MAX_VALUE;
142 >        }
143 >        if (needed > jump)
144 >            return minCapacity;
145 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
146 >            ? oldCapacity + jump
147 >            : MAX_ARRAY_SIZE;
148 >    }
149  
150      /**
151 <     * Allocates empty array to hold the given number of elements.
152 <     *
153 <     * @param numElements  the number of elements to hold
154 <     */
155 <    private void allocateElements(int numElements) {
156 <        int initialCapacity = MIN_INITIAL_CAPACITY;
157 <        // Find the best power of two to hold elements.
158 <        // Tests "<=" because arrays aren't kept full.
159 <        if (numElements >= initialCapacity) {
160 <            initialCapacity = numElements;
161 <            initialCapacity |= (initialCapacity >>>  1);
106 <            initialCapacity |= (initialCapacity >>>  2);
107 <            initialCapacity |= (initialCapacity >>>  4);
108 <            initialCapacity |= (initialCapacity >>>  8);
109 <            initialCapacity |= (initialCapacity >>> 16);
110 <            initialCapacity++;
111 <
112 <            if (initialCapacity < 0)   // Too many elements, must back off
113 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
114 <        }
115 <        elements = new Object[initialCapacity];
151 >     * Increases the internal storage of this collection, if necessary,
152 >     * to ensure that it can hold at least the given number of elements.
153 >     *
154 >     * @param minCapacity the desired minimum capacity
155 >     * @since TBD
156 >     */
157 >    /* public */ void ensureCapacity(int minCapacity) {
158 >        int needed;
159 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
160 >            grow(needed);
161 >        // checkInvariants();
162      }
163  
164      /**
165 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
166 <     * when head and tail have wrapped around to become equal.
167 <     */
168 <    private void doubleCapacity() {
169 <        assert head == tail;
170 <        int p = head;
171 <        int n = elements.length;
172 <        int r = n - p; // number of elements to the right of p
173 <        int newCapacity = n << 1;
174 <        if (newCapacity < 0)
175 <            throw new IllegalStateException("Sorry, deque too big");
176 <        Object[] a = new Object[newCapacity];
131 <        System.arraycopy(elements, p, a, 0, r);
132 <        System.arraycopy(elements, 0, a, r, p);
133 <        elements = a;
134 <        head = 0;
135 <        tail = n;
165 >     * Minimizes the internal storage of this collection.
166 >     *
167 >     * @since TBD
168 >     */
169 >    /* public */ void trimToSize() {
170 >        int size;
171 >        if ((size = size()) + 1 < elements.length) {
172 >            elements = toArray(new Object[size + 1]);
173 >            head = 0;
174 >            tail = size;
175 >        }
176 >        // checkInvariants();
177      }
178  
179      /**
# Line 147 | Line 188 | public class ArrayDeque<E> extends Abstr
188       * Constructs an empty array deque with an initial capacity
189       * sufficient to hold the specified number of elements.
190       *
191 <     * @param numElements  lower bound on initial capacity of the deque
191 >     * @param numElements lower bound on initial capacity of the deque
192       */
193      public ArrayDeque(int numElements) {
194 <        allocateElements(numElements);
194 >        elements =
195 >            new Object[(numElements < 1) ? 1 :
196 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
197 >                       numElements + 1];
198      }
199  
200      /**
# Line 164 | Line 208 | public class ArrayDeque<E> extends Abstr
208       * @throws NullPointerException if the specified collection is null
209       */
210      public ArrayDeque(Collection<? extends E> c) {
211 <        allocateElements(c.size());
212 <        addAll(c);
211 >        this(c.size());
212 >        copyElements(c);
213 >    }
214 >
215 >    /**
216 >     * Circularly increments i, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus.
218 >     */
219 >    static final int inc(int i, int modulus) {
220 >        if (++i >= modulus) i = 0;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Circularly decrements i, mod modulus.
226 >     * Precondition and postcondition: 0 <= i < modulus.
227 >     */
228 >    static final int dec(int i, int modulus) {
229 >        if (--i < 0) i = modulus - 1;
230 >        return i;
231 >    }
232 >
233 >    /**
234 >     * Circularly adds the given distance to index i, mod modulus.
235 >     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
236 >     * @return index 0 <= i < modulus
237 >     */
238 >    static final int inc(int i, int distance, int modulus) {
239 >        if ((i += distance) - modulus >= 0) i -= modulus;
240 >        return i;
241 >    }
242 >
243 >    /**
244 >     * Subtracts j from i, mod modulus.
245 >     * Index i must be logically ahead of index j.
246 >     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
247 >     * @return the "circular distance" from j to i; corner case i == j
248 >     * is disambiguated to "empty", returning 0.
249 >     */
250 >    static final int sub(int i, int j, int modulus) {
251 >        if ((i -= j) < 0) i += modulus;
252 >        return i;
253 >    }
254 >
255 >    /**
256 >     * Returns element at array index i.
257 >     * This is a slight abuse of generics, accepted by javac.
258 >     */
259 >    @SuppressWarnings("unchecked")
260 >    static final <E> E elementAt(Object[] es, int i) {
261 >        return (E) es[i];
262 >    }
263 >
264 >    /**
265 >     * A version of elementAt that checks for null elements.
266 >     * This check doesn't catch all possible comodifications,
267 >     * but does catch ones that corrupt traversal.
268 >     */
269 >    static final <E> E nonNullElementAt(Object[] es, int i) {
270 >        @SuppressWarnings("unchecked") E e = (E) es[i];
271 >        if (e == null)
272 >            throw new ConcurrentModificationException();
273 >        return e;
274      }
275  
276      // The main insertion and extraction methods are addFirst,
# Line 181 | Line 286 | public class ArrayDeque<E> extends Abstr
286      public void addFirst(E e) {
287          if (e == null)
288              throw new NullPointerException();
289 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 >        final Object[] es = elements;
290 >        es[head = dec(head, es.length)] = e;
291          if (head == tail)
292 <            doubleCapacity();
292 >            grow(1);
293 >        // checkInvariants();
294      }
295  
296      /**
# Line 197 | Line 304 | public class ArrayDeque<E> extends Abstr
304      public void addLast(E e) {
305          if (e == null)
306              throw new NullPointerException();
307 <        elements[tail] = e;
308 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
309 <            doubleCapacity();
307 >        final Object[] es = elements;
308 >        es[tail] = e;
309 >        if (head == (tail = inc(tail, es.length)))
310 >            grow(1);
311 >        // checkInvariants();
312 >    }
313 >
314 >    /**
315 >     * Adds all of the elements in the specified collection at the end
316 >     * of this deque, as if by calling {@link #addLast} on each one,
317 >     * in the order that they are returned by the collection's iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        copyElements(c);
329 >        // checkInvariants();
330 >        return size() > s;
331 >    }
332 >
333 >    private void copyElements(Collection<? extends E> c) {
334 >        c.forEach(this::addLast);
335      }
336  
337      /**
# Line 230 | Line 362 | public class ArrayDeque<E> extends Abstr
362       * @throws NoSuchElementException {@inheritDoc}
363       */
364      public E removeFirst() {
365 <        E x = pollFirst();
366 <        if (x == null)
365 >        E e = pollFirst();
366 >        if (e == null)
367              throw new NoSuchElementException();
368 <        return x;
368 >        // checkInvariants();
369 >        return e;
370      }
371  
372      /**
373       * @throws NoSuchElementException {@inheritDoc}
374       */
375      public E removeLast() {
376 <        E x = pollLast();
377 <        if (x == null)
376 >        E e = pollLast();
377 >        if (e == null)
378              throw new NoSuchElementException();
379 <        return x;
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383      public E pollFirst() {
384 <        int h = head;
385 <        @SuppressWarnings("unchecked")
386 <        E result = (E) elements[h];
387 <        // Element is null if deque empty
388 <        if (result == null)
389 <            return null;
390 <        elements[h] = null;     // Must null out slot
391 <        head = (h + 1) & (elements.length - 1);
392 <        return result;
384 >        final Object[] es;
385 >        final int h;
386 >        E e = elementAt(es = elements, h = head);
387 >        if (e != null) {
388 >            es[h] = null;
389 >            head = inc(h, es.length);
390 >        }
391 >        // checkInvariants();
392 >        return e;
393      }
394  
395      public E pollLast() {
396 <        int t = (tail - 1) & (elements.length - 1);
397 <        @SuppressWarnings("unchecked")
398 <        E result = (E) elements[t];
399 <        if (result == null)
400 <            return null;
401 <        elements[t] = null;
402 <        tail = t;
269 <        return result;
396 >        final Object[] es;
397 >        final int t;
398 >        E e = elementAt(es = elements, t = dec(tail, es.length));
399 >        if (e != null)
400 >            es[tail = t] = null;
401 >        // checkInvariants();
402 >        return e;
403      }
404  
405      /**
406       * @throws NoSuchElementException {@inheritDoc}
407       */
408      public E getFirst() {
409 <        @SuppressWarnings("unchecked")
410 <        E result = (E) elements[head];
278 <        if (result == null)
409 >        E e = elementAt(elements, head);
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return result;
412 >        // checkInvariants();
413 >        return e;
414      }
415  
416      /**
417       * @throws NoSuchElementException {@inheritDoc}
418       */
419      public E getLast() {
420 <        @SuppressWarnings("unchecked")
421 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
422 <        if (result == null)
420 >        final Object[] es = elements;
421 >        E e = elementAt(es, dec(tail, es.length));
422 >        if (e == null)
423              throw new NoSuchElementException();
424 <        return result;
424 >        // checkInvariants();
425 >        return e;
426      }
427  
294    @SuppressWarnings("unchecked")
428      public E peekFirst() {
429 <        // elements[head] is null if deque empty
430 <        return (E) elements[head];
429 >        // checkInvariants();
430 >        return elementAt(elements, head);
431      }
432  
300    @SuppressWarnings("unchecked")
433      public E peekLast() {
434 <        return (E) elements[(tail - 1) & (elements.length - 1)];
434 >        // checkInvariants();
435 >        final Object[] es;
436 >        return elementAt(es = elements, dec(tail, es.length));
437      }
438  
439      /**
# Line 316 | Line 450 | public class ArrayDeque<E> extends Abstr
450       */
451      public boolean removeFirstOccurrence(Object o) {
452          if (o != null) {
453 <            int mask = elements.length - 1;
454 <            int i = head;
455 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
456 <                if (o.equals(x)) {
457 <                    delete(i);
458 <                    return true;
459 <                }
453 >            final Object[] es = elements;
454 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
455 >                 ; i = 0, to = end) {
456 >                for (; i < to; i++)
457 >                    if (o.equals(es[i])) {
458 >                        delete(i);
459 >                        return true;
460 >                    }
461 >                if (to == end) break;
462              }
463          }
464          return false;
# Line 342 | Line 478 | public class ArrayDeque<E> extends Abstr
478       */
479      public boolean removeLastOccurrence(Object o) {
480          if (o != null) {
481 <            int mask = elements.length - 1;
482 <            int i = (tail - 1) & mask;
483 <            for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
484 <                if (o.equals(x)) {
485 <                    delete(i);
486 <                    return true;
487 <                }
481 >            final Object[] es = elements;
482 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
483 >                 ; i = es.length, to = end) {
484 >                for (i--; i > to - 1; i--)
485 >                    if (o.equals(es[i])) {
486 >                        delete(i);
487 >                        return true;
488 >                    }
489 >                if (to == end) break;
490              }
491          }
492          return false;
# Line 386 | Line 524 | public class ArrayDeque<E> extends Abstr
524      /**
525       * Retrieves and removes the head of the queue represented by this deque.
526       *
527 <     * This method differs from {@link #poll poll} only in that it throws an
528 <     * exception if this deque is empty.
527 >     * This method differs from {@link #poll() poll()} only in that it
528 >     * throws an exception if this deque is empty.
529       *
530       * <p>This method is equivalent to {@link #removeFirst}.
531       *
# Line 468 | Line 606 | public class ArrayDeque<E> extends Abstr
606          return removeFirst();
607      }
608  
471    private void checkInvariants() {
472        assert elements[tail] == null;
473        assert head == tail ? elements[head] == null :
474            (elements[head] != null &&
475             elements[(tail - 1) & (elements.length - 1)] != null);
476        assert elements[(head - 1) & (elements.length - 1)] == null;
477    }
478
609      /**
610 <     * Removes the element at the specified position in the elements array,
611 <     * adjusting head and tail as necessary.  This can result in motion of
612 <     * elements backwards or forwards in the array.
610 >     * Removes the element at the specified position in the elements array.
611 >     * This can result in forward or backwards motion of array elements.
612 >     * We optimize for least element motion.
613       *
614       * <p>This method is called delete rather than remove to emphasize
615       * that its semantics differ from those of {@link List#remove(int)}.
616       *
617 <     * @return true if elements moved backwards
617 >     * @return true if elements near tail moved backwards
618       */
619 <    private boolean delete(int i) {
620 <        checkInvariants();
621 <        final Object[] elements = this.elements;
622 <        final int mask = elements.length - 1;
623 <        final int h = head;
624 <        final int t = tail;
625 <        final int front = (i - h) & mask;
626 <        final int back  = (t - i) & mask;
627 <
498 <        // Invariant: head <= i < tail mod circularity
499 <        if (front >= ((t - h) & mask))
500 <            throw new ConcurrentModificationException();
501 <
502 <        // Optimize for least element motion
619 >    boolean delete(int i) {
620 >        // checkInvariants();
621 >        final Object[] es = elements;
622 >        final int capacity = es.length;
623 >        final int h, t;
624 >        // number of elements before to-be-deleted elt
625 >        final int front = sub(i, h = head, capacity);
626 >        // number of elements after to-be-deleted elt
627 >        final int back = sub(t = tail, i, capacity) - 1;
628          if (front < back) {
629 +            // move front elements forwards
630              if (h <= i) {
631 <                System.arraycopy(elements, h, elements, h + 1, front);
631 >                System.arraycopy(es, h, es, h + 1, front);
632              } else { // Wrap around
633 <                System.arraycopy(elements, 0, elements, 1, i);
634 <                elements[0] = elements[mask];
635 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
633 >                System.arraycopy(es, 0, es, 1, i);
634 >                es[0] = es[capacity - 1];
635 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
636              }
637 <            elements[h] = null;
638 <            head = (h + 1) & mask;
637 >            es[h] = null;
638 >            head = inc(h, capacity);
639 >            // checkInvariants();
640              return false;
641          } else {
642 <            if (i < t) { // Copy the null tail as well
643 <                System.arraycopy(elements, i + 1, elements, i, back);
644 <                tail = t - 1;
642 >            // move back elements backwards
643 >            tail = dec(t, capacity);
644 >            if (i <= tail) {
645 >                System.arraycopy(es, i + 1, es, i, back);
646              } else { // Wrap around
647 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
648 <                elements[mask] = elements[0];
649 <                System.arraycopy(elements, 1, elements, 0, t);
522 <                tail = (t - 1) & mask;
647 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
648 >                es[capacity - 1] = es[0];
649 >                System.arraycopy(es, 1, es, 0, t - 1);
650              }
651 +            es[tail] = null;
652 +            // checkInvariants();
653              return true;
654          }
655      }
# Line 533 | Line 662 | public class ArrayDeque<E> extends Abstr
662       * @return the number of elements in this deque
663       */
664      public int size() {
665 <        return (tail - head) & (elements.length - 1);
665 >        return sub(tail, head, elements.length);
666      }
667  
668      /**
# Line 562 | Line 691 | public class ArrayDeque<E> extends Abstr
691      }
692  
693      private class DeqIterator implements Iterator<E> {
694 <        /**
695 <         * Index of element to be returned by subsequent call to next.
567 <         */
568 <        private int cursor = head;
694 >        /** Index of element to be returned by subsequent call to next. */
695 >        int cursor;
696  
697 <        /**
698 <         * Tail recorded at construction (also in remove), to stop
572 <         * iterator and also to check for comodification.
573 <         */
574 <        private int fence = tail;
697 >        /** Number of elements yet to be returned. */
698 >        int remaining = size();
699  
700          /**
701           * Index of element returned by most recent call to next.
702           * Reset to -1 if element is deleted by a call to remove.
703           */
704 <        private int lastRet = -1;
704 >        int lastRet = -1;
705  
706 <        public boolean hasNext() {
707 <            return cursor != fence;
706 >        DeqIterator() { cursor = head; }
707 >
708 >        public final boolean hasNext() {
709 >            return remaining > 0;
710          }
711  
712          public E next() {
713 <            if (cursor == fence)
713 >            if (remaining <= 0)
714                  throw new NoSuchElementException();
715 <            @SuppressWarnings("unchecked")
716 <            E result = (E) elements[cursor];
717 <            // This check doesn't catch all possible comodifications,
718 <            // but does catch the ones that corrupt traversal
719 <            if (tail != fence || result == null)
720 <                throw new ConcurrentModificationException();
721 <            lastRet = cursor;
722 <            cursor = (cursor + 1) & (elements.length - 1);
723 <            return result;
715 >            final Object[] es = elements;
716 >            E e = nonNullElementAt(es, cursor);
717 >            cursor = inc(lastRet = cursor, es.length);
718 >            remaining--;
719 >            return e;
720 >        }
721 >
722 >        void postDelete(boolean leftShifted) {
723 >            if (leftShifted)
724 >                cursor = dec(cursor, elements.length);
725          }
726  
727 <        public void remove() {
727 >        public final void remove() {
728              if (lastRet < 0)
729                  throw new IllegalStateException();
730 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
604 <                cursor = (cursor - 1) & (elements.length - 1);
605 <                fence = tail;
606 <            }
730 >            postDelete(delete(lastRet));
731              lastRet = -1;
732          }
733 +
734 +        public void forEachRemaining(Consumer<? super E> action) {
735 +            Objects.requireNonNull(action);
736 +            int r;
737 +            if ((r = remaining) <= 0)
738 +                return;
739 +            remaining = 0;
740 +            final Object[] es = elements;
741 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
742 +                throw new ConcurrentModificationException();
743 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
744 +                 ; i = 0, to = end) {
745 +                for (; i < to; i++)
746 +                    action.accept(elementAt(es, i));
747 +                if (to == end) {
748 +                    if (end != tail)
749 +                        throw new ConcurrentModificationException();
750 +                    lastRet = dec(end, es.length);
751 +                    break;
752 +                }
753 +            }
754 +        }
755 +    }
756 +
757 +    private class DescendingIterator extends DeqIterator {
758 +        DescendingIterator() { cursor = dec(tail, elements.length); }
759 +
760 +        public final E next() {
761 +            if (remaining <= 0)
762 +                throw new NoSuchElementException();
763 +            final Object[] es = elements;
764 +            E e = nonNullElementAt(es, cursor);
765 +            cursor = dec(lastRet = cursor, es.length);
766 +            remaining--;
767 +            return e;
768 +        }
769 +
770 +        void postDelete(boolean leftShifted) {
771 +            if (!leftShifted)
772 +                cursor = inc(cursor, elements.length);
773 +        }
774 +
775 +        public final void forEachRemaining(Consumer<? super E> action) {
776 +            Objects.requireNonNull(action);
777 +            int r;
778 +            if ((r = remaining) <= 0)
779 +                return;
780 +            remaining = 0;
781 +            final Object[] es = elements;
782 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
783 +                throw new ConcurrentModificationException();
784 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
785 +                 ; i = es.length - 1, to = end) {
786 +                // hotspot generates faster code than for: i >= to !
787 +                for (; i > to - 1; i--)
788 +                    action.accept(elementAt(es, i));
789 +                if (to == end) {
790 +                    if (end != head)
791 +                        throw new ConcurrentModificationException();
792 +                    lastRet = end;
793 +                    break;
794 +                }
795 +            }
796 +        }
797      }
798  
799      /**
800 <     * This class is nearly a mirror-image of DeqIterator, using tail
801 <     * instead of head for initial cursor, and head instead of tail
802 <     * for fence.
803 <     */
804 <    private class DescendingIterator implements Iterator<E> {
805 <        private int cursor = tail;
806 <        private int fence = head;
807 <        private int lastRet = -1;
800 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 >     * deque.
803 >     *
804 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
806 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
807 >     * the reporting of additional characteristic values.
808 >     *
809 >     * @return a {@code Spliterator} over the elements in this deque
810 >     * @since 1.8
811 >     */
812 >    public Spliterator<E> spliterator() {
813 >        return new DeqSpliterator();
814 >    }
815 >
816 >    final class DeqSpliterator implements Spliterator<E> {
817 >        private int fence;      // -1 until first use
818 >        private int cursor;     // current index, modified on traverse/split
819  
820 <        public boolean hasNext() {
821 <            return cursor != fence;
820 >        /** Constructs late-binding spliterator over all elements. */
821 >        DeqSpliterator() {
822 >            this.fence = -1;
823          }
824  
825 <        public E next() {
826 <            if (cursor == fence)
827 <                throw new NoSuchElementException();
828 <            cursor = (cursor - 1) & (elements.length - 1);
829 <            @SuppressWarnings("unchecked")
830 <            E result = (E) elements[cursor];
631 <            if (head != fence || result == null)
632 <                throw new ConcurrentModificationException();
633 <            lastRet = cursor;
634 <            return result;
825 >        /** Constructs spliterator over the given range. */
826 >        DeqSpliterator(int origin, int fence) {
827 >            // assert 0 <= origin && origin < elements.length;
828 >            // assert 0 <= fence && fence < elements.length;
829 >            this.cursor = origin;
830 >            this.fence = fence;
831          }
832  
833 <        public void remove() {
834 <            if (lastRet < 0)
835 <                throw new IllegalStateException();
836 <            if (!delete(lastRet)) {
837 <                cursor = (cursor + 1) & (elements.length - 1);
838 <                fence = head;
833 >        /** Ensures late-binding initialization; then returns fence. */
834 >        private int getFence() { // force initialization
835 >            int t;
836 >            if ((t = fence) < 0) {
837 >                t = fence = tail;
838 >                cursor = head;
839 >            }
840 >            return t;
841 >        }
842 >
843 >        public DeqSpliterator trySplit() {
844 >            final Object[] es = elements;
845 >            final int i, n;
846 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
847 >                ? null
848 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
849 >        }
850 >
851 >        public void forEachRemaining(Consumer<? super E> action) {
852 >            if (action == null)
853 >                throw new NullPointerException();
854 >            final int end = getFence(), cursor = this.cursor;
855 >            final Object[] es = elements;
856 >            if (cursor != end) {
857 >                this.cursor = end;
858 >                // null check at both ends of range is sufficient
859 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
860 >                    throw new ConcurrentModificationException();
861 >                for (int i = cursor, to = (i <= end) ? end : es.length;
862 >                     ; i = 0, to = end) {
863 >                    for (; i < to; i++)
864 >                        action.accept(elementAt(es, i));
865 >                    if (to == end) break;
866 >                }
867 >            }
868 >        }
869 >
870 >        public boolean tryAdvance(Consumer<? super E> action) {
871 >            Objects.requireNonNull(action);
872 >            final Object[] es = elements;
873 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
874 >            final int i;
875 >            if ((i = cursor) == fence)
876 >                return false;
877 >            E e = nonNullElementAt(es, i);
878 >            cursor = inc(i, es.length);
879 >            action.accept(e);
880 >            return true;
881 >        }
882 >
883 >        public long estimateSize() {
884 >            return sub(getFence(), cursor, elements.length);
885 >        }
886 >
887 >        public int characteristics() {
888 >            return Spliterator.NONNULL
889 >                | Spliterator.ORDERED
890 >                | Spliterator.SIZED
891 >                | Spliterator.SUBSIZED;
892 >        }
893 >    }
894 >
895 >    /**
896 >     * @throws NullPointerException {@inheritDoc}
897 >     */
898 >    public void forEach(Consumer<? super E> action) {
899 >        Objects.requireNonNull(action);
900 >        final Object[] es = elements;
901 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
902 >             ; i = 0, to = end) {
903 >            for (; i < to; i++)
904 >                action.accept(elementAt(es, i));
905 >            if (to == end) {
906 >                if (end != tail) throw new ConcurrentModificationException();
907 >                break;
908              }
644            lastRet = -1;
909          }
910 +        // checkInvariants();
911 +    }
912 +
913 +    /**
914 +     * Replaces each element of this deque with the result of applying the
915 +     * operator to that element, as specified by {@link List#replaceAll}.
916 +     *
917 +     * @param operator the operator to apply to each element
918 +     * @since TBD
919 +     */
920 +    /* public */ void replaceAll(UnaryOperator<E> operator) {
921 +        Objects.requireNonNull(operator);
922 +        final Object[] es = elements;
923 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
924 +             ; i = 0, to = end) {
925 +            for (; i < to; i++)
926 +                es[i] = operator.apply(elementAt(es, i));
927 +            if (to == end) {
928 +                if (end != tail) throw new ConcurrentModificationException();
929 +                break;
930 +            }
931 +        }
932 +        // checkInvariants();
933 +    }
934 +
935 +    /**
936 +     * @throws NullPointerException {@inheritDoc}
937 +     */
938 +    public boolean removeIf(Predicate<? super E> filter) {
939 +        Objects.requireNonNull(filter);
940 +        return bulkRemove(filter);
941 +    }
942 +
943 +    /**
944 +     * @throws NullPointerException {@inheritDoc}
945 +     */
946 +    public boolean removeAll(Collection<?> c) {
947 +        Objects.requireNonNull(c);
948 +        return bulkRemove(e -> c.contains(e));
949 +    }
950 +
951 +    /**
952 +     * @throws NullPointerException {@inheritDoc}
953 +     */
954 +    public boolean retainAll(Collection<?> c) {
955 +        Objects.requireNonNull(c);
956 +        return bulkRemove(e -> !c.contains(e));
957 +    }
958 +
959 +    /** Implementation of bulk remove methods. */
960 +    private boolean bulkRemove(Predicate<? super E> filter) {
961 +        // checkInvariants();
962 +        final Object[] es = elements;
963 +        // Optimize for initial run of survivors
964 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
965 +             ; i = 0, to = end) {
966 +            for (; i < to; i++)
967 +                if (filter.test(elementAt(es, i)))
968 +                    return bulkRemoveModified(filter, i);
969 +            if (to == end) {
970 +                if (end != tail) throw new ConcurrentModificationException();
971 +                break;
972 +            }
973 +        }
974 +        return false;
975 +    }
976 +
977 +    // A tiny bit set implementation
978 +
979 +    private static long[] nBits(int n) {
980 +        return new long[((n - 1) >> 6) + 1];
981 +    }
982 +    private static void setBit(long[] bits, int i) {
983 +        bits[i >> 6] |= 1L << i;
984 +    }
985 +    private static boolean isClear(long[] bits, int i) {
986 +        return (bits[i >> 6] & (1L << i)) == 0;
987 +    }
988 +
989 +    /**
990 +     * Helper for bulkRemove, in case of at least one deletion.
991 +     * Tolerate predicates that reentrantly access the collection for
992 +     * read (but writers still get CME), so traverse once to find
993 +     * elements to delete, a second pass to physically expunge.
994 +     *
995 +     * @param beg valid index of first element to be deleted
996 +     */
997 +    private boolean bulkRemoveModified(
998 +        Predicate<? super E> filter, final int beg) {
999 +        final Object[] es = elements;
1000 +        final int capacity = es.length;
1001 +        final int end = tail;
1002 +        final long[] deathRow = nBits(sub(end, beg, capacity));
1003 +        deathRow[0] = 1L;   // set bit 0
1004 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1005 +             ; i = 0, to = end, k -= capacity) {
1006 +            for (; i < to; i++)
1007 +                if (filter.test(elementAt(es, i)))
1008 +                    setBit(deathRow, i - k);
1009 +            if (to == end) break;
1010 +        }
1011 +        // a two-finger traversal, with hare i reading, tortoise w writing
1012 +        int w = beg;
1013 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1014 +             ; w = 0) { // w rejoins i on second leg
1015 +            // In this loop, i and w are on the same leg, with i > w
1016 +            for (; i < to; i++)
1017 +                if (isClear(deathRow, i - k))
1018 +                    es[w++] = es[i];
1019 +            if (to == end) break;
1020 +            // In this loop, w is on the first leg, i on the second
1021 +            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1022 +                if (isClear(deathRow, i - k))
1023 +                    es[w++] = es[i];
1024 +            if (i >= to) {
1025 +                if (w == capacity) w = 0; // "corner" case
1026 +                break;
1027 +            }
1028 +        }
1029 +        if (end != tail) throw new ConcurrentModificationException();
1030 +        circularClear(es, tail = w, end);
1031 +        // checkInvariants();
1032 +        return true;
1033      }
1034  
1035      /**
# Line 655 | Line 1042 | public class ArrayDeque<E> extends Abstr
1042       */
1043      public boolean contains(Object o) {
1044          if (o != null) {
1045 <            int mask = elements.length - 1;
1046 <            int i = head;
1047 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
1048 <                if (o.equals(x))
1049 <                    return true;
1045 >            final Object[] es = elements;
1046 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1047 >                 ; i = 0, to = end) {
1048 >                for (; i < to; i++)
1049 >                    if (o.equals(es[i]))
1050 >                        return true;
1051 >                if (to == end) break;
1052              }
1053          }
1054          return false;
# Line 687 | Line 1076 | public class ArrayDeque<E> extends Abstr
1076       * The deque will be empty after this call returns.
1077       */
1078      public void clear() {
1079 <        int h = head;
1080 <        int t = tail;
1081 <        if (h != t) { // clear all cells
1082 <            head = tail = 0;
1083 <            int i = h;
1084 <            int mask = elements.length - 1;
1085 <            do {
1086 <                elements[i] = null;
1087 <                i = (i + 1) & mask;
1088 <            } while (i != t);
1079 >        circularClear(elements, head, tail);
1080 >        head = tail = 0;
1081 >        // checkInvariants();
1082 >    }
1083 >
1084 >    /**
1085 >     * Nulls out slots starting at array index i, upto index end.
1086 >     * Condition i == end means "empty" - nothing to do.
1087 >     */
1088 >    private static void circularClear(Object[] es, int i, int end) {
1089 >        // assert 0 <= i && i < es.length;
1090 >        // assert 0 <= end && end < es.length;
1091 >        for (int to = (i <= end) ? end : es.length;
1092 >             ; i = 0, to = end) {
1093 >            for (; i < to; i++) es[i] = null;
1094 >            if (to == end) break;
1095          }
1096      }
1097  
# Line 714 | Line 1109 | public class ArrayDeque<E> extends Abstr
1109       * @return an array containing all of the elements in this deque
1110       */
1111      public Object[] toArray() {
1112 <        final int head = this.head;
1113 <        final int tail = this.tail;
1114 <        boolean wrap = (tail < head);
1115 <        int end = wrap ? tail + elements.length : tail;
1116 <        Object[] a = Arrays.copyOfRange(elements, head, end);
1117 <        if (wrap)
1118 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1112 >        return toArray(Object[].class);
1113 >    }
1114 >
1115 >    private <T> T[] toArray(Class<T[]> klazz) {
1116 >        final Object[] es = elements;
1117 >        final T[] a;
1118 >        final int head = this.head, tail = this.tail, end;
1119 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1120 >            // Uses null extension feature of copyOfRange
1121 >            a = Arrays.copyOfRange(es, head, end, klazz);
1122 >        } else {
1123 >            // integer overflow!
1124 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1125 >            System.arraycopy(es, head, a, 0, es.length - head);
1126 >        }
1127 >        if (end != tail)
1128 >            System.arraycopy(es, 0, a, es.length - head, tail);
1129          return a;
1130      }
1131  
# Line 746 | Line 1151 | public class ArrayDeque<E> extends Abstr
1151       * The following code can be used to dump the deque into a newly
1152       * allocated array of {@code String}:
1153       *
1154 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1154 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1155       *
1156       * Note that {@code toArray(new Object[0])} is identical in function to
1157       * {@code toArray()}.
# Line 762 | Line 1167 | public class ArrayDeque<E> extends Abstr
1167       */
1168      @SuppressWarnings("unchecked")
1169      public <T> T[] toArray(T[] a) {
1170 <        final int head = this.head;
1171 <        final int tail = this.tail;
1172 <        boolean wrap = (tail < head);
1173 <        int size = (tail - head) + (wrap ? elements.length : 0);
1174 <        int firstLeg = size - (wrap ? tail : 0);
1175 <        int len = a.length;
1176 <        if (size > len) {
1177 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
773 <                                         a.getClass());
774 <        } else {
775 <            System.arraycopy(elements, head, a, 0, firstLeg);
776 <            if (size < len)
777 <                a[size] = null;
1170 >        final int size;
1171 >        if ((size = size()) > a.length)
1172 >            return toArray((Class<T[]>) a.getClass());
1173 >        final Object[] es = elements;
1174 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1175 >             ; i = 0, len = tail) {
1176 >            System.arraycopy(es, i, a, j, len);
1177 >            if ((j += len) == size) break;
1178          }
1179 <        if (wrap)
1180 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1179 >        if (size < a.length)
1180 >            a[size] = null;
1181          return a;
1182      }
1183  
# Line 818 | Line 1218 | public class ArrayDeque<E> extends Abstr
1218          s.writeInt(size());
1219  
1220          // Write out elements in order.
1221 <        int mask = elements.length - 1;
1222 <        for (int i = head; i != tail; i = (i + 1) & mask)
1223 <            s.writeObject(elements[i]);
1221 >        final Object[] es = elements;
1222 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1223 >             ; i = 0, to = end) {
1224 >            for (; i < to; i++)
1225 >                s.writeObject(es[i]);
1226 >            if (to == end) break;
1227 >        }
1228      }
1229  
1230      /**
# Line 836 | Line 1240 | public class ArrayDeque<E> extends Abstr
1240  
1241          // Read in size and allocate array
1242          int size = s.readInt();
1243 <        allocateElements(size);
1244 <        head = 0;
1245 <        tail = size;
1243 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
1244 >        elements = new Object[size + 1];
1245 >        this.tail = size;
1246  
1247          // Read in all elements in the proper order.
1248          for (int i = 0; i < size; i++)
1249              elements[i] = s.readObject();
1250      }
1251  
1252 <    public Spliterator<E> spliterator() {
1253 <        return new DeqSpliterator<E>(this, -1, -1);
1254 <    }
1255 <
1256 <    static final class DeqSpliterator<E> implements Spliterator<E> {
1257 <        private final ArrayDeque<E> deq;
1258 <        private int fence;  // -1 until first use
1259 <        private int index;  // current index, modified on traverse/split
1260 <
1261 <        /** Creates new spliterator covering the given array and range */
1262 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
1263 <            this.deq = deq;
1264 <            this.index = origin;
1265 <            this.fence = fence;
1266 <        }
1267 <
1268 <        private int getFence() { // force initialization
1269 <            int t;
1270 <            if ((t = fence) < 0) {
867 <                t = fence = deq.tail;
868 <                index = deq.head;
869 <            }
870 <            return t;
871 <        }
872 <
873 <        public Spliterator<E> trySplit() {
874 <            int t = getFence(), h = index, n = deq.elements.length;
875 <            if (h != t && ((h + 1) & (n - 1)) != t) {
876 <                if (h > t)
877 <                    t += n;
878 <                int m = ((h + t) >>> 1) & (n - 1);
879 <                return new DeqSpliterator<>(deq, h, index = m);
880 <            }
881 <            return null;
882 <        }
883 <
884 <        public void forEachRemaining(Consumer<? super E> consumer) {
885 <            if (consumer == null)
886 <                throw new NullPointerException();
887 <            Object[] a = deq.elements;
888 <            int m = a.length - 1, f = getFence(), i = index;
889 <            index = f;
890 <            while (i != f) {
891 <                @SuppressWarnings("unchecked") E e = (E)a[i];
892 <                i = (i + 1) & m;
893 <                if (e == null)
894 <                    throw new ConcurrentModificationException();
895 <                consumer.accept(e);
896 <            }
897 <        }
898 <
899 <        public boolean tryAdvance(Consumer<? super E> consumer) {
900 <            if (consumer == null)
901 <                throw new NullPointerException();
902 <            Object[] a = deq.elements;
903 <            int m = a.length - 1, f = getFence(), i = index;
904 <            if (i != fence) {
905 <                @SuppressWarnings("unchecked") E e = (E)a[i];
906 <                index = (i + 1) & m;
907 <                if (e == null)
908 <                    throw new ConcurrentModificationException();
909 <                consumer.accept(e);
910 <                return true;
911 <            }
912 <            return false;
913 <        }
914 <
915 <        public long estimateSize() {
916 <            int n = getFence() - index;
917 <            if (n < 0)
918 <                n += deq.elements.length;
919 <            return (long) n;
920 <        }
921 <
922 <        @Override
923 <        public int characteristics() {
924 <            return Spliterator.ORDERED | Spliterator.SIZED |
925 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1252 >    /** debugging */
1253 >    void checkInvariants() {
1254 >        // Use head and tail fields with empty slot at tail strategy.
1255 >        // head == tail disambiguates to "empty".
1256 >        try {
1257 >            int capacity = elements.length;
1258 >            // assert 0 <= head && head < capacity;
1259 >            // assert 0 <= tail && tail < capacity;
1260 >            // assert capacity > 0;
1261 >            // assert size() < capacity;
1262 >            // assert head == tail || elements[head] != null;
1263 >            // assert elements[tail] == null;
1264 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1265 >        } catch (Throwable t) {
1266 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1267 >                              head, tail, elements.length);
1268 >            System.err.printf("elements=%s%n",
1269 >                              Arrays.toString(elements));
1270 >            throw t;
1271          }
1272      }
1273  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines