ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.2 by dl, Tue Mar 8 12:27:06 2005 UTC vs.
Revision 1.134 by jsr166, Sat Jun 30 22:35:55 2018 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12 > import jdk.internal.misc.SharedSecrets;
13  
14   /**
15   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 20 | import java.io.*;
20   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
21   * when used as a queue.
22   *
23 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
24 < * Exceptions include {@link #remove(Object) remove}, {@link
25 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
26 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
27 < * iterator.remove()}, and the bulk operations, all of which run in linear
28 < * time.
23 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
24 > * Exceptions include
25 > * {@link #remove(Object) remove},
26 > * {@link #removeFirstOccurrence removeFirstOccurrence},
27 > * {@link #removeLastOccurrence removeLastOccurrence},
28 > * {@link #contains contains},
29 > * {@link #iterator iterator.remove()},
30 > * and the bulk operations, all of which run in linear time.
31   *
32 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
33 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
34 < * is created, in any way except through the iterator's own remove method, the
35 < * iterator will generally throw a {@link ConcurrentModificationException}.
36 < * Thus, in the face of concurrent modification, the iterator fails quickly
37 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
38 < * an undetermined time in the future.
32 > * <p>The iterators returned by this class's {@link #iterator() iterator}
33 > * method are <em>fail-fast</em>: If the deque is modified at any time after
34 > * the iterator is created, in any way except through the iterator's own
35 > * {@code remove} method, the iterator will generally throw a {@link
36 > * ConcurrentModificationException}.  Thus, in the face of concurrent
37 > * modification, the iterator fails quickly and cleanly, rather than risking
38 > * arbitrary, non-deterministic behavior at an undetermined time in the
39 > * future.
40   *
41   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
42   * as it is, generally speaking, impossible to make any hard guarantees in the
43   * presence of unsynchronized concurrent modification.  Fail-fast iterators
44 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
44 > * throw {@code ConcurrentModificationException} on a best-effort basis.
45   * Therefore, it would be wrong to write a program that depended on this
46   * exception for its correctness: <i>the fail-fast behavior of iterators
47   * should be used only to detect bugs.</i>
48   *
49   * <p>This class and its iterator implement all of the
50 < * optional methods of the {@link Collection} and {@link
51 < * Iterator} interfaces.  This class is a member of the <a
52 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
53 < * Framework</a>.
50 > * <em>optional</em> methods of the {@link Collection} and {@link
51 > * Iterator} interfaces.
52 > *
53 > * <p>This class is a member of the
54 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
55 > * Java Collections Framework</a>.
56   *
57   * @author  Josh Bloch and Doug Lea
58 + * @param <E> the type of elements held in this deque
59   * @since   1.6
49 * @param <E> the type of elements held in this collection
60   */
61   public class ArrayDeque<E> extends AbstractCollection<E>
62                             implements Deque<E>, Cloneable, Serializable
63   {
64 +    /*
65 +     * VMs excel at optimizing simple array loops where indices are
66 +     * incrementing or decrementing over a valid slice, e.g.
67 +     *
68 +     * for (int i = start; i < end; i++) ... elements[i]
69 +     *
70 +     * Because in a circular array, elements are in general stored in
71 +     * two disjoint such slices, we help the VM by writing unusual
72 +     * nested loops for all traversals over the elements.  Having only
73 +     * one hot inner loop body instead of two or three eases human
74 +     * maintenance and encourages VM loop inlining into the caller.
75 +     */
76 +
77      /**
78 <     * The array in which the elements of in the deque are stored.
79 <     * The capacity of the deque is the length of this array, which is
80 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
78 >     * The array in which the elements of the deque are stored.
79 >     * All array cells not holding deque elements are always null.
80 >     * The array always has at least one null slot (at tail).
81       */
82 <    private transient E[] elements;
82 >    transient Object[] elements;
83  
84      /**
85       * The index of the element at the head of the deque (which is the
86       * element that would be removed by remove() or pop()); or an
87 <     * arbitrary number equal to tail if the deque is empty.
87 >     * arbitrary number 0 <= head < elements.length equal to tail if
88 >     * the deque is empty.
89       */
90 <    private transient int head;
90 >    transient int head;
91  
92      /**
93       * The index at which the next element would be added to the tail
94 <     * of the deque (via addLast(E), add(E), or push(E)).
94 >     * of the deque (via addLast(E), add(E), or push(E));
95 >     * elements[tail] is always null.
96       */
97 <    private transient int tail;
97 >    transient int tail;
98  
99      /**
100 <     * The minimum capacity that we'll use for a newly created deque.
101 <     * Must be a power of 2.
102 <     */
103 <    private static final int MIN_INITIAL_CAPACITY = 8;
104 <
105 <    // ******  Array allocation and resizing utilities ******
106 <
107 <    /**
108 <     * Allocate empty array to hold the given number of elements.
109 <     *
110 <     * @param numElements  the number of elements to hold.
111 <     */
112 <    private void allocateElements(int numElements) {  
113 <        int initialCapacity = MIN_INITIAL_CAPACITY;
114 <        // Find the best power of two to hold elements.
115 <        // Tests "<=" because arrays aren't kept full.
116 <        if (numElements >= initialCapacity) {
117 <            initialCapacity = numElements;
118 <            initialCapacity |= (initialCapacity >>>  1);
119 <            initialCapacity |= (initialCapacity >>>  2);
120 <            initialCapacity |= (initialCapacity >>>  4);
121 <            initialCapacity |= (initialCapacity >>>  8);
122 <            initialCapacity |= (initialCapacity >>> 16);
123 <            initialCapacity++;
100 >     * The maximum size of array to allocate.
101 >     * Some VMs reserve some header words in an array.
102 >     * Attempts to allocate larger arrays may result in
103 >     * OutOfMemoryError: Requested array size exceeds VM limit
104 >     */
105 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
106 >
107 >    /**
108 >     * Increases the capacity of this deque by at least the given amount.
109 >     *
110 >     * @param needed the required minimum extra capacity; must be positive
111 >     */
112 >    private void grow(int needed) {
113 >        // overflow-conscious code
114 >        final int oldCapacity = elements.length;
115 >        int newCapacity;
116 >        // Double capacity if small; else grow by 50%
117 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
118 >        if (jump < needed
119 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
120 >            newCapacity = newCapacity(needed, jump);
121 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
122 >        // Exceptionally, here tail == head needs to be disambiguated
123 >        if (tail < head || (tail == head && es[head] != null)) {
124 >            // wrap around; slide first leg forward to end of array
125 >            int newSpace = newCapacity - oldCapacity;
126 >            System.arraycopy(es, head,
127 >                             es, head + newSpace,
128 >                             oldCapacity - head);
129 >            for (int i = head, to = (head += newSpace); i < to; i++)
130 >                es[i] = null;
131 >        }
132 >        // checkInvariants();
133 >    }
134  
135 <            if (initialCapacity < 0)   // Too many elements, must back off
136 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
135 >    /** Capacity calculation for edge conditions, especially overflow. */
136 >    private int newCapacity(int needed, int jump) {
137 >        final int oldCapacity = elements.length, minCapacity;
138 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
139 >            if (minCapacity < 0)
140 >                throw new IllegalStateException("Sorry, deque too big");
141 >            return Integer.MAX_VALUE;
142          }
143 <        elements = (E[]) new Object[initialCapacity];
143 >        if (needed > jump)
144 >            return minCapacity;
145 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
146 >            ? oldCapacity + jump
147 >            : MAX_ARRAY_SIZE;
148      }
149  
150      /**
151 <     * Double the capacity of this deque.  Call only when full, i.e.,
152 <     * when head and tail have wrapped around to become equal.
151 >     * Increases the internal storage of this collection, if necessary,
152 >     * to ensure that it can hold at least the given number of elements.
153 >     *
154 >     * @param minCapacity the desired minimum capacity
155 >     * @since TBD
156       */
157 <    private void doubleCapacity() {
158 <        assert head == tail;
159 <        int p = head;
160 <        int n = elements.length;
161 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
157 >    /* public */ void ensureCapacity(int minCapacity) {
158 >        int needed;
159 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
160 >            grow(needed);
161 >        // checkInvariants();
162      }
163  
164      /**
165 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
165 >     * Minimizes the internal storage of this collection.
166       *
167 <     * @return its argument
167 >     * @since TBD
168       */
169 <    private <T> T[] copyElements(T[] a) {
170 <        if (head < tail) {
171 <            System.arraycopy(elements, head, a, 0, size());
172 <        } else if (head > tail) {
173 <            int headPortionLen = elements.length - head;
174 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
169 >    /* public */ void trimToSize() {
170 >        int size;
171 >        if ((size = size()) + 1 < elements.length) {
172 >            elements = toArray(new Object[size + 1]);
173 >            head = 0;
174 >            tail = size;
175          }
176 <        return a;
176 >        // checkInvariants();
177      }
178  
179      /**
180 <     * Constructs an empty array deque with the an initial capacity
180 >     * Constructs an empty array deque with an initial capacity
181       * sufficient to hold 16 elements.
182       */
183      public ArrayDeque() {
184 <        elements = (E[]) new Object[16];
184 >        elements = new Object[16 + 1];
185      }
186  
187      /**
188       * Constructs an empty array deque with an initial capacity
189       * sufficient to hold the specified number of elements.
190       *
191 <     * @param numElements  lower bound on initial capacity of the deque
191 >     * @param numElements lower bound on initial capacity of the deque
192       */
193      public ArrayDeque(int numElements) {
194 <        allocateElements(numElements);
194 >        elements =
195 >            new Object[(numElements < 1) ? 1 :
196 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
197 >                       numElements + 1];
198      }
199  
200      /**
# Line 175 | Line 208 | public class ArrayDeque<E> extends Abstr
208       * @throws NullPointerException if the specified collection is null
209       */
210      public ArrayDeque(Collection<? extends E> c) {
211 <        allocateElements(c.size());
212 <        addAll(c);
211 >        this(c.size());
212 >        copyElements(c);
213 >    }
214 >
215 >    /**
216 >     * Circularly increments i, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus.
218 >     */
219 >    static final int inc(int i, int modulus) {
220 >        if (++i >= modulus) i = 0;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Circularly decrements i, mod modulus.
226 >     * Precondition and postcondition: 0 <= i < modulus.
227 >     */
228 >    static final int dec(int i, int modulus) {
229 >        if (--i < 0) i = modulus - 1;
230 >        return i;
231 >    }
232 >
233 >    /**
234 >     * Circularly adds the given distance to index i, mod modulus.
235 >     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
236 >     * @return index 0 <= i < modulus
237 >     */
238 >    static final int inc(int i, int distance, int modulus) {
239 >        if ((i += distance) - modulus >= 0) i -= modulus;
240 >        return i;
241 >    }
242 >
243 >    /**
244 >     * Subtracts j from i, mod modulus.
245 >     * Index i must be logically ahead of index j.
246 >     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
247 >     * @return the "circular distance" from j to i; corner case i == j
248 >     * is disambiguated to "empty", returning 0.
249 >     */
250 >    static final int sub(int i, int j, int modulus) {
251 >        if ((i -= j) < 0) i += modulus;
252 >        return i;
253 >    }
254 >
255 >    /**
256 >     * Returns element at array index i.
257 >     * This is a slight abuse of generics, accepted by javac.
258 >     */
259 >    @SuppressWarnings("unchecked")
260 >    static final <E> E elementAt(Object[] es, int i) {
261 >        return (E) es[i];
262 >    }
263 >
264 >    /**
265 >     * A version of elementAt that checks for null elements.
266 >     * This check doesn't catch all possible comodifications,
267 >     * but does catch ones that corrupt traversal.
268 >     */
269 >    static final <E> E nonNullElementAt(Object[] es, int i) {
270 >        @SuppressWarnings("unchecked") E e = (E) es[i];
271 >        if (e == null)
272 >            throw new ConcurrentModificationException();
273 >        return e;
274      }
275  
276      // The main insertion and extraction methods are addFirst,
# Line 184 | Line 278 | public class ArrayDeque<E> extends Abstr
278      // terms of these.
279  
280      /**
281 <     * Inserts the specified element to the front this deque.
281 >     * Inserts the specified element at the front of this deque.
282       *
283 <     * @param e the element to insert
284 <     * @throws NullPointerException if <tt>e</tt> is null
283 >     * @param e the element to add
284 >     * @throws NullPointerException if the specified element is null
285       */
286      public void addFirst(E e) {
287          if (e == null)
288              throw new NullPointerException();
289 <        elements[head = (head - 1) & (elements.length - 1)] = e;
290 <        if (head == tail)
291 <            doubleCapacity();
289 >        final Object[] es = elements;
290 >        es[head = dec(head, es.length)] = e;
291 >        if (head == tail)
292 >            grow(1);
293 >        // checkInvariants();
294      }
295  
296      /**
297 <     * Inserts the specified element to the end this deque.
298 <     * This method is equivalent to {@link Collection#add} and
299 <     * {@link #push}.
297 >     * Inserts the specified element at the end of this deque.
298 >     *
299 >     * <p>This method is equivalent to {@link #add}.
300       *
301 <     * @param e the element to insert
302 <     * @throws NullPointerException if <tt>e</tt> is null
301 >     * @param e the element to add
302 >     * @throws NullPointerException if the specified element is null
303       */
304      public void addLast(E e) {
305          if (e == null)
306              throw new NullPointerException();
307 <        elements[tail] = e;
308 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
309 <            doubleCapacity();
307 >        final Object[] es = elements;
308 >        es[tail] = e;
309 >        if (head == (tail = inc(tail, es.length)))
310 >            grow(1);
311 >        // checkInvariants();
312      }
313  
314      /**
315 <     * Retrieves and removes the first element of this deque, or
316 <     * <tt>null</tt> if this deque is empty.
315 >     * Adds all of the elements in the specified collection at the end
316 >     * of this deque, as if by calling {@link #addLast} on each one,
317 >     * in the order that they are returned by the collection's iterator.
318       *
319 <     * @return the first element of this deque, or <tt>null</tt> if
320 <     *     this deque is empty
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323       */
324 <    public E pollFirst() {
325 <        int h = head;
326 <        E result = elements[h]; // Element is null if deque empty
327 <        if (result == null)
328 <            return null;
329 <        elements[h] = null;     // Must null out slot
330 <        head = (h + 1) & (elements.length - 1);
230 <        return result;
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        copyElements(c);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333 <    /**
334 <     * Retrieves and removes the last element of this deque, or
235 <     * <tt>null</tt> if this deque is empty.
236 <     *
237 <     * @return the last element of this deque, or <tt>null</tt> if
238 <     *     this deque is empty
239 <     */
240 <    public E pollLast() {
241 <        int t = (tail - 1) & (elements.length - 1);
242 <        E result = elements[t];
243 <        if (result == null)
244 <            return null;
245 <        elements[t] = null;
246 <        tail = t;
247 <        return result;
333 >    private void copyElements(Collection<? extends E> c) {
334 >        c.forEach(this::addLast);
335      }
336  
337      /**
338 <     * Inserts the specified element to the front this deque.
338 >     * Inserts the specified element at the front of this deque.
339       *
340 <     * @param e the element to insert
341 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
342 <     * @throws NullPointerException if <tt>e</tt> is null
340 >     * @param e the element to add
341 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
342 >     * @throws NullPointerException if the specified element is null
343       */
344      public boolean offerFirst(E e) {
345          addFirst(e);
# Line 260 | Line 347 | public class ArrayDeque<E> extends Abstr
347      }
348  
349      /**
350 <     * Inserts the specified element to the end this deque.
350 >     * Inserts the specified element at the end of this deque.
351       *
352 <     * @param e the element to insert
353 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
354 <     * @throws NullPointerException if <tt>e</tt> is null
352 >     * @param e the element to add
353 >     * @return {@code true} (as specified by {@link Deque#offerLast})
354 >     * @throws NullPointerException if the specified element is null
355       */
356      public boolean offerLast(E e) {
357          addLast(e);
# Line 272 | Line 359 | public class ArrayDeque<E> extends Abstr
359      }
360  
361      /**
362 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
362 >     * @throws NoSuchElementException {@inheritDoc}
363       */
364      public E removeFirst() {
365 <        E x = pollFirst();
366 <        if (x == null)
365 >        E e = pollFirst();
366 >        if (e == null)
367              throw new NoSuchElementException();
368 <        return x;
368 >        // checkInvariants();
369 >        return e;
370      }
371  
372      /**
373 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
373 >     * @throws NoSuchElementException {@inheritDoc}
374       */
375      public E removeLast() {
376 <        E x = pollLast();
377 <        if (x == null)
376 >        E e = pollLast();
377 >        if (e == null)
378              throw new NoSuchElementException();
379 <        return x;
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383 <    /**
384 <     * Retrieves, but does not remove, the first element of this deque,
385 <     * returning <tt>null</tt> if this deque is empty.
386 <     *
387 <     * @return the first element of this deque, or <tt>null</tt> if
388 <     *     this deque is empty
389 <     */
390 <    public E peekFirst() {
391 <        return elements[head]; // elements[head] is null if deque empty
383 >    public E pollFirst() {
384 >        final Object[] es;
385 >        final int h;
386 >        E e = elementAt(es = elements, h = head);
387 >        if (e != null) {
388 >            es[h] = null;
389 >            head = inc(h, es.length);
390 >        }
391 >        // checkInvariants();
392 >        return e;
393      }
394  
395 <    /**
396 <     * Retrieves, but does not remove, the last element of this deque,
397 <     * returning <tt>null</tt> if this deque is empty.
398 <     *
399 <     * @return the last element of this deque, or <tt>null</tt> if this deque
400 <     *     is empty
401 <     */
402 <    public E peekLast() {
323 <        return elements[(tail - 1) & (elements.length - 1)];
395 >    public E pollLast() {
396 >        final Object[] es;
397 >        final int t;
398 >        E e = elementAt(es = elements, t = dec(tail, es.length));
399 >        if (e != null)
400 >            es[tail = t] = null;
401 >        // checkInvariants();
402 >        return e;
403      }
404  
405      /**
406 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
406 >     * @throws NoSuchElementException {@inheritDoc}
407       */
408      public E getFirst() {
409 <        E x = elements[head];
410 <        if (x == null)
409 >        E e = elementAt(elements, head);
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return x;
412 >        // checkInvariants();
413 >        return e;
414      }
415  
416      /**
417 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
417 >     * @throws NoSuchElementException {@inheritDoc}
418       */
419      public E getLast() {
420 <        E x = elements[(tail - 1) & (elements.length - 1)];
421 <        if (x == null)
420 >        final Object[] es = elements;
421 >        E e = elementAt(es, dec(tail, es.length));
422 >        if (e == null)
423              throw new NoSuchElementException();
424 <        return x;
424 >        // checkInvariants();
425 >        return e;
426 >    }
427 >
428 >    public E peekFirst() {
429 >        // checkInvariants();
430 >        return elementAt(elements, head);
431 >    }
432 >
433 >    public E peekLast() {
434 >        // checkInvariants();
435 >        final Object[] es;
436 >        return elementAt(es = elements, dec(tail, es.length));
437      }
438  
439      /**
440       * Removes the first occurrence of the specified element in this
441 <     * deque (when traversing the deque from head to tail).  If the deque
442 <     * does not contain the element, it is unchanged.
443 <     *
444 <     * @param e element to be removed from this deque, if present
445 <     * @return <tt>true</tt> if the deque contained the specified element
446 <     */
447 <    public boolean removeFirstOccurrence(Object e) {
448 <        if (e == null)
449 <            return false;
450 <        int mask = elements.length - 1;
451 <        int i = head;
452 <        E x;
453 <        while ( (x = elements[i]) != null) {
454 <            if (e.equals(x)) {
455 <                delete(i);
456 <                return true;
441 >     * deque (when traversing the deque from head to tail).
442 >     * If the deque does not contain the element, it is unchanged.
443 >     * More formally, removes the first element {@code e} such that
444 >     * {@code o.equals(e)} (if such an element exists).
445 >     * Returns {@code true} if this deque contained the specified element
446 >     * (or equivalently, if this deque changed as a result of the call).
447 >     *
448 >     * @param o element to be removed from this deque, if present
449 >     * @return {@code true} if the deque contained the specified element
450 >     */
451 >    public boolean removeFirstOccurrence(Object o) {
452 >        if (o != null) {
453 >            final Object[] es = elements;
454 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
455 >                 ; i = 0, to = end) {
456 >                for (; i < to; i++)
457 >                    if (o.equals(es[i])) {
458 >                        delete(i);
459 >                        return true;
460 >                    }
461 >                if (to == end) break;
462              }
375            i = (i + 1) & mask;
463          }
464          return false;
465      }
466  
467      /**
468       * Removes the last occurrence of the specified element in this
469 <     * deque (when traversing the deque from head to tail).  If the deque
470 <     * does not contain the element, it is unchanged.
471 <     *
472 <     * @param e element to be removed from this deque, if present
473 <     * @return <tt>true</tt> if the deque contained the specified element
474 <     */
475 <    public boolean removeLastOccurrence(Object e) {
476 <        if (e == null)
477 <            return false;
478 <        int mask = elements.length - 1;
479 <        int i = (tail - 1) & mask;
480 <        E x;
481 <        while ( (x = elements[i]) != null) {
482 <            if (e.equals(x)) {
483 <                delete(i);
484 <                return true;
469 >     * deque (when traversing the deque from head to tail).
470 >     * If the deque does not contain the element, it is unchanged.
471 >     * More formally, removes the last element {@code e} such that
472 >     * {@code o.equals(e)} (if such an element exists).
473 >     * Returns {@code true} if this deque contained the specified element
474 >     * (or equivalently, if this deque changed as a result of the call).
475 >     *
476 >     * @param o element to be removed from this deque, if present
477 >     * @return {@code true} if the deque contained the specified element
478 >     */
479 >    public boolean removeLastOccurrence(Object o) {
480 >        if (o != null) {
481 >            final Object[] es = elements;
482 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
483 >                 ; i = es.length, to = end) {
484 >                for (i--; i > to - 1; i--)
485 >                    if (o.equals(es[i])) {
486 >                        delete(i);
487 >                        return true;
488 >                    }
489 >                if (to == end) break;
490              }
399            i = (i - 1) & mask;
491          }
492          return false;
493      }
# Line 404 | Line 495 | public class ArrayDeque<E> extends Abstr
495      // *** Queue methods ***
496  
497      /**
498 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
498 >     * Inserts the specified element at the end of this deque.
499       *
500       * <p>This method is equivalent to {@link #addLast}.
501       *
502 <     * @param e the element to insert
503 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
504 <     * @throws NullPointerException if <tt>e</tt> is null
502 >     * @param e the element to add
503 >     * @return {@code true} (as specified by {@link Collection#add})
504 >     * @throws NullPointerException if the specified element is null
505       */
506      public boolean add(E e) {
507          addLast(e);
# Line 431 | Line 509 | public class ArrayDeque<E> extends Abstr
509      }
510  
511      /**
512 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
512 >     * Inserts the specified element at the end of this deque.
513       *
514 <     * <p>This method is equivalent to {@link #pollFirst}.
514 >     * <p>This method is equivalent to {@link #offerLast}.
515       *
516 <     * @return the first element of this deque, or <tt>null</tt> if
517 <     *     this deque is empty
516 >     * @param e the element to add
517 >     * @return {@code true} (as specified by {@link Queue#offer})
518 >     * @throws NullPointerException if the specified element is null
519       */
520 <    public E poll() {
521 <        return pollFirst();
520 >    public boolean offer(E e) {
521 >        return offerLast(e);
522      }
523  
524      /**
525       * Retrieves and removes the head of the queue represented by this deque.
526 <     * This method differs from the <tt>poll</tt> method in that it throws an
527 <     * exception if this deque is empty.
526 >     *
527 >     * This method differs from {@link #poll() poll()} only in that it
528 >     * throws an exception if this deque is empty.
529       *
530       * <p>This method is equivalent to {@link #removeFirst}.
531       *
532       * @return the head of the queue represented by this deque
533 <     * @throws NoSuchElementException if this deque is empty
533 >     * @throws NoSuchElementException {@inheritDoc}
534       */
535      public E remove() {
536          return removeFirst();
537      }
538  
539      /**
540 <     * Retrieves, but does not remove, the head of the queue represented by
541 <     * this deque, returning <tt>null</tt> if this deque is empty.
540 >     * Retrieves and removes the head of the queue represented by this deque
541 >     * (in other words, the first element of this deque), or returns
542 >     * {@code null} if this deque is empty.
543       *
544 <     * <p>This method is equivalent to {@link #peekFirst}
544 >     * <p>This method is equivalent to {@link #pollFirst}.
545       *
546       * @return the head of the queue represented by this deque, or
547 <     *     <tt>null</tt> if this deque is empty
547 >     *         {@code null} if this deque is empty
548       */
549 <    public E peek() {
550 <        return peekFirst();
549 >    public E poll() {
550 >        return pollFirst();
551      }
552  
553      /**
554       * Retrieves, but does not remove, the head of the queue represented by
555 <     * this deque.  This method differs from the <tt>peek</tt> method only in
555 >     * this deque.  This method differs from {@link #peek peek} only in
556       * that it throws an exception if this deque is empty.
557       *
558 <     * <p>This method is equivalent to {@link #getFirst}
558 >     * <p>This method is equivalent to {@link #getFirst}.
559       *
560       * @return the head of the queue represented by this deque
561 <     * @throws NoSuchElementException if this deque is empty
561 >     * @throws NoSuchElementException {@inheritDoc}
562       */
563      public E element() {
564          return getFirst();
565      }
566  
567 +    /**
568 +     * Retrieves, but does not remove, the head of the queue represented by
569 +     * this deque, or returns {@code null} if this deque is empty.
570 +     *
571 +     * <p>This method is equivalent to {@link #peekFirst}.
572 +     *
573 +     * @return the head of the queue represented by this deque, or
574 +     *         {@code null} if this deque is empty
575 +     */
576 +    public E peek() {
577 +        return peekFirst();
578 +    }
579 +
580      // *** Stack methods ***
581  
582      /**
583       * Pushes an element onto the stack represented by this deque.  In other
584 <     * words, inserts the element to the front this deque.
584 >     * words, inserts the element at the front of this deque.
585       *
586       * <p>This method is equivalent to {@link #addFirst}.
587       *
588       * @param e the element to push
589 <     * @throws NullPointerException if <tt>e</tt> is null
589 >     * @throws NullPointerException if the specified element is null
590       */
591      public void push(E e) {
592          addFirst(e);
# Line 508 | Line 599 | public class ArrayDeque<E> extends Abstr
599       * <p>This method is equivalent to {@link #removeFirst()}.
600       *
601       * @return the element at the front of this deque (which is the top
602 <     *     of the stack represented by this deque)
603 <     * @throws NoSuchElementException if this deque is empty
602 >     *         of the stack represented by this deque)
603 >     * @throws NoSuchElementException {@inheritDoc}
604       */
605      public E pop() {
606          return removeFirst();
607      }
608  
609      /**
610 <     * Remove the element at the specified position in the elements array,
611 <     * adjusting head, tail, and size as necessary.  This can result in
612 <     * motion of elements backwards or forwards in the array.
613 <     *
614 <     * <p>This method is called delete rather than remove to emphasize the
615 <     * that its semantics differ from those of List.remove(int).
616 <     *
617 <     * @return true if elements moved backwards
618 <     */
619 <    private boolean delete(int i) {
620 <        // Case 1: Deque doesn't wrap
621 <        // Case 2: Deque does wrap and removed element is in the head portion
622 <        if ((head < tail || tail == 0) || i >= head) {
623 <            System.arraycopy(elements, head, elements, head + 1, i - head);
624 <            elements[head] = null;
625 <            head = (head + 1) & (elements.length - 1);
610 >     * Removes the element at the specified position in the elements array.
611 >     * This can result in forward or backwards motion of array elements.
612 >     * We optimize for least element motion.
613 >     *
614 >     * <p>This method is called delete rather than remove to emphasize
615 >     * that its semantics differ from those of {@link List#remove(int)}.
616 >     *
617 >     * @return true if elements near tail moved backwards
618 >     */
619 >    boolean delete(int i) {
620 >        // checkInvariants();
621 >        final Object[] es = elements;
622 >        final int capacity = es.length;
623 >        final int h, t;
624 >        // number of elements before to-be-deleted elt
625 >        final int front = sub(i, h = head, capacity);
626 >        // number of elements after to-be-deleted elt
627 >        final int back = sub(t = tail, i, capacity) - 1;
628 >        if (front < back) {
629 >            // move front elements forwards
630 >            if (h <= i) {
631 >                System.arraycopy(es, h, es, h + 1, front);
632 >            } else { // Wrap around
633 >                System.arraycopy(es, 0, es, 1, i);
634 >                es[0] = es[capacity - 1];
635 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
636 >            }
637 >            es[h] = null;
638 >            head = inc(h, capacity);
639 >            // checkInvariants();
640              return false;
641 +        } else {
642 +            // move back elements backwards
643 +            tail = dec(t, capacity);
644 +            if (i <= tail) {
645 +                System.arraycopy(es, i + 1, es, i, back);
646 +            } else { // Wrap around
647 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
648 +                es[capacity - 1] = es[0];
649 +                System.arraycopy(es, 1, es, 0, t - 1);
650 +            }
651 +            es[tail] = null;
652 +            // checkInvariants();
653 +            return true;
654          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
655      }
656  
657      // *** Collection Methods ***
# Line 550 | Line 662 | public class ArrayDeque<E> extends Abstr
662       * @return the number of elements in this deque
663       */
664      public int size() {
665 <        return (tail - head) & (elements.length - 1);
665 >        return sub(tail, head, elements.length);
666      }
667  
668      /**
669 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
669 >     * Returns {@code true} if this deque contains no elements.
670       *
671 <     * @return <tt>true</tt> if this collection contains no elements.
671 >     * @return {@code true} if this deque contains no elements
672       */
673      public boolean isEmpty() {
674          return head == tail;
# Line 567 | Line 679 | public class ArrayDeque<E> extends Abstr
679       * will be ordered from first (head) to last (tail).  This is the same
680       * order that elements would be dequeued (via successive calls to
681       * {@link #remove} or popped (via successive calls to {@link #pop}).
682 <     *
683 <     * @return an <tt>Iterator</tt> over the elements in this deque
682 >     *
683 >     * @return an iterator over the elements in this deque
684       */
685      public Iterator<E> iterator() {
686          return new DeqIterator();
687      }
688  
689 +    public Iterator<E> descendingIterator() {
690 +        return new DescendingIterator();
691 +    }
692 +
693      private class DeqIterator implements Iterator<E> {
694 <        /**
695 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
694 >        /** Index of element to be returned by subsequent call to next. */
695 >        int cursor;
696  
697 <        /**
698 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
697 >        /** Number of elements yet to be returned. */
698 >        int remaining = size();
699  
700          /**
701           * Index of element returned by most recent call to next.
702           * Reset to -1 if element is deleted by a call to remove.
703           */
704 <        private int lastRet = -1;
704 >        int lastRet = -1;
705  
706 <        public boolean hasNext() {
707 <            return cursor != fence;
706 >        DeqIterator() { cursor = head; }
707 >
708 >        public final boolean hasNext() {
709 >            return remaining > 0;
710          }
711  
712          public E next() {
713 <            E result;
601 <            if (cursor == fence)
713 >            if (remaining <= 0)
714                  throw new NoSuchElementException();
715 <            // This check doesn't catch all possible comodifications,
716 <            // but does catch the ones that corrupt traversal
717 <            if (tail != fence || (result = elements[cursor]) == null)
718 <                throw new ConcurrentModificationException();
719 <            lastRet = cursor;
608 <            cursor = (cursor + 1) & (elements.length - 1);
609 <            return result;
715 >            final Object[] es = elements;
716 >            E e = nonNullElementAt(es, cursor);
717 >            cursor = inc(lastRet = cursor, es.length);
718 >            remaining--;
719 >            return e;
720          }
721  
722 <        public void remove() {
722 >        void postDelete(boolean leftShifted) {
723 >            if (leftShifted)
724 >                cursor = dec(cursor, elements.length);
725 >        }
726 >
727 >        public final void remove() {
728              if (lastRet < 0)
729                  throw new IllegalStateException();
730 <            if (delete(lastRet))
616 <                cursor--;
730 >            postDelete(delete(lastRet));
731              lastRet = -1;
732 <            fence = tail;
732 >        }
733 >
734 >        public void forEachRemaining(Consumer<? super E> action) {
735 >            Objects.requireNonNull(action);
736 >            int r;
737 >            if ((r = remaining) <= 0)
738 >                return;
739 >            remaining = 0;
740 >            final Object[] es = elements;
741 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
742 >                throw new ConcurrentModificationException();
743 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
744 >                 ; i = 0, to = end) {
745 >                for (; i < to; i++)
746 >                    action.accept(elementAt(es, i));
747 >                if (to == end) {
748 >                    if (end != tail)
749 >                        throw new ConcurrentModificationException();
750 >                    lastRet = dec(end, es.length);
751 >                    break;
752 >                }
753 >            }
754 >        }
755 >    }
756 >
757 >    private class DescendingIterator extends DeqIterator {
758 >        DescendingIterator() { cursor = dec(tail, elements.length); }
759 >
760 >        public final E next() {
761 >            if (remaining <= 0)
762 >                throw new NoSuchElementException();
763 >            final Object[] es = elements;
764 >            E e = nonNullElementAt(es, cursor);
765 >            cursor = dec(lastRet = cursor, es.length);
766 >            remaining--;
767 >            return e;
768 >        }
769 >
770 >        void postDelete(boolean leftShifted) {
771 >            if (!leftShifted)
772 >                cursor = inc(cursor, elements.length);
773 >        }
774 >
775 >        public final void forEachRemaining(Consumer<? super E> action) {
776 >            Objects.requireNonNull(action);
777 >            int r;
778 >            if ((r = remaining) <= 0)
779 >                return;
780 >            remaining = 0;
781 >            final Object[] es = elements;
782 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
783 >                throw new ConcurrentModificationException();
784 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
785 >                 ; i = es.length - 1, to = end) {
786 >                // hotspot generates faster code than for: i >= to !
787 >                for (; i > to - 1; i--)
788 >                    action.accept(elementAt(es, i));
789 >                if (to == end) {
790 >                    if (end != head)
791 >                        throw new ConcurrentModificationException();
792 >                    lastRet = end;
793 >                    break;
794 >                }
795 >            }
796          }
797      }
798  
799      /**
800 <     * Returns <tt>true</tt> if this deque contains the specified
801 <     * element.  More formally, returns <tt>true</tt> if and only if this
802 <     * deque contains at least one element <tt>e</tt> such that
803 <     * <tt>e.equals(o)</tt>.
800 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 >     * deque.
803 >     *
804 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
806 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
807 >     * the reporting of additional characteristic values.
808 >     *
809 >     * @return a {@code Spliterator} over the elements in this deque
810 >     * @since 1.8
811 >     */
812 >    public Spliterator<E> spliterator() {
813 >        return new DeqSpliterator();
814 >    }
815 >
816 >    final class DeqSpliterator implements Spliterator<E> {
817 >        private int fence;      // -1 until first use
818 >        private int cursor;     // current index, modified on traverse/split
819 >
820 >        /** Constructs late-binding spliterator over all elements. */
821 >        DeqSpliterator() {
822 >            this.fence = -1;
823 >        }
824 >
825 >        /** Constructs spliterator over the given range. */
826 >        DeqSpliterator(int origin, int fence) {
827 >            // assert 0 <= origin && origin < elements.length;
828 >            // assert 0 <= fence && fence < elements.length;
829 >            this.cursor = origin;
830 >            this.fence = fence;
831 >        }
832 >
833 >        /** Ensures late-binding initialization; then returns fence. */
834 >        private int getFence() { // force initialization
835 >            int t;
836 >            if ((t = fence) < 0) {
837 >                t = fence = tail;
838 >                cursor = head;
839 >            }
840 >            return t;
841 >        }
842 >
843 >        public DeqSpliterator trySplit() {
844 >            final Object[] es = elements;
845 >            final int i, n;
846 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
847 >                ? null
848 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
849 >        }
850 >
851 >        public void forEachRemaining(Consumer<? super E> action) {
852 >            if (action == null)
853 >                throw new NullPointerException();
854 >            final int end = getFence(), cursor = this.cursor;
855 >            final Object[] es = elements;
856 >            if (cursor != end) {
857 >                this.cursor = end;
858 >                // null check at both ends of range is sufficient
859 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
860 >                    throw new ConcurrentModificationException();
861 >                for (int i = cursor, to = (i <= end) ? end : es.length;
862 >                     ; i = 0, to = end) {
863 >                    for (; i < to; i++)
864 >                        action.accept(elementAt(es, i));
865 >                    if (to == end) break;
866 >                }
867 >            }
868 >        }
869 >
870 >        public boolean tryAdvance(Consumer<? super E> action) {
871 >            Objects.requireNonNull(action);
872 >            final Object[] es = elements;
873 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
874 >            final int i;
875 >            if ((i = cursor) == fence)
876 >                return false;
877 >            E e = nonNullElementAt(es, i);
878 >            cursor = inc(i, es.length);
879 >            action.accept(e);
880 >            return true;
881 >        }
882 >
883 >        public long estimateSize() {
884 >            return sub(getFence(), cursor, elements.length);
885 >        }
886 >
887 >        public int characteristics() {
888 >            return Spliterator.NONNULL
889 >                | Spliterator.ORDERED
890 >                | Spliterator.SIZED
891 >                | Spliterator.SUBSIZED;
892 >        }
893 >    }
894 >
895 >    /**
896 >     * @throws NullPointerException {@inheritDoc}
897 >     */
898 >    public void forEach(Consumer<? super E> action) {
899 >        Objects.requireNonNull(action);
900 >        final Object[] es = elements;
901 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
902 >             ; i = 0, to = end) {
903 >            for (; i < to; i++)
904 >                action.accept(elementAt(es, i));
905 >            if (to == end) {
906 >                if (end != tail) throw new ConcurrentModificationException();
907 >                break;
908 >            }
909 >        }
910 >        // checkInvariants();
911 >    }
912 >
913 >    /**
914 >     * Replaces each element of this deque with the result of applying the
915 >     * operator to that element, as specified by {@link List#replaceAll}.
916 >     *
917 >     * @param operator the operator to apply to each element
918 >     * @since TBD
919 >     */
920 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
921 >        Objects.requireNonNull(operator);
922 >        final Object[] es = elements;
923 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
924 >             ; i = 0, to = end) {
925 >            for (; i < to; i++)
926 >                es[i] = operator.apply(elementAt(es, i));
927 >            if (to == end) {
928 >                if (end != tail) throw new ConcurrentModificationException();
929 >                break;
930 >            }
931 >        }
932 >        // checkInvariants();
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean removeIf(Predicate<? super E> filter) {
939 >        Objects.requireNonNull(filter);
940 >        return bulkRemove(filter);
941 >    }
942 >
943 >    /**
944 >     * @throws NullPointerException {@inheritDoc}
945 >     */
946 >    public boolean removeAll(Collection<?> c) {
947 >        Objects.requireNonNull(c);
948 >        return bulkRemove(e -> c.contains(e));
949 >    }
950 >
951 >    /**
952 >     * @throws NullPointerException {@inheritDoc}
953 >     */
954 >    public boolean retainAll(Collection<?> c) {
955 >        Objects.requireNonNull(c);
956 >        return bulkRemove(e -> !c.contains(e));
957 >    }
958 >
959 >    /** Implementation of bulk remove methods. */
960 >    private boolean bulkRemove(Predicate<? super E> filter) {
961 >        // checkInvariants();
962 >        final Object[] es = elements;
963 >        // Optimize for initial run of survivors
964 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
965 >             ; i = 0, to = end) {
966 >            for (; i < to; i++)
967 >                if (filter.test(elementAt(es, i)))
968 >                    return bulkRemoveModified(filter, i);
969 >            if (to == end) {
970 >                if (end != tail) throw new ConcurrentModificationException();
971 >                break;
972 >            }
973 >        }
974 >        return false;
975 >    }
976 >
977 >    // A tiny bit set implementation
978 >
979 >    private static long[] nBits(int n) {
980 >        return new long[((n - 1) >> 6) + 1];
981 >    }
982 >    private static void setBit(long[] bits, int i) {
983 >        bits[i >> 6] |= 1L << i;
984 >    }
985 >    private static boolean isClear(long[] bits, int i) {
986 >        return (bits[i >> 6] & (1L << i)) == 0;
987 >    }
988 >
989 >    /**
990 >     * Helper for bulkRemove, in case of at least one deletion.
991 >     * Tolerate predicates that reentrantly access the collection for
992 >     * read (but writers still get CME), so traverse once to find
993 >     * elements to delete, a second pass to physically expunge.
994 >     *
995 >     * @param beg valid index of first element to be deleted
996 >     */
997 >    private boolean bulkRemoveModified(
998 >        Predicate<? super E> filter, final int beg) {
999 >        final Object[] es = elements;
1000 >        final int capacity = es.length;
1001 >        final int end = tail;
1002 >        final long[] deathRow = nBits(sub(end, beg, capacity));
1003 >        deathRow[0] = 1L;   // set bit 0
1004 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1005 >             ; i = 0, to = end, k -= capacity) {
1006 >            for (; i < to; i++)
1007 >                if (filter.test(elementAt(es, i)))
1008 >                    setBit(deathRow, i - k);
1009 >            if (to == end) break;
1010 >        }
1011 >        // a two-finger traversal, with hare i reading, tortoise w writing
1012 >        int w = beg;
1013 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1014 >             ; w = 0) { // w rejoins i on second leg
1015 >            // In this loop, i and w are on the same leg, with i > w
1016 >            for (; i < to; i++)
1017 >                if (isClear(deathRow, i - k))
1018 >                    es[w++] = es[i];
1019 >            if (to == end) break;
1020 >            // In this loop, w is on the first leg, i on the second
1021 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1022 >                if (isClear(deathRow, i - k))
1023 >                    es[w++] = es[i];
1024 >            if (i >= to) {
1025 >                if (w == capacity) w = 0; // "corner" case
1026 >                break;
1027 >            }
1028 >        }
1029 >        if (end != tail) throw new ConcurrentModificationException();
1030 >        circularClear(es, tail = w, end);
1031 >        // checkInvariants();
1032 >        return true;
1033 >    }
1034 >
1035 >    /**
1036 >     * Returns {@code true} if this deque contains the specified element.
1037 >     * More formally, returns {@code true} if and only if this deque contains
1038 >     * at least one element {@code e} such that {@code o.equals(e)}.
1039       *
1040       * @param o object to be checked for containment in this deque
1041 <     * @return <tt>true</tt> if this deque contains the specified element
1041 >     * @return {@code true} if this deque contains the specified element
1042       */
1043      public boolean contains(Object o) {
1044 <        if (o == null)
1045 <            return false;
1046 <        int mask = elements.length - 1;
1047 <        int i = head;
1048 <        E x;
1049 <        while ( (x = elements[i]) != null) {
1050 <            if (o.equals(x))
1051 <                return true;
1052 <            i = (i + 1) & mask;
1044 >        if (o != null) {
1045 >            final Object[] es = elements;
1046 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1047 >                 ; i = 0, to = end) {
1048 >                for (; i < to; i++)
1049 >                    if (o.equals(es[i]))
1050 >                        return true;
1051 >                if (to == end) break;
1052 >            }
1053          }
1054          return false;
1055      }
1056  
1057      /**
1058       * Removes a single instance of the specified element from this deque.
1059 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1059 >     * If the deque does not contain the element, it is unchanged.
1060 >     * More formally, removes the first element {@code e} such that
1061 >     * {@code o.equals(e)} (if such an element exists).
1062 >     * Returns {@code true} if this deque contained the specified element
1063 >     * (or equivalently, if this deque changed as a result of the call).
1064 >     *
1065 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1066       *
1067 <     * @param e element to be removed from this deque, if present
1068 <     * @return <tt>true</tt> if this deque contained the specified element
1067 >     * @param o element to be removed from this deque, if present
1068 >     * @return {@code true} if this deque contained the specified element
1069       */
1070 <    public boolean remove(Object e) {
1071 <        return removeFirstOccurrence(e);
1070 >    public boolean remove(Object o) {
1071 >        return removeFirstOccurrence(o);
1072      }
1073  
1074      /**
1075       * Removes all of the elements from this deque.
1076 +     * The deque will be empty after this call returns.
1077       */
1078      public void clear() {
1079 <        int h = head;
1080 <        int t = tail;
1081 <        if (h != t) { // clear all cells
1082 <            head = tail = 0;
1083 <            int i = h;
1084 <            int mask = elements.length - 1;
1085 <            do {
1086 <                elements[i] = null;
1087 <                i = (i + 1) & mask;
1088 <            } while(i != t);
1079 >        circularClear(elements, head, tail);
1080 >        head = tail = 0;
1081 >        // checkInvariants();
1082 >    }
1083 >
1084 >    /**
1085 >     * Nulls out slots starting at array index i, upto index end.
1086 >     * Condition i == end means "empty" - nothing to do.
1087 >     */
1088 >    private static void circularClear(Object[] es, int i, int end) {
1089 >        // assert 0 <= i && i < es.length;
1090 >        // assert 0 <= end && end < es.length;
1091 >        for (int to = (i <= end) ? end : es.length;
1092 >             ; i = 0, to = end) {
1093 >            for (; i < to; i++) es[i] = null;
1094 >            if (to == end) break;
1095          }
1096      }
1097  
1098      /**
1099 <     * Returns an array containing all of the elements in this list
1100 <     * in the correct order.
1099 >     * Returns an array containing all of the elements in this deque
1100 >     * in proper sequence (from first to last element).
1101       *
1102 <     * @return an array containing all of the elements in this list
1103 <     *         in the correct order
1102 >     * <p>The returned array will be "safe" in that no references to it are
1103 >     * maintained by this deque.  (In other words, this method must allocate
1104 >     * a new array).  The caller is thus free to modify the returned array.
1105 >     *
1106 >     * <p>This method acts as bridge between array-based and collection-based
1107 >     * APIs.
1108 >     *
1109 >     * @return an array containing all of the elements in this deque
1110       */
1111      public Object[] toArray() {
1112 <        return copyElements(new Object[size()]);
1112 >        return toArray(Object[].class);
1113 >    }
1114 >
1115 >    private <T> T[] toArray(Class<T[]> klazz) {
1116 >        final Object[] es = elements;
1117 >        final T[] a;
1118 >        final int head = this.head, tail = this.tail, end;
1119 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1120 >            // Uses null extension feature of copyOfRange
1121 >            a = Arrays.copyOfRange(es, head, end, klazz);
1122 >        } else {
1123 >            // integer overflow!
1124 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1125 >            System.arraycopy(es, head, a, 0, es.length - head);
1126 >        }
1127 >        if (end != tail)
1128 >            System.arraycopy(es, 0, a, es.length - head, tail);
1129 >        return a;
1130      }
1131  
1132      /**
1133 <     * Returns an array containing all of the elements in this deque in the
1134 <     * correct order; the runtime type of the returned array is that of the
1135 <     * specified array.  If the deque fits in the specified array, it is
1136 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1137 <     * type of the specified array and the size of this deque.
1133 >     * Returns an array containing all of the elements in this deque in
1134 >     * proper sequence (from first to last element); the runtime type of the
1135 >     * returned array is that of the specified array.  If the deque fits in
1136 >     * the specified array, it is returned therein.  Otherwise, a new array
1137 >     * is allocated with the runtime type of the specified array and the
1138 >     * size of this deque.
1139 >     *
1140 >     * <p>If this deque fits in the specified array with room to spare
1141 >     * (i.e., the array has more elements than this deque), the element in
1142 >     * the array immediately following the end of the deque is set to
1143 >     * {@code null}.
1144 >     *
1145 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1146 >     * array-based and collection-based APIs.  Further, this method allows
1147 >     * precise control over the runtime type of the output array, and may,
1148 >     * under certain circumstances, be used to save allocation costs.
1149 >     *
1150 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1151 >     * The following code can be used to dump the deque into a newly
1152 >     * allocated array of {@code String}:
1153 >     *
1154 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1155       *
1156 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1157 <     * the array has more elements than the deque), the element in the array
693 <     * immediately following the end of the collection is set to <tt>null</tt>.
1156 >     * Note that {@code toArray(new Object[0])} is identical in function to
1157 >     * {@code toArray()}.
1158       *
1159       * @param a the array into which the elements of the deque are to
1160 <     *          be stored, if it is big enough; otherwise, a new array of the
1161 <     *          same runtime type is allocated for this purpose
1162 <     * @return an array containing the elements of the deque
1163 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1164 <     *         of the runtime type of every element in this deque
1160 >     *          be stored, if it is big enough; otherwise, a new array of the
1161 >     *          same runtime type is allocated for this purpose
1162 >     * @return an array containing all of the elements in this deque
1163 >     * @throws ArrayStoreException if the runtime type of the specified array
1164 >     *         is not a supertype of the runtime type of every element in
1165 >     *         this deque
1166 >     * @throws NullPointerException if the specified array is null
1167       */
1168 +    @SuppressWarnings("unchecked")
1169      public <T> T[] toArray(T[] a) {
1170 <        int size = size();
1171 <        if (a.length < size)
1172 <            a = (T[])java.lang.reflect.Array.newInstance(
1173 <                    a.getClass().getComponentType(), size);
1174 <        copyElements(a);
1175 <        if (a.length > size)
1170 >        final int size;
1171 >        if ((size = size()) > a.length)
1172 >            return toArray((Class<T[]>) a.getClass());
1173 >        final Object[] es = elements;
1174 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1175 >             ; i = 0, len = tail) {
1176 >            System.arraycopy(es, i, a, j, len);
1177 >            if ((j += len) == size) break;
1178 >        }
1179 >        if (size < a.length)
1180              a[size] = null;
1181          return a;
1182      }
# Line 718 | Line 1189 | public class ArrayDeque<E> extends Abstr
1189       * @return a copy of this deque
1190       */
1191      public ArrayDeque<E> clone() {
1192 <        try {
1192 >        try {
1193 >            @SuppressWarnings("unchecked")
1194              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1195 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1195 >            result.elements = Arrays.copyOf(elements, elements.length);
1196              return result;
1197 <
728 <        } catch (CloneNotSupportedException e) {
1197 >        } catch (CloneNotSupportedException e) {
1198              throw new AssertionError();
1199          }
1200      }
1201  
733    /**
734     * Appease the serialization gods.
735     */
1202      private static final long serialVersionUID = 2340985798034038923L;
1203  
1204      /**
1205 <     * Serialize this deque.
1205 >     * Saves this deque to a stream (that is, serializes it).
1206       *
1207 <     * @serialData The current size (<tt>int</tt>) of the deque,
1207 >     * @param s the stream
1208 >     * @throws java.io.IOException if an I/O error occurs
1209 >     * @serialData The current size ({@code int}) of the deque,
1210       * followed by all of its elements (each an object reference) in
1211       * first-to-last order.
1212       */
1213 <    private void writeObject(ObjectOutputStream s) throws IOException {
1213 >    private void writeObject(java.io.ObjectOutputStream s)
1214 >            throws java.io.IOException {
1215          s.defaultWriteObject();
1216  
1217          // Write out size
1218 <        int size = size();
750 <        s.writeInt(size);
1218 >        s.writeInt(size());
1219  
1220          // Write out elements in order.
1221 <        int i = head;
1222 <        int mask = elements.length - 1;
1223 <        for (int j = 0; j < size; j++) {
1224 <            s.writeObject(elements[i]);
1225 <            i = (i + 1) & mask;
1221 >        final Object[] es = elements;
1222 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1223 >             ; i = 0, to = end) {
1224 >            for (; i < to; i++)
1225 >                s.writeObject(es[i]);
1226 >            if (to == end) break;
1227          }
1228      }
1229  
1230      /**
1231 <     * Deserialize this deque.
1231 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1232 >     * @param s the stream
1233 >     * @throws ClassNotFoundException if the class of a serialized object
1234 >     *         could not be found
1235 >     * @throws java.io.IOException if an I/O error occurs
1236       */
1237 <    private void readObject(ObjectInputStream s)
1238 <            throws IOException, ClassNotFoundException {
1237 >    private void readObject(java.io.ObjectInputStream s)
1238 >            throws java.io.IOException, ClassNotFoundException {
1239          s.defaultReadObject();
1240  
1241          // Read in size and allocate array
1242          int size = s.readInt();
1243 <        allocateElements(size);
1244 <        head = 0;
1245 <        tail = size;
1243 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
1244 >        elements = new Object[size + 1];
1245 >        this.tail = size;
1246  
1247          // Read in all elements in the proper order.
1248          for (int i = 0; i < size; i++)
1249 <            elements[i] = (E)s.readObject();
1249 >            elements[i] = s.readObject();
1250 >    }
1251  
1252 +    /** debugging */
1253 +    void checkInvariants() {
1254 +        // Use head and tail fields with empty slot at tail strategy.
1255 +        // head == tail disambiguates to "empty".
1256 +        try {
1257 +            int capacity = elements.length;
1258 +            // assert 0 <= head && head < capacity;
1259 +            // assert 0 <= tail && tail < capacity;
1260 +            // assert capacity > 0;
1261 +            // assert size() < capacity;
1262 +            // assert head == tail || elements[head] != null;
1263 +            // assert elements[tail] == null;
1264 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1265 +        } catch (Throwable t) {
1266 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1267 +                              head, tail, elements.length);
1268 +            System.err.printf("elements=%s%n",
1269 +                              Arrays.toString(elements));
1270 +            throw t;
1271 +        }
1272      }
1273 +
1274   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines