ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.17 by dl, Thu Sep 15 16:55:24 2005 UTC vs.
Revision 1.131 by jsr166, Wed Aug 23 22:41:49 2017 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.util.*; // for javadoc (till 6280605 is fixed)
8 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 16 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 35 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 45 | Line 50 | import java.io.*;
50   * Iterator} interfaces.
51   *
52   * <p>This class is a member of the
53 < * <a href="{@docRoot}/../guide/collections/index.html">
53 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
53 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77       * The array in which the elements of the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
62 <     * full, except transiently within an addX method where it is
63 <     * resized (see doubleCapacity) immediately upon becoming full,
64 <     * thus avoiding head and tail wrapping around to equal each
65 <     * other.  We also guarantee that all array cells not holding
66 <     * deque elements are always null.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
94 <     */
81 <    private transient int tail;
82 <
83 <    /**
84 <     * The minimum capacity that we'll use for a newly created deque.
85 <     * Must be a power of 2.
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private static final int MIN_INITIAL_CAPACITY = 8;
88 <
89 <    // ******  Array allocation and resizing utilities ******
96 >    transient int tail;
97  
98      /**
99 <     * Allocate empty array to hold the given number of elements.
100 <     *
101 <     * @param numElements  the number of elements to hold
102 <     */
103 <    private void allocateElements(int numElements) {
104 <        int initialCapacity = MIN_INITIAL_CAPACITY;
105 <        // Find the best power of two to hold elements.
106 <        // Tests "<=" because arrays aren't kept full.
107 <        if (numElements >= initialCapacity) {
108 <            initialCapacity = numElements;
109 <            initialCapacity |= (initialCapacity >>>  1);
110 <            initialCapacity |= (initialCapacity >>>  2);
111 <            initialCapacity |= (initialCapacity >>>  4);
112 <            initialCapacity |= (initialCapacity >>>  8);
113 <            initialCapacity |= (initialCapacity >>> 16);
114 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && es[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(es, head,
126 >                             es, head + newSpace,
127 >                             oldCapacity - head);
128 >            for (int i = head, to = (head += newSpace); i < to; i++)
129 >                es[i] = null;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
124 <        int newCapacity = n << 1;
125 <        if (newCapacity < 0)
126 <            throw new IllegalStateException("Sorry, deque too big");
127 <        Object[] a = new Object[newCapacity];
128 <        System.arraycopy(elements, p, a, 0, r);
129 <        System.arraycopy(elements, 0, a, r, p);
130 <        elements = (E[])a;
131 <        head = 0;
132 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copies the elements from our element array into the specified array,
137 <     * in order (from first to last element in the deque).  It is assumed
138 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
148 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
# Line 155 | Line 180 | public class ArrayDeque<E> extends Abstr
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 179 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Circularly increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Circularly decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int inc(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) i -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is disambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
# Line 196 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
# Line 212 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's iterator.
317 >     *
318 >     * @param c the elements to be inserted into this deque
319 >     * @return {@code true} if this deque changed as a result of the call
320 >     * @throws NullPointerException if the specified collection or any
321 >     *         of its elements are null
322 >     */
323 >    public boolean addAll(Collection<? extends E> c) {
324 >        final int s, needed;
325 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
326 >            grow(needed);
327 >        c.forEach(this::addLast);
328 >        // checkInvariants();
329 >        return size() > s;
330      }
331  
332      /**
333       * Inserts the specified element at the front of this deque.
334       *
335       * @param e the element to add
336 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
336 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
337       * @throws NullPointerException if the specified element is null
338       */
339      public boolean offerFirst(E e) {
# Line 233 | Line 345 | public class ArrayDeque<E> extends Abstr
345       * Inserts the specified element at the end of this deque.
346       *
347       * @param e the element to add
348 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
348 >     * @return {@code true} (as specified by {@link Deque#offerLast})
349       * @throws NullPointerException if the specified element is null
350       */
351      public boolean offerLast(E e) {
# Line 245 | Line 357 | public class ArrayDeque<E> extends Abstr
357       * @throws NoSuchElementException {@inheritDoc}
358       */
359      public E removeFirst() {
360 <        E x = pollFirst();
361 <        if (x == null)
360 >        E e = pollFirst();
361 >        if (e == null)
362              throw new NoSuchElementException();
363 <        return x;
363 >        // checkInvariants();
364 >        return e;
365      }
366  
367      /**
368       * @throws NoSuchElementException {@inheritDoc}
369       */
370      public E removeLast() {
371 <        E x = pollLast();
372 <        if (x == null)
371 >        E e = pollLast();
372 >        if (e == null)
373              throw new NoSuchElementException();
374 <        return x;
374 >        // checkInvariants();
375 >        return e;
376      }
377  
378      public E pollFirst() {
379 <        int h = head;
380 <        E result = elements[h]; // Element is null if deque empty
381 <        if (result == null)
382 <            return null;
383 <        elements[h] = null;     // Must null out slot
384 <        head = (h + 1) & (elements.length - 1);
385 <        return result;
379 >        final Object[] es;
380 >        final int h;
381 >        E e = elementAt(es = elements, h = head);
382 >        if (e != null) {
383 >            es[h] = null;
384 >            head = inc(h, es.length);
385 >        }
386 >        // checkInvariants();
387 >        return e;
388      }
389  
390      public E pollLast() {
391 <        int t = (tail - 1) & (elements.length - 1);
392 <        E result = elements[t];
393 <        if (result == null)
394 <            return null;
395 <        elements[t] = null;
396 <        tail = t;
397 <        return result;
391 >        final Object[] es;
392 >        final int t;
393 >        E e = elementAt(es = elements, t = dec(tail, es.length));
394 >        if (e != null)
395 >            es[tail = t] = null;
396 >        // checkInvariants();
397 >        return e;
398      }
399  
400      /**
401       * @throws NoSuchElementException {@inheritDoc}
402       */
403      public E getFirst() {
404 <        E x = elements[head];
405 <        if (x == null)
404 >        E e = elementAt(elements, head);
405 >        if (e == null)
406              throw new NoSuchElementException();
407 <        return x;
407 >        // checkInvariants();
408 >        return e;
409      }
410  
411      /**
412       * @throws NoSuchElementException {@inheritDoc}
413       */
414      public E getLast() {
415 <        E x = elements[(tail - 1) & (elements.length - 1)];
416 <        if (x == null)
415 >        final Object[] es = elements;
416 >        E e = elementAt(es, dec(tail, es.length));
417 >        if (e == null)
418              throw new NoSuchElementException();
419 <        return x;
419 >        // checkInvariants();
420 >        return e;
421      }
422  
423      public E peekFirst() {
424 <        return elements[head]; // elements[head] is null if deque empty
424 >        // checkInvariants();
425 >        return elementAt(elements, head);
426      }
427  
428      public E peekLast() {
429 <        return elements[(tail - 1) & (elements.length - 1)];
429 >        // checkInvariants();
430 >        final Object[] es;
431 >        return elementAt(es = elements, dec(tail, es.length));
432      }
433  
434      /**
435       * Removes the first occurrence of the specified element in this
436       * deque (when traversing the deque from head to tail).
437       * If the deque does not contain the element, it is unchanged.
438 <     * More formally, removes the first element <tt>e</tt> such that
439 <     * <tt>o.equals(e)</tt> (if such an element exists).
440 <     * Returns <tt>true</tt> if this deque contained the specified element
438 >     * More formally, removes the first element {@code e} such that
439 >     * {@code o.equals(e)} (if such an element exists).
440 >     * Returns {@code true} if this deque contained the specified element
441       * (or equivalently, if this deque changed as a result of the call).
442       *
443       * @param o element to be removed from this deque, if present
444 <     * @return <tt>true</tt> if the deque contained the specified element
444 >     * @return {@code true} if the deque contained the specified element
445       */
446      public boolean removeFirstOccurrence(Object o) {
447 <        if (o == null)
448 <            return false;
449 <        int mask = elements.length - 1;
450 <        int i = head;
451 <        E x;
452 <        while ( (x = elements[i]) != null) {
453 <            if (o.equals(x)) {
454 <                delete(i);
455 <                return true;
447 >        if (o != null) {
448 >            final Object[] es = elements;
449 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
450 >                 ; i = 0, to = end) {
451 >                for (; i < to; i++)
452 >                    if (o.equals(es[i])) {
453 >                        delete(i);
454 >                        return true;
455 >                    }
456 >                if (to == end) break;
457              }
335            i = (i + 1) & mask;
458          }
459          return false;
460      }
# Line 341 | Line 463 | public class ArrayDeque<E> extends Abstr
463       * Removes the last occurrence of the specified element in this
464       * deque (when traversing the deque from head to tail).
465       * If the deque does not contain the element, it is unchanged.
466 <     * More formally, removes the last element <tt>e</tt> such that
467 <     * <tt>o.equals(e)</tt> (if such an element exists).
468 <     * Returns <tt>true</tt> if this deque contained the specified element
466 >     * More formally, removes the last element {@code e} such that
467 >     * {@code o.equals(e)} (if such an element exists).
468 >     * Returns {@code true} if this deque contained the specified element
469       * (or equivalently, if this deque changed as a result of the call).
470       *
471       * @param o element to be removed from this deque, if present
472 <     * @return <tt>true</tt> if the deque contained the specified element
472 >     * @return {@code true} if the deque contained the specified element
473       */
474      public boolean removeLastOccurrence(Object o) {
475 <        if (o == null)
476 <            return false;
477 <        int mask = elements.length - 1;
478 <        int i = (tail - 1) & mask;
479 <        E x;
480 <        while ( (x = elements[i]) != null) {
481 <            if (o.equals(x)) {
482 <                delete(i);
483 <                return true;
475 >        if (o != null) {
476 >            final Object[] es = elements;
477 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
478 >                 ; i = es.length, to = end) {
479 >                for (i--; i > to - 1; i--)
480 >                    if (o.equals(es[i])) {
481 >                        delete(i);
482 >                        return true;
483 >                    }
484 >                if (to == end) break;
485              }
363            i = (i - 1) & mask;
486          }
487          return false;
488      }
# Line 373 | Line 495 | public class ArrayDeque<E> extends Abstr
495       * <p>This method is equivalent to {@link #addLast}.
496       *
497       * @param e the element to add
498 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
498 >     * @return {@code true} (as specified by {@link Collection#add})
499       * @throws NullPointerException if the specified element is null
500       */
501      public boolean add(E e) {
# Line 387 | Line 509 | public class ArrayDeque<E> extends Abstr
509       * <p>This method is equivalent to {@link #offerLast}.
510       *
511       * @param e the element to add
512 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
512 >     * @return {@code true} (as specified by {@link Queue#offer})
513       * @throws NullPointerException if the specified element is null
514       */
515      public boolean offer(E e) {
# Line 397 | Line 519 | public class ArrayDeque<E> extends Abstr
519      /**
520       * Retrieves and removes the head of the queue represented by this deque.
521       *
522 <     * This method differs from {@link #poll poll} only in that it throws an
523 <     * exception if this deque is empty.
522 >     * This method differs from {@link #poll() poll()} only in that it
523 >     * throws an exception if this deque is empty.
524       *
525       * <p>This method is equivalent to {@link #removeFirst}.
526       *
# Line 412 | Line 534 | public class ArrayDeque<E> extends Abstr
534      /**
535       * Retrieves and removes the head of the queue represented by this deque
536       * (in other words, the first element of this deque), or returns
537 <     * <tt>null</tt> if this deque is empty.
537 >     * {@code null} if this deque is empty.
538       *
539       * <p>This method is equivalent to {@link #pollFirst}.
540       *
541       * @return the head of the queue represented by this deque, or
542 <     *         <tt>null</tt> if this deque is empty
542 >     *         {@code null} if this deque is empty
543       */
544      public E poll() {
545          return pollFirst();
# Line 439 | Line 561 | public class ArrayDeque<E> extends Abstr
561  
562      /**
563       * Retrieves, but does not remove, the head of the queue represented by
564 <     * this deque, or returns <tt>null</tt> if this deque is empty.
564 >     * this deque, or returns {@code null} if this deque is empty.
565       *
566       * <p>This method is equivalent to {@link #peekFirst}.
567       *
568       * @return the head of the queue represented by this deque, or
569 <     *         <tt>null</tt> if this deque is empty
569 >     *         {@code null} if this deque is empty
570       */
571      public E peek() {
572          return peekFirst();
# Line 480 | Line 602 | public class ArrayDeque<E> extends Abstr
602      }
603  
604      /**
605 <     * Removes the element at the specified position in the elements array,
606 <     * adjusting head and tail as necessary.  This can result in motion of
607 <     * elements backwards or forwards in the array.
605 >     * Removes the element at the specified position in the elements array.
606 >     * This can result in forward or backwards motion of array elements.
607 >     * We optimize for least element motion.
608       *
609       * <p>This method is called delete rather than remove to emphasize
610       * that its semantics differ from those of {@link List#remove(int)}.
611       *
612 <     * @return true if elements moved backwards
612 >     * @return true if elements near tail moved backwards
613       */
614 <    private boolean delete(int i) {
615 <        int mask = elements.length - 1;
616 <
617 <        // Invariant: head <= i < tail mod circularity
618 <        if (((i - head) & mask) >= ((tail - head) & mask))
619 <            throw new ConcurrentModificationException();
620 <
621 <        // Case 1: Deque doesn't wrap
622 <        // Case 2: Deque does wrap and removed element is in the head portion
623 <        if (i >= head) {
624 <            System.arraycopy(elements, head, elements, head + 1, i - head);
625 <            elements[head] = null;
626 <            head = (head + 1) & mask;
614 >    boolean delete(int i) {
615 >        // checkInvariants();
616 >        final Object[] es = elements;
617 >        final int capacity = es.length;
618 >        final int h, t;
619 >        // number of elements before to-be-deleted elt
620 >        final int front = sub(i, h = head, capacity);
621 >        // number of elements after to-be-deleted elt
622 >        final int back = sub(t = tail, i, capacity) - 1;
623 >        if (front < back) {
624 >            // move front elements forwards
625 >            if (h <= i) {
626 >                System.arraycopy(es, h, es, h + 1, front);
627 >            } else { // Wrap around
628 >                System.arraycopy(es, 0, es, 1, i);
629 >                es[0] = es[capacity - 1];
630 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
631 >            }
632 >            es[h] = null;
633 >            head = inc(h, capacity);
634 >            // checkInvariants();
635              return false;
636 +        } else {
637 +            // move back elements backwards
638 +            tail = dec(t, capacity);
639 +            if (i <= tail) {
640 +                System.arraycopy(es, i + 1, es, i, back);
641 +            } else { // Wrap around
642 +                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
643 +                es[capacity - 1] = es[0];
644 +                System.arraycopy(es, 1, es, 0, t - 1);
645 +            }
646 +            es[tail] = null;
647 +            // checkInvariants();
648 +            return true;
649          }
507
508        // Case 3: Deque wraps and removed element is in the tail portion
509        tail--;
510        System.arraycopy(elements, i + 1, elements, i, tail - i);
511        elements[tail] = null;
512        return true;
650      }
651  
652      // *** Collection Methods ***
# Line 520 | Line 657 | public class ArrayDeque<E> extends Abstr
657       * @return the number of elements in this deque
658       */
659      public int size() {
660 <        return (tail - head) & (elements.length - 1);
660 >        return sub(tail, head, elements.length);
661      }
662  
663      /**
664 <     * Returns <tt>true</tt> if this deque contains no elements.
664 >     * Returns {@code true} if this deque contains no elements.
665       *
666 <     * @return <tt>true</tt> if this deque contains no elements
666 >     * @return {@code true} if this deque contains no elements
667       */
668      public boolean isEmpty() {
669          return head == tail;
# Line 538 | Line 675 | public class ArrayDeque<E> extends Abstr
675       * order that elements would be dequeued (via successive calls to
676       * {@link #remove} or popped (via successive calls to {@link #pop}).
677       *
678 <     * @return an <tt>Iterator</tt> over the elements in this deque
678 >     * @return an iterator over the elements in this deque
679       */
680      public Iterator<E> iterator() {
681          return new DeqIterator();
682      }
683  
547    /**
548     * Returns an iterator over the elements in this deque in reverse
549     * sequential order.  The elements will be returned in order from
550     * last (tail) to first (head).
551     *
552     * @return an iterator over the elements in this deque in reverse
553     * sequence
554     */
684      public Iterator<E> descendingIterator() {
685          return new DescendingIterator();
686      }
687  
688      private class DeqIterator implements Iterator<E> {
689 <        /**
690 <         * Index of element to be returned by subsequent call to next.
562 <         */
563 <        private int cursor = head;
689 >        /** Index of element to be returned by subsequent call to next. */
690 >        int cursor;
691  
692 <        /**
693 <         * Tail recorded at construction (also in remove), to stop
567 <         * iterator and also to check for comodification.
568 <         */
569 <        private int fence = tail;
692 >        /** Number of elements yet to be returned. */
693 >        int remaining = size();
694  
695          /**
696           * Index of element returned by most recent call to next.
697           * Reset to -1 if element is deleted by a call to remove.
698           */
699 <        private int lastRet = -1;
699 >        int lastRet = -1;
700  
701 <        public boolean hasNext() {
702 <            return cursor != fence;
701 >        DeqIterator() { cursor = head; }
702 >
703 >        public final boolean hasNext() {
704 >            return remaining > 0;
705          }
706  
707          public E next() {
708 <            E result;
583 <            if (cursor == fence)
708 >            if (remaining <= 0)
709                  throw new NoSuchElementException();
710 <            // This check doesn't catch all possible comodifications,
711 <            // but does catch the ones that corrupt traversal
712 <            if (tail != fence || (result = elements[cursor]) == null)
713 <                throw new ConcurrentModificationException();
714 <            lastRet = cursor;
715 <            cursor = (cursor + 1) & (elements.length - 1);
716 <            return result;
710 >            final Object[] es = elements;
711 >            E e = nonNullElementAt(es, cursor);
712 >            cursor = inc(lastRet = cursor, es.length);
713 >            remaining--;
714 >            return e;
715 >        }
716 >
717 >        void postDelete(boolean leftShifted) {
718 >            if (leftShifted)
719 >                cursor = dec(cursor, elements.length);
720          }
721  
722 <        public void remove() {
722 >        public final void remove() {
723              if (lastRet < 0)
724                  throw new IllegalStateException();
725 <            if (delete(lastRet)) // if left-shifted, undo increment in next()
598 <                cursor = (cursor - 1) & (elements.length - 1);
725 >            postDelete(delete(lastRet));
726              lastRet = -1;
727 <            fence = tail;
727 >        }
728 >
729 >        public void forEachRemaining(Consumer<? super E> action) {
730 >            Objects.requireNonNull(action);
731 >            int r;
732 >            if ((r = remaining) <= 0)
733 >                return;
734 >            remaining = 0;
735 >            final Object[] es = elements;
736 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
737 >                throw new ConcurrentModificationException();
738 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
739 >                 ; i = 0, to = end) {
740 >                for (; i < to; i++)
741 >                    action.accept(elementAt(es, i));
742 >                if (to == end) {
743 >                    if (end != tail)
744 >                        throw new ConcurrentModificationException();
745 >                    lastRet = dec(end, es.length);
746 >                    break;
747 >                }
748 >            }
749          }
750      }
751  
752 +    private class DescendingIterator extends DeqIterator {
753 +        DescendingIterator() { cursor = dec(tail, elements.length); }
754  
755 <    private class DescendingIterator implements Iterator<E> {
756 <        /*
757 <         * This class is nearly a mirror-image of DeqIterator, using
758 <         * (tail-1) instead of head for initial cursor, (head-1)
759 <         * instead of tail for fence, and elements.length instead of -1
760 <         * for sentinel. It shares the same structure, but not many
761 <         * actual lines of code.
762 <         */
763 <        private int cursor = (tail - 1) & (elements.length - 1);
614 <        private int fence =  (head - 1) & (elements.length - 1);
615 <        private int lastRet = elements.length;
755 >        public final E next() {
756 >            if (remaining <= 0)
757 >                throw new NoSuchElementException();
758 >            final Object[] es = elements;
759 >            E e = nonNullElementAt(es, cursor);
760 >            cursor = dec(lastRet = cursor, es.length);
761 >            remaining--;
762 >            return e;
763 >        }
764  
765 <        public boolean hasNext() {
766 <            return cursor != fence;
765 >        void postDelete(boolean leftShifted) {
766 >            if (!leftShifted)
767 >                cursor = inc(cursor, elements.length);
768          }
769  
770 <        public E next() {
771 <            E result;
772 <            if (cursor == fence)
773 <                throw new NoSuchElementException();
774 <            if (((head - 1) & (elements.length - 1)) != fence ||
775 <                (result = elements[cursor]) == null)
770 >        public final void forEachRemaining(Consumer<? super E> action) {
771 >            Objects.requireNonNull(action);
772 >            int r;
773 >            if ((r = remaining) <= 0)
774 >                return;
775 >            remaining = 0;
776 >            final Object[] es = elements;
777 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
778                  throw new ConcurrentModificationException();
779 <            lastRet = cursor;
780 <            cursor = (cursor - 1) & (elements.length - 1);
781 <            return result;
779 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
780 >                 ; i = es.length - 1, to = end) {
781 >                // hotspot generates faster code than for: i >= to !
782 >                for (; i > to - 1; i--)
783 >                    action.accept(elementAt(es, i));
784 >                if (to == end) {
785 >                    if (end != head)
786 >                        throw new ConcurrentModificationException();
787 >                    lastRet = end;
788 >                    break;
789 >                }
790 >            }
791          }
792 +    }
793  
794 <        public void remove() {
795 <            if (lastRet >= elements.length)
796 <                throw new IllegalStateException();
797 <            if (!delete(lastRet))
798 <                cursor = (cursor + 1) & (elements.length - 1);
799 <            lastRet = elements.length;
800 <            fence = (head - 1) & (elements.length - 1);
794 >    /**
795 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
796 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
797 >     * deque.
798 >     *
799 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
800 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
801 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
802 >     * the reporting of additional characteristic values.
803 >     *
804 >     * @return a {@code Spliterator} over the elements in this deque
805 >     * @since 1.8
806 >     */
807 >    public Spliterator<E> spliterator() {
808 >        return new DeqSpliterator();
809 >    }
810 >
811 >    final class DeqSpliterator implements Spliterator<E> {
812 >        private int fence;      // -1 until first use
813 >        private int cursor;     // current index, modified on traverse/split
814 >
815 >        /** Constructs late-binding spliterator over all elements. */
816 >        DeqSpliterator() {
817 >            this.fence = -1;
818 >        }
819 >
820 >        /** Constructs spliterator over the given range. */
821 >        DeqSpliterator(int origin, int fence) {
822 >            // assert 0 <= origin && origin < elements.length;
823 >            // assert 0 <= fence && fence < elements.length;
824 >            this.cursor = origin;
825 >            this.fence = fence;
826 >        }
827 >
828 >        /** Ensures late-binding initialization; then returns fence. */
829 >        private int getFence() { // force initialization
830 >            int t;
831 >            if ((t = fence) < 0) {
832 >                t = fence = tail;
833 >                cursor = head;
834 >            }
835 >            return t;
836 >        }
837 >
838 >        public DeqSpliterator trySplit() {
839 >            final Object[] es = elements;
840 >            final int i, n;
841 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 >                ? null
843 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
844 >        }
845 >
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848 >                throw new NullPointerException();
849 >            final int end = getFence(), cursor = this.cursor;
850 >            final Object[] es = elements;
851 >            if (cursor != end) {
852 >                this.cursor = end;
853 >                // null check at both ends of range is sufficient
854 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
855 >                    throw new ConcurrentModificationException();
856 >                for (int i = cursor, to = (i <= end) ? end : es.length;
857 >                     ; i = 0, to = end) {
858 >                    for (; i < to; i++)
859 >                        action.accept(elementAt(es, i));
860 >                    if (to == end) break;
861 >                }
862 >            }
863 >        }
864 >
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            Objects.requireNonNull(action);
867 >            final Object[] es = elements;
868 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
869 >            final int i;
870 >            if ((i = cursor) == fence)
871 >                return false;
872 >            E e = nonNullElementAt(es, i);
873 >            cursor = inc(i, es.length);
874 >            action.accept(e);
875 >            return true;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return sub(getFence(), cursor, elements.length);
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.NONNULL
884 >                | Spliterator.ORDERED
885 >                | Spliterator.SIZED
886 >                | Spliterator.SUBSIZED;
887 >        }
888 >    }
889 >
890 >    /**
891 >     * @throws NullPointerException {@inheritDoc}
892 >     */
893 >    public void forEach(Consumer<? super E> action) {
894 >        Objects.requireNonNull(action);
895 >        final Object[] es = elements;
896 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
897 >             ; i = 0, to = end) {
898 >            for (; i < to; i++)
899 >                action.accept(elementAt(es, i));
900 >            if (to == end) {
901 >                if (end != tail) throw new ConcurrentModificationException();
902 >                break;
903 >            }
904          }
905 +        // checkInvariants();
906      }
907  
908      /**
909 <     * Returns <tt>true</tt> if this deque contains the specified element.
910 <     * More formally, returns <tt>true</tt> if and only if this deque contains
911 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
909 >     * Replaces each element of this deque with the result of applying the
910 >     * operator to that element, as specified by {@link List#replaceAll}.
911 >     *
912 >     * @param operator the operator to apply to each element
913 >     * @since TBD
914 >     */
915 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
916 >        Objects.requireNonNull(operator);
917 >        final Object[] es = elements;
918 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
919 >             ; i = 0, to = end) {
920 >            for (; i < to; i++)
921 >                es[i] = operator.apply(elementAt(es, i));
922 >            if (to == end) {
923 >                if (end != tail) throw new ConcurrentModificationException();
924 >                break;
925 >            }
926 >        }
927 >        // checkInvariants();
928 >    }
929 >
930 >    /**
931 >     * @throws NullPointerException {@inheritDoc}
932 >     */
933 >    public boolean removeIf(Predicate<? super E> filter) {
934 >        Objects.requireNonNull(filter);
935 >        return bulkRemove(filter);
936 >    }
937 >
938 >    /**
939 >     * @throws NullPointerException {@inheritDoc}
940 >     */
941 >    public boolean removeAll(Collection<?> c) {
942 >        Objects.requireNonNull(c);
943 >        return bulkRemove(e -> c.contains(e));
944 >    }
945 >
946 >    /**
947 >     * @throws NullPointerException {@inheritDoc}
948 >     */
949 >    public boolean retainAll(Collection<?> c) {
950 >        Objects.requireNonNull(c);
951 >        return bulkRemove(e -> !c.contains(e));
952 >    }
953 >
954 >    /** Implementation of bulk remove methods. */
955 >    private boolean bulkRemove(Predicate<? super E> filter) {
956 >        // checkInvariants();
957 >        final Object[] es = elements;
958 >        // Optimize for initial run of survivors
959 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
960 >             ; i = 0, to = end) {
961 >            for (; i < to; i++)
962 >                if (filter.test(elementAt(es, i)))
963 >                    return bulkRemoveModified(filter, i);
964 >            if (to == end) {
965 >                if (end != tail) throw new ConcurrentModificationException();
966 >                break;
967 >            }
968 >        }
969 >        return false;
970 >    }
971 >
972 >    // A tiny bit set implementation
973 >
974 >    private static long[] nBits(int n) {
975 >        return new long[((n - 1) >> 6) + 1];
976 >    }
977 >    private static void setBit(long[] bits, int i) {
978 >        bits[i >> 6] |= 1L << i;
979 >    }
980 >    private static boolean isClear(long[] bits, int i) {
981 >        return (bits[i >> 6] & (1L << i)) == 0;
982 >    }
983 >
984 >    /**
985 >     * Helper for bulkRemove, in case of at least one deletion.
986 >     * Tolerate predicates that reentrantly access the collection for
987 >     * read (but writers still get CME), so traverse once to find
988 >     * elements to delete, a second pass to physically expunge.
989 >     *
990 >     * @param beg valid index of first element to be deleted
991 >     */
992 >    private boolean bulkRemoveModified(
993 >        Predicate<? super E> filter, final int beg) {
994 >        final Object[] es = elements;
995 >        final int capacity = es.length;
996 >        final int end = tail;
997 >        final long[] deathRow = nBits(sub(end, beg, capacity));
998 >        deathRow[0] = 1L;   // set bit 0
999 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1000 >             ; i = 0, to = end, k -= capacity) {
1001 >            for (; i < to; i++)
1002 >                if (filter.test(elementAt(es, i)))
1003 >                    setBit(deathRow, i - k);
1004 >            if (to == end) break;
1005 >        }
1006 >        // a two-finger traversal, with hare i reading, tortoise w writing
1007 >        int w = beg;
1008 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1009 >             ; w = 0) { // w rejoins i on second leg
1010 >            // In this loop, i and w are on the same leg, with i > w
1011 >            for (; i < to; i++)
1012 >                if (isClear(deathRow, i - k))
1013 >                    es[w++] = es[i];
1014 >            if (to == end) break;
1015 >            // In this loop, w is on the first leg, i on the second
1016 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1017 >                if (isClear(deathRow, i - k))
1018 >                    es[w++] = es[i];
1019 >            if (i >= to) {
1020 >                if (w == capacity) w = 0; // "corner" case
1021 >                break;
1022 >            }
1023 >        }
1024 >        if (end != tail) throw new ConcurrentModificationException();
1025 >        circularClear(es, tail = w, end);
1026 >        // checkInvariants();
1027 >        return true;
1028 >    }
1029 >
1030 >    /**
1031 >     * Returns {@code true} if this deque contains the specified element.
1032 >     * More formally, returns {@code true} if and only if this deque contains
1033 >     * at least one element {@code e} such that {@code o.equals(e)}.
1034       *
1035       * @param o object to be checked for containment in this deque
1036 <     * @return <tt>true</tt> if this deque contains the specified element
1036 >     * @return {@code true} if this deque contains the specified element
1037       */
1038      public boolean contains(Object o) {
1039 <        if (o == null)
1040 <            return false;
1041 <        int mask = elements.length - 1;
1042 <        int i = head;
1043 <        E x;
1044 <        while ( (x = elements[i]) != null) {
1045 <            if (o.equals(x))
1046 <                return true;
1047 <            i = (i + 1) & mask;
1039 >        if (o != null) {
1040 >            final Object[] es = elements;
1041 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1042 >                 ; i = 0, to = end) {
1043 >                for (; i < to; i++)
1044 >                    if (o.equals(es[i]))
1045 >                        return true;
1046 >                if (to == end) break;
1047 >            }
1048          }
1049          return false;
1050      }
# Line 665 | Line 1052 | public class ArrayDeque<E> extends Abstr
1052      /**
1053       * Removes a single instance of the specified element from this deque.
1054       * If the deque does not contain the element, it is unchanged.
1055 <     * More formally, removes the first element <tt>e</tt> such that
1056 <     * <tt>o.equals(e)</tt> (if such an element exists).
1057 <     * Returns <tt>true</tt> if this deque contained the specified element
1055 >     * More formally, removes the first element {@code e} such that
1056 >     * {@code o.equals(e)} (if such an element exists).
1057 >     * Returns {@code true} if this deque contained the specified element
1058       * (or equivalently, if this deque changed as a result of the call).
1059       *
1060 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1060 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1061       *
1062       * @param o element to be removed from this deque, if present
1063 <     * @return <tt>true</tt> if this deque contained the specified element
1063 >     * @return {@code true} if this deque contained the specified element
1064       */
1065      public boolean remove(Object o) {
1066          return removeFirstOccurrence(o);
# Line 684 | Line 1071 | public class ArrayDeque<E> extends Abstr
1071       * The deque will be empty after this call returns.
1072       */
1073      public void clear() {
1074 <        int h = head;
1075 <        int t = tail;
1076 <        if (h != t) { // clear all cells
1077 <            head = tail = 0;
1078 <            int i = h;
1079 <            int mask = elements.length - 1;
1080 <            do {
1081 <                elements[i] = null;
1082 <                i = (i + 1) & mask;
1083 <            } while (i != t);
1074 >        circularClear(elements, head, tail);
1075 >        head = tail = 0;
1076 >        // checkInvariants();
1077 >    }
1078 >
1079 >    /**
1080 >     * Nulls out slots starting at array index i, upto index end.
1081 >     * Condition i == end means "empty" - nothing to do.
1082 >     */
1083 >    private static void circularClear(Object[] es, int i, int end) {
1084 >        // assert 0 <= i && i < es.length;
1085 >        // assert 0 <= end && end < es.length;
1086 >        for (int to = (i <= end) ? end : es.length;
1087 >             ; i = 0, to = end) {
1088 >            for (; i < to; i++) es[i] = null;
1089 >            if (to == end) break;
1090          }
1091      }
1092  
# Line 711 | Line 1104 | public class ArrayDeque<E> extends Abstr
1104       * @return an array containing all of the elements in this deque
1105       */
1106      public Object[] toArray() {
1107 <        return copyElements(new Object[size()]);
1107 >        return toArray(Object[].class);
1108 >    }
1109 >
1110 >    private <T> T[] toArray(Class<T[]> klazz) {
1111 >        final Object[] es = elements;
1112 >        final T[] a;
1113 >        final int head = this.head, tail = this.tail, end;
1114 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1115 >            // Uses null extension feature of copyOfRange
1116 >            a = Arrays.copyOfRange(es, head, end, klazz);
1117 >        } else {
1118 >            // integer overflow!
1119 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1120 >            System.arraycopy(es, head, a, 0, es.length - head);
1121 >        }
1122 >        if (end != tail)
1123 >            System.arraycopy(es, 0, a, es.length - head, tail);
1124 >        return a;
1125      }
1126  
1127      /**
# Line 725 | Line 1135 | public class ArrayDeque<E> extends Abstr
1135       * <p>If this deque fits in the specified array with room to spare
1136       * (i.e., the array has more elements than this deque), the element in
1137       * the array immediately following the end of the deque is set to
1138 <     * <tt>null</tt>.
1138 >     * {@code null}.
1139       *
1140       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1141       * array-based and collection-based APIs.  Further, this method allows
1142       * precise control over the runtime type of the output array, and may,
1143       * under certain circumstances, be used to save allocation costs.
1144       *
1145 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1145 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1146       * The following code can be used to dump the deque into a newly
1147 <     * allocated array of <tt>String</tt>:
1147 >     * allocated array of {@code String}:
1148       *
1149 <     * <pre>
740 <     *     String[] y = x.toArray(new String[0]);</pre>
1149 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1150       *
1151 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1152 <     * <tt>toArray()</tt>.
1151 >     * Note that {@code toArray(new Object[0])} is identical in function to
1152 >     * {@code toArray()}.
1153       *
1154       * @param a the array into which the elements of the deque are to
1155       *          be stored, if it is big enough; otherwise, a new array of the
# Line 751 | Line 1160 | public class ArrayDeque<E> extends Abstr
1160       *         this deque
1161       * @throws NullPointerException if the specified array is null
1162       */
1163 +    @SuppressWarnings("unchecked")
1164      public <T> T[] toArray(T[] a) {
1165 <        int size = size();
1166 <        if (a.length < size)
1167 <            a = (T[])java.lang.reflect.Array.newInstance(
1168 <                    a.getClass().getComponentType(), size);
1169 <        copyElements(a);
1170 <        if (a.length > size)
1165 >        final int size;
1166 >        if ((size = size()) > a.length)
1167 >            return toArray((Class<T[]>) a.getClass());
1168 >        final Object[] es = elements;
1169 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1170 >             ; i = 0, len = tail) {
1171 >            System.arraycopy(es, i, a, j, len);
1172 >            if ((j += len) == size) break;
1173 >        }
1174 >        if (size < a.length)
1175              a[size] = null;
1176          return a;
1177      }
# Line 771 | Line 1185 | public class ArrayDeque<E> extends Abstr
1185       */
1186      public ArrayDeque<E> clone() {
1187          try {
1188 +            @SuppressWarnings("unchecked")
1189              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1190 <            // These two lines are currently faster than cloning the array:
776 <            result.elements = (E[]) new Object[elements.length];
777 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1190 >            result.elements = Arrays.copyOf(elements, elements.length);
1191              return result;
779
1192          } catch (CloneNotSupportedException e) {
1193              throw new AssertionError();
1194          }
1195      }
1196  
785    /**
786     * Appease the serialization gods.
787     */
1197      private static final long serialVersionUID = 2340985798034038923L;
1198  
1199      /**
1200 <     * Serialize this deque.
1200 >     * Saves this deque to a stream (that is, serializes it).
1201       *
1202 <     * @serialData The current size (<tt>int</tt>) of the deque,
1202 >     * @param s the stream
1203 >     * @throws java.io.IOException if an I/O error occurs
1204 >     * @serialData The current size ({@code int}) of the deque,
1205       * followed by all of its elements (each an object reference) in
1206       * first-to-last order.
1207       */
1208 <    private void writeObject(ObjectOutputStream s) throws IOException {
1208 >    private void writeObject(java.io.ObjectOutputStream s)
1209 >            throws java.io.IOException {
1210          s.defaultWriteObject();
1211  
1212          // Write out size
1213 <        int size = size();
802 <        s.writeInt(size);
1213 >        s.writeInt(size());
1214  
1215          // Write out elements in order.
1216 <        int i = head;
1217 <        int mask = elements.length - 1;
1218 <        for (int j = 0; j < size; j++) {
1219 <            s.writeObject(elements[i]);
1220 <            i = (i + 1) & mask;
1216 >        final Object[] es = elements;
1217 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1218 >             ; i = 0, to = end) {
1219 >            for (; i < to; i++)
1220 >                s.writeObject(es[i]);
1221 >            if (to == end) break;
1222          }
1223      }
1224  
1225      /**
1226 <     * Deserialize this deque.
1226 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1227 >     * @param s the stream
1228 >     * @throws ClassNotFoundException if the class of a serialized object
1229 >     *         could not be found
1230 >     * @throws java.io.IOException if an I/O error occurs
1231       */
1232 <    private void readObject(ObjectInputStream s)
1233 <            throws IOException, ClassNotFoundException {
1232 >    private void readObject(java.io.ObjectInputStream s)
1233 >            throws java.io.IOException, ClassNotFoundException {
1234          s.defaultReadObject();
1235  
1236          // Read in size and allocate array
1237          int size = s.readInt();
1238 <        allocateElements(size);
1239 <        head = 0;
824 <        tail = size;
1238 >        elements = new Object[size + 1];
1239 >        this.tail = size;
1240  
1241          // Read in all elements in the proper order.
1242          for (int i = 0; i < size; i++)
1243 <            elements[i] = (E)s.readObject();
1243 >            elements[i] = s.readObject();
1244 >    }
1245  
1246 +    /** debugging */
1247 +    void checkInvariants() {
1248 +        // Use head and tail fields with empty slot at tail strategy.
1249 +        // head == tail disambiguates to "empty".
1250 +        try {
1251 +            int capacity = elements.length;
1252 +            // assert 0 <= head && head < capacity;
1253 +            // assert 0 <= tail && tail < capacity;
1254 +            // assert capacity > 0;
1255 +            // assert size() < capacity;
1256 +            // assert head == tail || elements[head] != null;
1257 +            // assert elements[tail] == null;
1258 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1259 +        } catch (Throwable t) {
1260 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1261 +                              head, tail, elements.length);
1262 +            System.err.printf("elements=%s%n",
1263 +                              Arrays.toString(elements));
1264 +            throw t;
1265 +        }
1266      }
1267 +
1268   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines