ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.21 by dl, Fri Sep 16 23:17:05 2005 UTC vs.
Revision 1.138 by jsr166, Fri Aug 30 18:05:38 2019 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.util.*; // for javadoc (till 6280605 is fixed)
8 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > // OPENJDK import jdk.internal.access.SharedSecrets;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 16 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 35 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 45 | Line 50 | import java.io.*;
50   * Iterator} interfaces.
51   *
52   * <p>This class is a member of the
53 < * <a href="{@docRoot}/../guide/collections/index.html">
53 > * <a href="{@docRoot}/java.base/java/util/package-summary.html#CollectionsFramework">
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
53 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77       * The array in which the elements of the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
62 <     * full, except transiently within an addX method where it is
63 <     * resized (see doubleCapacity) immediately upon becoming full,
64 <     * thus avoiding head and tail wrapping around to equal each
65 <     * other.  We also guarantee that all array cells not holding
66 <     * deque elements are always null.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
94 <     */
81 <    private transient int tail;
82 <
83 <    /**
84 <     * The minimum capacity that we'll use for a newly created deque.
85 <     * Must be a power of 2.
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private static final int MIN_INITIAL_CAPACITY = 8;
88 <
89 <    // ******  Array allocation and resizing utilities ******
96 >    transient int tail;
97  
98      /**
99 <     * Allocate empty array to hold the given number of elements.
100 <     *
101 <     * @param numElements  the number of elements to hold
102 <     */
103 <    private void allocateElements(int numElements) {
104 <        int initialCapacity = MIN_INITIAL_CAPACITY;
105 <        // Find the best power of two to hold elements.
106 <        // Tests "<=" because arrays aren't kept full.
107 <        if (numElements >= initialCapacity) {
108 <            initialCapacity = numElements;
109 <            initialCapacity |= (initialCapacity >>>  1);
110 <            initialCapacity |= (initialCapacity >>>  2);
111 <            initialCapacity |= (initialCapacity >>>  4);
112 <            initialCapacity |= (initialCapacity >>>  8);
113 <            initialCapacity |= (initialCapacity >>> 16);
114 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && es[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(es, head,
126 >                             es, head + newSpace,
127 >                             oldCapacity - head);
128 >            for (int i = head, to = (head += newSpace); i < to; i++)
129 >                es[i] = null;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
124 <        int newCapacity = n << 1;
125 <        if (newCapacity < 0)
126 <            throw new IllegalStateException("Sorry, deque too big");
127 <        Object[] a = new Object[newCapacity];
128 <        System.arraycopy(elements, p, a, 0, r);
129 <        System.arraycopy(elements, 0, a, r, p);
130 <        elements = (E[])a;
131 <        head = 0;
132 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copies the elements from our element array into the specified array,
137 <     * in order (from first to last element in the deque).  It is assumed
138 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
148 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
# Line 155 | Line 180 | public class ArrayDeque<E> extends Abstr
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16 + 1];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 179 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
211 <        addAll(c);
210 >        this(c.size());
211 >        copyElements(c);
212 >    }
213 >
214 >    /**
215 >     * Circularly increments i, mod modulus.
216 >     * Precondition and postcondition: 0 <= i < modulus.
217 >     */
218 >    static final int inc(int i, int modulus) {
219 >        if (++i >= modulus) i = 0;
220 >        return i;
221 >    }
222 >
223 >    /**
224 >     * Circularly decrements i, mod modulus.
225 >     * Precondition and postcondition: 0 <= i < modulus.
226 >     */
227 >    static final int dec(int i, int modulus) {
228 >        if (--i < 0) i = modulus - 1;
229 >        return i;
230 >    }
231 >
232 >    /**
233 >     * Circularly adds the given distance to index i, mod modulus.
234 >     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 >     * @return index 0 <= i < modulus
236 >     */
237 >    static final int inc(int i, int distance, int modulus) {
238 >        if ((i += distance) - modulus >= 0) i -= modulus;
239 >        return i;
240 >    }
241 >
242 >    /**
243 >     * Subtracts j from i, mod modulus.
244 >     * Index i must be logically ahead of index j.
245 >     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 >     * @return the "circular distance" from j to i; corner case i == j
247 >     * is disambiguated to "empty", returning 0.
248 >     */
249 >    static final int sub(int i, int j, int modulus) {
250 >        if ((i -= j) < 0) i += modulus;
251 >        return i;
252 >    }
253 >
254 >    /**
255 >     * Returns element at array index i.
256 >     * This is a slight abuse of generics, accepted by javac.
257 >     */
258 >    @SuppressWarnings("unchecked")
259 >    static final <E> E elementAt(Object[] es, int i) {
260 >        return (E) es[i];
261 >    }
262 >
263 >    /**
264 >     * A version of elementAt that checks for null elements.
265 >     * This check doesn't catch all possible comodifications,
266 >     * but does catch ones that corrupt traversal.
267 >     */
268 >    static final <E> E nonNullElementAt(Object[] es, int i) {
269 >        @SuppressWarnings("unchecked") E e = (E) es[i];
270 >        if (e == null)
271 >            throw new ConcurrentModificationException();
272 >        return e;
273      }
274  
275      // The main insertion and extraction methods are addFirst,
# Line 196 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
# Line 212 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's iterator.
317 >     *
318 >     * @param c the elements to be inserted into this deque
319 >     * @return {@code true} if this deque changed as a result of the call
320 >     * @throws NullPointerException if the specified collection or any
321 >     *         of its elements are null
322 >     */
323 >    public boolean addAll(Collection<? extends E> c) {
324 >        final int s, needed;
325 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
326 >            grow(needed);
327 >        copyElements(c);
328 >        // checkInvariants();
329 >        return size() > s;
330 >    }
331 >
332 >    private void copyElements(Collection<? extends E> c) {
333 >        c.forEach(this::addLast);
334      }
335  
336      /**
337       * Inserts the specified element at the front of this deque.
338       *
339       * @param e the element to add
340 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
340 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
341       * @throws NullPointerException if the specified element is null
342       */
343      public boolean offerFirst(E e) {
# Line 233 | Line 349 | public class ArrayDeque<E> extends Abstr
349       * Inserts the specified element at the end of this deque.
350       *
351       * @param e the element to add
352 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
352 >     * @return {@code true} (as specified by {@link Deque#offerLast})
353       * @throws NullPointerException if the specified element is null
354       */
355      public boolean offerLast(E e) {
# Line 245 | Line 361 | public class ArrayDeque<E> extends Abstr
361       * @throws NoSuchElementException {@inheritDoc}
362       */
363      public E removeFirst() {
364 <        E x = pollFirst();
365 <        if (x == null)
364 >        E e = pollFirst();
365 >        if (e == null)
366              throw new NoSuchElementException();
367 <        return x;
367 >        // checkInvariants();
368 >        return e;
369      }
370  
371      /**
372       * @throws NoSuchElementException {@inheritDoc}
373       */
374      public E removeLast() {
375 <        E x = pollLast();
376 <        if (x == null)
375 >        E e = pollLast();
376 >        if (e == null)
377              throw new NoSuchElementException();
378 <        return x;
378 >        // checkInvariants();
379 >        return e;
380      }
381  
382      public E pollFirst() {
383 <        int h = head;
384 <        E result = elements[h]; // Element is null if deque empty
385 <        if (result == null)
386 <            return null;
387 <        elements[h] = null;     // Must null out slot
388 <        head = (h + 1) & (elements.length - 1);
389 <        return result;
383 >        final Object[] es;
384 >        final int h;
385 >        E e = elementAt(es = elements, h = head);
386 >        if (e != null) {
387 >            es[h] = null;
388 >            head = inc(h, es.length);
389 >        }
390 >        // checkInvariants();
391 >        return e;
392      }
393  
394      public E pollLast() {
395 <        int t = (tail - 1) & (elements.length - 1);
396 <        E result = elements[t];
397 <        if (result == null)
398 <            return null;
399 <        elements[t] = null;
400 <        tail = t;
401 <        return result;
395 >        final Object[] es;
396 >        final int t;
397 >        E e = elementAt(es = elements, t = dec(tail, es.length));
398 >        if (e != null)
399 >            es[tail = t] = null;
400 >        // checkInvariants();
401 >        return e;
402      }
403  
404      /**
405       * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getFirst() {
408 <        E x = elements[head];
409 <        if (x == null)
408 >        E e = elementAt(elements, head);
409 >        if (e == null)
410              throw new NoSuchElementException();
411 <        return x;
411 >        // checkInvariants();
412 >        return e;
413      }
414  
415      /**
416       * @throws NoSuchElementException {@inheritDoc}
417       */
418      public E getLast() {
419 <        E x = elements[(tail - 1) & (elements.length - 1)];
420 <        if (x == null)
419 >        final Object[] es = elements;
420 >        E e = elementAt(es, dec(tail, es.length));
421 >        if (e == null)
422              throw new NoSuchElementException();
423 <        return x;
423 >        // checkInvariants();
424 >        return e;
425      }
426  
427      public E peekFirst() {
428 <        return elements[head]; // elements[head] is null if deque empty
428 >        // checkInvariants();
429 >        return elementAt(elements, head);
430      }
431  
432      public E peekLast() {
433 <        return elements[(tail - 1) & (elements.length - 1)];
433 >        // checkInvariants();
434 >        final Object[] es;
435 >        return elementAt(es = elements, dec(tail, es.length));
436      }
437  
438      /**
439       * Removes the first occurrence of the specified element in this
440       * deque (when traversing the deque from head to tail).
441       * If the deque does not contain the element, it is unchanged.
442 <     * More formally, removes the first element <tt>e</tt> such that
443 <     * <tt>o.equals(e)</tt> (if such an element exists).
444 <     * Returns <tt>true</tt> if this deque contained the specified element
442 >     * More formally, removes the first element {@code e} such that
443 >     * {@code o.equals(e)} (if such an element exists).
444 >     * Returns {@code true} if this deque contained the specified element
445       * (or equivalently, if this deque changed as a result of the call).
446       *
447       * @param o element to be removed from this deque, if present
448 <     * @return <tt>true</tt> if the deque contained the specified element
448 >     * @return {@code true} if the deque contained the specified element
449       */
450      public boolean removeFirstOccurrence(Object o) {
451 <        if (o == null)
452 <            return false;
453 <        int mask = elements.length - 1;
454 <        int i = head;
455 <        E x;
456 <        while ( (x = elements[i]) != null) {
457 <            if (o.equals(x)) {
458 <                delete(i);
459 <                return true;
451 >        if (o != null) {
452 >            final Object[] es = elements;
453 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
454 >                 ; i = 0, to = end) {
455 >                for (; i < to; i++)
456 >                    if (o.equals(es[i])) {
457 >                        delete(i);
458 >                        return true;
459 >                    }
460 >                if (to == end) break;
461              }
335            i = (i + 1) & mask;
462          }
463          return false;
464      }
# Line 341 | Line 467 | public class ArrayDeque<E> extends Abstr
467       * Removes the last occurrence of the specified element in this
468       * deque (when traversing the deque from head to tail).
469       * If the deque does not contain the element, it is unchanged.
470 <     * More formally, removes the last element <tt>e</tt> such that
471 <     * <tt>o.equals(e)</tt> (if such an element exists).
472 <     * Returns <tt>true</tt> if this deque contained the specified element
470 >     * More formally, removes the last element {@code e} such that
471 >     * {@code o.equals(e)} (if such an element exists).
472 >     * Returns {@code true} if this deque contained the specified element
473       * (or equivalently, if this deque changed as a result of the call).
474       *
475       * @param o element to be removed from this deque, if present
476 <     * @return <tt>true</tt> if the deque contained the specified element
476 >     * @return {@code true} if the deque contained the specified element
477       */
478      public boolean removeLastOccurrence(Object o) {
479 <        if (o == null)
480 <            return false;
481 <        int mask = elements.length - 1;
482 <        int i = (tail - 1) & mask;
483 <        E x;
484 <        while ( (x = elements[i]) != null) {
485 <            if (o.equals(x)) {
486 <                delete(i);
487 <                return true;
479 >        if (o != null) {
480 >            final Object[] es = elements;
481 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
482 >                 ; i = es.length, to = end) {
483 >                for (i--; i > to - 1; i--)
484 >                    if (o.equals(es[i])) {
485 >                        delete(i);
486 >                        return true;
487 >                    }
488 >                if (to == end) break;
489              }
363            i = (i - 1) & mask;
490          }
491          return false;
492      }
# Line 373 | Line 499 | public class ArrayDeque<E> extends Abstr
499       * <p>This method is equivalent to {@link #addLast}.
500       *
501       * @param e the element to add
502 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
502 >     * @return {@code true} (as specified by {@link Collection#add})
503       * @throws NullPointerException if the specified element is null
504       */
505      public boolean add(E e) {
# Line 387 | Line 513 | public class ArrayDeque<E> extends Abstr
513       * <p>This method is equivalent to {@link #offerLast}.
514       *
515       * @param e the element to add
516 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
516 >     * @return {@code true} (as specified by {@link Queue#offer})
517       * @throws NullPointerException if the specified element is null
518       */
519      public boolean offer(E e) {
# Line 397 | Line 523 | public class ArrayDeque<E> extends Abstr
523      /**
524       * Retrieves and removes the head of the queue represented by this deque.
525       *
526 <     * This method differs from {@link #poll poll} only in that it throws an
527 <     * exception if this deque is empty.
526 >     * This method differs from {@link #poll() poll()} only in that it
527 >     * throws an exception if this deque is empty.
528       *
529       * <p>This method is equivalent to {@link #removeFirst}.
530       *
# Line 412 | Line 538 | public class ArrayDeque<E> extends Abstr
538      /**
539       * Retrieves and removes the head of the queue represented by this deque
540       * (in other words, the first element of this deque), or returns
541 <     * <tt>null</tt> if this deque is empty.
541 >     * {@code null} if this deque is empty.
542       *
543       * <p>This method is equivalent to {@link #pollFirst}.
544       *
545       * @return the head of the queue represented by this deque, or
546 <     *         <tt>null</tt> if this deque is empty
546 >     *         {@code null} if this deque is empty
547       */
548      public E poll() {
549          return pollFirst();
# Line 439 | Line 565 | public class ArrayDeque<E> extends Abstr
565  
566      /**
567       * Retrieves, but does not remove, the head of the queue represented by
568 <     * this deque, or returns <tt>null</tt> if this deque is empty.
568 >     * this deque, or returns {@code null} if this deque is empty.
569       *
570       * <p>This method is equivalent to {@link #peekFirst}.
571       *
572       * @return the head of the queue represented by this deque, or
573 <     *         <tt>null</tt> if this deque is empty
573 >     *         {@code null} if this deque is empty
574       */
575      public E peek() {
576          return peekFirst();
# Line 480 | Line 606 | public class ArrayDeque<E> extends Abstr
606      }
607  
608      /**
609 <     * Removes the element at the specified position in the elements array,
610 <     * adjusting head and tail as necessary.  This can result in motion of
611 <     * elements backwards or forwards in the array.
609 >     * Removes the element at the specified position in the elements array.
610 >     * This can result in forward or backwards motion of array elements.
611 >     * We optimize for least element motion.
612       *
613       * <p>This method is called delete rather than remove to emphasize
614       * that its semantics differ from those of {@link List#remove(int)}.
615       *
616 <     * @return true if elements moved backwards
616 >     * @return true if elements near tail moved backwards
617       */
618 <    private boolean delete(int i) {
619 <        int mask = elements.length - 1;
620 <        int front = (i - head) & mask;
621 <        int back  = (tail - i) & mask;
622 <
623 <        // Invariant: head <= i < tail mod circularity
624 <        if (front >= ((tail - head) & mask))
625 <            throw new ConcurrentModificationException();
626 <
627 <        // Optimize for least element motion
628 <        if (front < back) {
629 <            if (head <= i) {
630 <                System.arraycopy(elements, head, elements, head + 1, front);
631 <            } else { // Wrap around
632 <                elements[0] = elements[mask];
633 <                System.arraycopy(elements, 0, elements, 1, i);
634 <                System.arraycopy(elements, head, elements, head + 1, mask - head);
635 <            }
636 <            elements[head] = null;
637 <            head = (head + 1) & mask;
618 >    boolean delete(int i) {
619 >        // checkInvariants();
620 >        final Object[] es = elements;
621 >        final int capacity = es.length;
622 >        final int h, t;
623 >        // number of elements before to-be-deleted elt
624 >        final int front = sub(i, h = head, capacity);
625 >        // number of elements after to-be-deleted elt
626 >        final int back = sub(t = tail, i, capacity) - 1;
627 >        if (front < back) {
628 >            // move front elements forwards
629 >            if (h <= i) {
630 >                System.arraycopy(es, h, es, h + 1, front);
631 >            } else { // Wrap around
632 >                System.arraycopy(es, 0, es, 1, i);
633 >                es[0] = es[capacity - 1];
634 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
635 >            }
636 >            es[h] = null;
637 >            head = inc(h, capacity);
638 >            // checkInvariants();
639              return false;
640 <        } else {
641 <            int t = tail;
642 <            tail = (tail - 1) & mask;
643 <            if (i < t) { // Copy the null tail as well
644 <                System.arraycopy(elements, i + 1, elements, i, back);
645 <            } else {     // Wrap around
646 <                elements[mask] = elements[0];
647 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
648 <                System.arraycopy(elements, 1, elements, 0, t);
649 <            }
640 >        } else {
641 >            // move back elements backwards
642 >            tail = dec(t, capacity);
643 >            if (i <= tail) {
644 >                System.arraycopy(es, i + 1, es, i, back);
645 >            } else { // Wrap around
646 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
647 >                es[capacity - 1] = es[0];
648 >                System.arraycopy(es, 1, es, 0, t - 1);
649 >            }
650 >            es[tail] = null;
651 >            // checkInvariants();
652              return true;
653 <        }
653 >        }
654      }
655  
656      // *** Collection Methods ***
# Line 532 | Line 661 | public class ArrayDeque<E> extends Abstr
661       * @return the number of elements in this deque
662       */
663      public int size() {
664 <        return (tail - head) & (elements.length - 1);
664 >        return sub(tail, head, elements.length);
665      }
666  
667      /**
668 <     * Returns <tt>true</tt> if this deque contains no elements.
668 >     * Returns {@code true} if this deque contains no elements.
669       *
670 <     * @return <tt>true</tt> if this deque contains no elements
670 >     * @return {@code true} if this deque contains no elements
671       */
672      public boolean isEmpty() {
673          return head == tail;
# Line 561 | Line 690 | public class ArrayDeque<E> extends Abstr
690      }
691  
692      private class DeqIterator implements Iterator<E> {
693 <        /**
694 <         * Index of element to be returned by subsequent call to next.
566 <         */
567 <        private int cursor = head;
693 >        /** Index of element to be returned by subsequent call to next. */
694 >        int cursor;
695  
696 <        /**
697 <         * Tail recorded at construction (also in remove), to stop
571 <         * iterator and also to check for comodification.
572 <         */
573 <        private int fence = tail;
696 >        /** Number of elements yet to be returned. */
697 >        int remaining = size();
698  
699          /**
700           * Index of element returned by most recent call to next.
701           * Reset to -1 if element is deleted by a call to remove.
702           */
703 <        private int lastRet = -1;
703 >        int lastRet = -1;
704 >
705 >        DeqIterator() { cursor = head; }
706  
707 <        public boolean hasNext() {
708 <            return cursor != fence;
707 >        public final boolean hasNext() {
708 >            return remaining > 0;
709          }
710  
711          public E next() {
712 <            E result;
587 <            if (cursor == fence)
712 >            if (remaining <= 0)
713                  throw new NoSuchElementException();
714 <            // This check doesn't catch all possible comodifications,
715 <            // but does catch the ones that corrupt traversal
716 <            if (tail != fence || (result = elements[cursor]) == null)
717 <                throw new ConcurrentModificationException();
718 <            lastRet = cursor;
594 <            cursor = (cursor + 1) & (elements.length - 1);
595 <            return result;
714 >            final Object[] es = elements;
715 >            E e = nonNullElementAt(es, cursor);
716 >            cursor = inc(lastRet = cursor, es.length);
717 >            remaining--;
718 >            return e;
719          }
720  
721 <        public void remove() {
721 >        void postDelete(boolean leftShifted) {
722 >            if (leftShifted)
723 >                cursor = dec(cursor, elements.length);
724 >        }
725 >
726 >        public final void remove() {
727              if (lastRet < 0)
728                  throw new IllegalStateException();
729 <            if (delete(lastRet)) // if left-shifted, undo increment in next()
602 <                cursor = (cursor - 1) & (elements.length - 1);
729 >            postDelete(delete(lastRet));
730              lastRet = -1;
731 <            fence = tail;
731 >        }
732 >
733 >        public void forEachRemaining(Consumer<? super E> action) {
734 >            Objects.requireNonNull(action);
735 >            int r;
736 >            if ((r = remaining) <= 0)
737 >                return;
738 >            remaining = 0;
739 >            final Object[] es = elements;
740 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
741 >                throw new ConcurrentModificationException();
742 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
743 >                 ; i = 0, to = end) {
744 >                for (; i < to; i++)
745 >                    action.accept(elementAt(es, i));
746 >                if (to == end) {
747 >                    if (end != tail)
748 >                        throw new ConcurrentModificationException();
749 >                    lastRet = dec(end, es.length);
750 >                    break;
751 >                }
752 >            }
753          }
754      }
755  
756 +    private class DescendingIterator extends DeqIterator {
757 +        DescendingIterator() { cursor = dec(tail, elements.length); }
758  
759 <    private class DescendingIterator implements Iterator<E> {
760 <        /*
761 <         * This class is nearly a mirror-image of DeqIterator, using
762 <         * (tail-1) instead of head for initial cursor, (head-1)
763 <         * instead of tail for fence, and elements.length instead of -1
764 <         * for sentinel. It shares the same structure, but not many
765 <         * actual lines of code.
766 <         */
767 <        private int cursor = (tail - 1) & (elements.length - 1);
618 <        private int fence =  (head - 1) & (elements.length - 1);
619 <        private int lastRet = elements.length;
759 >        public final E next() {
760 >            if (remaining <= 0)
761 >                throw new NoSuchElementException();
762 >            final Object[] es = elements;
763 >            E e = nonNullElementAt(es, cursor);
764 >            cursor = dec(lastRet = cursor, es.length);
765 >            remaining--;
766 >            return e;
767 >        }
768  
769 <        public boolean hasNext() {
770 <            return cursor != fence;
769 >        void postDelete(boolean leftShifted) {
770 >            if (!leftShifted)
771 >                cursor = inc(cursor, elements.length);
772          }
773  
774 <        public E next() {
775 <            E result;
776 <            if (cursor == fence)
777 <                throw new NoSuchElementException();
778 <            if (((head - 1) & (elements.length - 1)) != fence ||
779 <                (result = elements[cursor]) == null)
774 >        public final void forEachRemaining(Consumer<? super E> action) {
775 >            Objects.requireNonNull(action);
776 >            int r;
777 >            if ((r = remaining) <= 0)
778 >                return;
779 >            remaining = 0;
780 >            final Object[] es = elements;
781 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
782                  throw new ConcurrentModificationException();
783 <            lastRet = cursor;
784 <            cursor = (cursor - 1) & (elements.length - 1);
785 <            return result;
783 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
784 >                 ; i = es.length - 1, to = end) {
785 >                // hotspot generates faster code than for: i >= to !
786 >                for (; i > to - 1; i--)
787 >                    action.accept(elementAt(es, i));
788 >                if (to == end) {
789 >                    if (end != head)
790 >                        throw new ConcurrentModificationException();
791 >                    lastRet = end;
792 >                    break;
793 >                }
794 >            }
795          }
796 +    }
797  
798 <        public void remove() {
799 <            if (lastRet >= elements.length)
800 <                throw new IllegalStateException();
801 <            if (!delete(lastRet))
802 <                cursor = (cursor + 1) & (elements.length - 1);
803 <            lastRet = elements.length;
804 <            fence = (head - 1) & (elements.length - 1);
798 >    /**
799 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
800 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
801 >     * deque.
802 >     *
803 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
804 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
805 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
806 >     * the reporting of additional characteristic values.
807 >     *
808 >     * @return a {@code Spliterator} over the elements in this deque
809 >     * @since 1.8
810 >     */
811 >    public Spliterator<E> spliterator() {
812 >        return new DeqSpliterator();
813 >    }
814 >
815 >    final class DeqSpliterator implements Spliterator<E> {
816 >        private int fence;      // -1 until first use
817 >        private int cursor;     // current index, modified on traverse/split
818 >
819 >        /** Constructs late-binding spliterator over all elements. */
820 >        DeqSpliterator() {
821 >            this.fence = -1;
822 >        }
823 >
824 >        /** Constructs spliterator over the given range. */
825 >        DeqSpliterator(int origin, int fence) {
826 >            // assert 0 <= origin && origin < elements.length;
827 >            // assert 0 <= fence && fence < elements.length;
828 >            this.cursor = origin;
829 >            this.fence = fence;
830 >        }
831 >
832 >        /** Ensures late-binding initialization; then returns fence. */
833 >        private int getFence() { // force initialization
834 >            int t;
835 >            if ((t = fence) < 0) {
836 >                t = fence = tail;
837 >                cursor = head;
838 >            }
839 >            return t;
840 >        }
841 >
842 >        public DeqSpliterator trySplit() {
843 >            final Object[] es = elements;
844 >            final int i, n;
845 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
846 >                ? null
847 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
848 >        }
849 >
850 >        public void forEachRemaining(Consumer<? super E> action) {
851 >            if (action == null)
852 >                throw new NullPointerException();
853 >            final int end = getFence(), cursor = this.cursor;
854 >            final Object[] es = elements;
855 >            if (cursor != end) {
856 >                this.cursor = end;
857 >                // null check at both ends of range is sufficient
858 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
859 >                    throw new ConcurrentModificationException();
860 >                for (int i = cursor, to = (i <= end) ? end : es.length;
861 >                     ; i = 0, to = end) {
862 >                    for (; i < to; i++)
863 >                        action.accept(elementAt(es, i));
864 >                    if (to == end) break;
865 >                }
866 >            }
867 >        }
868 >
869 >        public boolean tryAdvance(Consumer<? super E> action) {
870 >            Objects.requireNonNull(action);
871 >            final Object[] es = elements;
872 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
873 >            final int i;
874 >            if ((i = cursor) == fence)
875 >                return false;
876 >            E e = nonNullElementAt(es, i);
877 >            cursor = inc(i, es.length);
878 >            action.accept(e);
879 >            return true;
880 >        }
881 >
882 >        public long estimateSize() {
883 >            return sub(getFence(), cursor, elements.length);
884 >        }
885 >
886 >        public int characteristics() {
887 >            return Spliterator.NONNULL
888 >                | Spliterator.ORDERED
889 >                | Spliterator.SIZED
890 >                | Spliterator.SUBSIZED;
891 >        }
892 >    }
893 >
894 >    /**
895 >     * @throws NullPointerException {@inheritDoc}
896 >     */
897 >    public void forEach(Consumer<? super E> action) {
898 >        Objects.requireNonNull(action);
899 >        final Object[] es = elements;
900 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
901 >             ; i = 0, to = end) {
902 >            for (; i < to; i++)
903 >                action.accept(elementAt(es, i));
904 >            if (to == end) {
905 >                if (end != tail) throw new ConcurrentModificationException();
906 >                break;
907 >            }
908          }
909 +        // checkInvariants();
910      }
911  
912      /**
913 <     * Returns <tt>true</tt> if this deque contains the specified element.
914 <     * More formally, returns <tt>true</tt> if and only if this deque contains
915 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
913 >     * Replaces each element of this deque with the result of applying the
914 >     * operator to that element, as specified by {@link List#replaceAll}.
915 >     *
916 >     * @param operator the operator to apply to each element
917 >     * @since TBD
918 >     */
919 >    /* public */ void replaceAll(java.util.function.UnaryOperator<E> operator) {
920 >        Objects.requireNonNull(operator);
921 >        final Object[] es = elements;
922 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
923 >             ; i = 0, to = end) {
924 >            for (; i < to; i++)
925 >                es[i] = operator.apply(elementAt(es, i));
926 >            if (to == end) {
927 >                if (end != tail) throw new ConcurrentModificationException();
928 >                break;
929 >            }
930 >        }
931 >        // checkInvariants();
932 >    }
933 >
934 >    /**
935 >     * @throws NullPointerException {@inheritDoc}
936 >     */
937 >    public boolean removeIf(Predicate<? super E> filter) {
938 >        Objects.requireNonNull(filter);
939 >        return bulkRemove(filter);
940 >    }
941 >
942 >    /**
943 >     * @throws NullPointerException {@inheritDoc}
944 >     */
945 >    public boolean removeAll(Collection<?> c) {
946 >        Objects.requireNonNull(c);
947 >        return bulkRemove(e -> c.contains(e));
948 >    }
949 >
950 >    /**
951 >     * @throws NullPointerException {@inheritDoc}
952 >     */
953 >    public boolean retainAll(Collection<?> c) {
954 >        Objects.requireNonNull(c);
955 >        return bulkRemove(e -> !c.contains(e));
956 >    }
957 >
958 >    /** Implementation of bulk remove methods. */
959 >    private boolean bulkRemove(Predicate<? super E> filter) {
960 >        // checkInvariants();
961 >        final Object[] es = elements;
962 >        // Optimize for initial run of survivors
963 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
964 >             ; i = 0, to = end) {
965 >            for (; i < to; i++)
966 >                if (filter.test(elementAt(es, i)))
967 >                    return bulkRemoveModified(filter, i);
968 >            if (to == end) {
969 >                if (end != tail) throw new ConcurrentModificationException();
970 >                break;
971 >            }
972 >        }
973 >        return false;
974 >    }
975 >
976 >    // A tiny bit set implementation
977 >
978 >    private static long[] nBits(int n) {
979 >        return new long[((n - 1) >> 6) + 1];
980 >    }
981 >    private static void setBit(long[] bits, int i) {
982 >        bits[i >> 6] |= 1L << i;
983 >    }
984 >    private static boolean isClear(long[] bits, int i) {
985 >        return (bits[i >> 6] & (1L << i)) == 0;
986 >    }
987 >
988 >    /**
989 >     * Helper for bulkRemove, in case of at least one deletion.
990 >     * Tolerate predicates that reentrantly access the collection for
991 >     * read (but writers still get CME), so traverse once to find
992 >     * elements to delete, a second pass to physically expunge.
993 >     *
994 >     * @param beg valid index of first element to be deleted
995 >     */
996 >    private boolean bulkRemoveModified(
997 >        Predicate<? super E> filter, final int beg) {
998 >        final Object[] es = elements;
999 >        final int capacity = es.length;
1000 >        final int end = tail;
1001 >        final long[] deathRow = nBits(sub(end, beg, capacity));
1002 >        deathRow[0] = 1L;   // set bit 0
1003 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1004 >             ; i = 0, to = end, k -= capacity) {
1005 >            for (; i < to; i++)
1006 >                if (filter.test(elementAt(es, i)))
1007 >                    setBit(deathRow, i - k);
1008 >            if (to == end) break;
1009 >        }
1010 >        // a two-finger traversal, with hare i reading, tortoise w writing
1011 >        int w = beg;
1012 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1013 >             ; w = 0) { // w rejoins i on second leg
1014 >            // In this loop, i and w are on the same leg, with i > w
1015 >            for (; i < to; i++)
1016 >                if (isClear(deathRow, i - k))
1017 >                    es[w++] = es[i];
1018 >            if (to == end) break;
1019 >            // In this loop, w is on the first leg, i on the second
1020 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1021 >                if (isClear(deathRow, i - k))
1022 >                    es[w++] = es[i];
1023 >            if (i >= to) {
1024 >                if (w == capacity) w = 0; // "corner" case
1025 >                break;
1026 >            }
1027 >        }
1028 >        if (end != tail) throw new ConcurrentModificationException();
1029 >        circularClear(es, tail = w, end);
1030 >        // checkInvariants();
1031 >        return true;
1032 >    }
1033 >
1034 >    /**
1035 >     * Returns {@code true} if this deque contains the specified element.
1036 >     * More formally, returns {@code true} if and only if this deque contains
1037 >     * at least one element {@code e} such that {@code o.equals(e)}.
1038       *
1039       * @param o object to be checked for containment in this deque
1040 <     * @return <tt>true</tt> if this deque contains the specified element
1040 >     * @return {@code true} if this deque contains the specified element
1041       */
1042      public boolean contains(Object o) {
1043 <        if (o == null)
1044 <            return false;
1045 <        int mask = elements.length - 1;
1046 <        int i = head;
1047 <        E x;
1048 <        while ( (x = elements[i]) != null) {
1049 <            if (o.equals(x))
1050 <                return true;
1051 <            i = (i + 1) & mask;
1043 >        if (o != null) {
1044 >            final Object[] es = elements;
1045 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1046 >                 ; i = 0, to = end) {
1047 >                for (; i < to; i++)
1048 >                    if (o.equals(es[i]))
1049 >                        return true;
1050 >                if (to == end) break;
1051 >            }
1052          }
1053          return false;
1054      }
# Line 669 | Line 1056 | public class ArrayDeque<E> extends Abstr
1056      /**
1057       * Removes a single instance of the specified element from this deque.
1058       * If the deque does not contain the element, it is unchanged.
1059 <     * More formally, removes the first element <tt>e</tt> such that
1060 <     * <tt>o.equals(e)</tt> (if such an element exists).
1061 <     * Returns <tt>true</tt> if this deque contained the specified element
1059 >     * More formally, removes the first element {@code e} such that
1060 >     * {@code o.equals(e)} (if such an element exists).
1061 >     * Returns {@code true} if this deque contained the specified element
1062       * (or equivalently, if this deque changed as a result of the call).
1063       *
1064 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1064 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1065       *
1066       * @param o element to be removed from this deque, if present
1067 <     * @return <tt>true</tt> if this deque contained the specified element
1067 >     * @return {@code true} if this deque contained the specified element
1068       */
1069      public boolean remove(Object o) {
1070          return removeFirstOccurrence(o);
# Line 688 | Line 1075 | public class ArrayDeque<E> extends Abstr
1075       * The deque will be empty after this call returns.
1076       */
1077      public void clear() {
1078 <        int h = head;
1079 <        int t = tail;
1080 <        if (h != t) { // clear all cells
1081 <            head = tail = 0;
1082 <            int i = h;
1083 <            int mask = elements.length - 1;
1084 <            do {
1085 <                elements[i] = null;
1086 <                i = (i + 1) & mask;
1087 <            } while (i != t);
1078 >        circularClear(elements, head, tail);
1079 >        head = tail = 0;
1080 >        // checkInvariants();
1081 >    }
1082 >
1083 >    /**
1084 >     * Nulls out slots starting at array index i, upto index end.
1085 >     * Condition i == end means "empty" - nothing to do.
1086 >     */
1087 >    private static void circularClear(Object[] es, int i, int end) {
1088 >        // assert 0 <= i && i < es.length;
1089 >        // assert 0 <= end && end < es.length;
1090 >        for (int to = (i <= end) ? end : es.length;
1091 >             ; i = 0, to = end) {
1092 >            for (; i < to; i++) es[i] = null;
1093 >            if (to == end) break;
1094          }
1095      }
1096  
# Line 715 | Line 1108 | public class ArrayDeque<E> extends Abstr
1108       * @return an array containing all of the elements in this deque
1109       */
1110      public Object[] toArray() {
1111 <        return copyElements(new Object[size()]);
1111 >        return toArray(Object[].class);
1112 >    }
1113 >
1114 >    private <T> T[] toArray(Class<T[]> klazz) {
1115 >        final Object[] es = elements;
1116 >        final T[] a;
1117 >        final int head = this.head, tail = this.tail, end;
1118 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1119 >            // Uses null extension feature of copyOfRange
1120 >            a = Arrays.copyOfRange(es, head, end, klazz);
1121 >        } else {
1122 >            // integer overflow!
1123 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1124 >            System.arraycopy(es, head, a, 0, es.length - head);
1125 >        }
1126 >        if (end != tail)
1127 >            System.arraycopy(es, 0, a, es.length - head, tail);
1128 >        return a;
1129      }
1130  
1131      /**
# Line 729 | Line 1139 | public class ArrayDeque<E> extends Abstr
1139       * <p>If this deque fits in the specified array with room to spare
1140       * (i.e., the array has more elements than this deque), the element in
1141       * the array immediately following the end of the deque is set to
1142 <     * <tt>null</tt>.
1142 >     * {@code null}.
1143       *
1144       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1145       * array-based and collection-based APIs.  Further, this method allows
1146       * precise control over the runtime type of the output array, and may,
1147       * under certain circumstances, be used to save allocation costs.
1148       *
1149 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1149 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1150       * The following code can be used to dump the deque into a newly
1151 <     * allocated array of <tt>String</tt>:
1151 >     * allocated array of {@code String}:
1152       *
1153 <     * <pre>
744 <     *     String[] y = x.toArray(new String[0]);</pre>
1153 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1154       *
1155 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1156 <     * <tt>toArray()</tt>.
1155 >     * Note that {@code toArray(new Object[0])} is identical in function to
1156 >     * {@code toArray()}.
1157       *
1158       * @param a the array into which the elements of the deque are to
1159       *          be stored, if it is big enough; otherwise, a new array of the
# Line 755 | Line 1164 | public class ArrayDeque<E> extends Abstr
1164       *         this deque
1165       * @throws NullPointerException if the specified array is null
1166       */
1167 +    @SuppressWarnings("unchecked")
1168      public <T> T[] toArray(T[] a) {
1169 <        int size = size();
1170 <        if (a.length < size)
1171 <            a = (T[])java.lang.reflect.Array.newInstance(
1172 <                    a.getClass().getComponentType(), size);
1173 <        copyElements(a);
1174 <        if (a.length > size)
1169 >        final int size;
1170 >        if ((size = size()) > a.length)
1171 >            return toArray((Class<T[]>) a.getClass());
1172 >        final Object[] es = elements;
1173 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1174 >             ; i = 0, len = tail) {
1175 >            System.arraycopy(es, i, a, j, len);
1176 >            if ((j += len) == size) break;
1177 >        }
1178 >        if (size < a.length)
1179              a[size] = null;
1180          return a;
1181      }
# Line 775 | Line 1189 | public class ArrayDeque<E> extends Abstr
1189       */
1190      public ArrayDeque<E> clone() {
1191          try {
1192 +            @SuppressWarnings("unchecked")
1193              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1194 <            // These two lines are currently faster than cloning the array:
780 <            result.elements = (E[]) new Object[elements.length];
781 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1194 >            result.elements = Arrays.copyOf(elements, elements.length);
1195              return result;
783
1196          } catch (CloneNotSupportedException e) {
1197              throw new AssertionError();
1198          }
1199      }
1200  
1201 <    /**
790 <     * Appease the serialization gods.
791 <     */
1201 >    // OPENJDK @java.io.Serial
1202      private static final long serialVersionUID = 2340985798034038923L;
1203  
1204      /**
1205 <     * Serialize this deque.
1205 >     * Saves this deque to a stream (that is, serializes it).
1206       *
1207 <     * @serialData The current size (<tt>int</tt>) of the deque,
1207 >     * @param s the stream
1208 >     * @throws java.io.IOException if an I/O error occurs
1209 >     * @serialData The current size ({@code int}) of the deque,
1210       * followed by all of its elements (each an object reference) in
1211       * first-to-last order.
1212       */
1213 <    private void writeObject(ObjectOutputStream s) throws IOException {
1213 >    // OPENJDK @java.io.Serial
1214 >    private void writeObject(java.io.ObjectOutputStream s)
1215 >            throws java.io.IOException {
1216          s.defaultWriteObject();
1217  
1218          // Write out size
1219          s.writeInt(size());
1220  
1221          // Write out elements in order.
1222 <        int mask = elements.length - 1;
1223 <        for (int i = head; i != tail; i = (i + 1) & mask)
1224 <            s.writeObject(elements[i]);
1222 >        final Object[] es = elements;
1223 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1224 >             ; i = 0, to = end) {
1225 >            for (; i < to; i++)
1226 >                s.writeObject(es[i]);
1227 >            if (to == end) break;
1228 >        }
1229      }
1230  
1231      /**
1232 <     * Deserialize this deque.
1233 <     */
1234 <    private void readObject(ObjectInputStream s)
1235 <            throws IOException, ClassNotFoundException {
1232 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1233 >     * @param s the stream
1234 >     * @throws ClassNotFoundException if the class of a serialized object
1235 >     *         could not be found
1236 >     * @throws java.io.IOException if an I/O error occurs
1237 >     */
1238 >    // OPENJDK @java.io.Serial
1239 >    private void readObject(java.io.ObjectInputStream s)
1240 >            throws java.io.IOException, ClassNotFoundException {
1241          s.defaultReadObject();
1242  
1243          // Read in size and allocate array
1244          int size = s.readInt();
1245 <        allocateElements(size);
1246 <        head = 0;
1247 <        tail = size;
1245 >        jsr166.Platform.checkArray(s, Object[].class, size + 1);
1246 >        elements = new Object[size + 1];
1247 >        this.tail = size;
1248  
1249          // Read in all elements in the proper order.
1250          for (int i = 0; i < size; i++)
1251 <            elements[i] = (E)s.readObject();
1251 >            elements[i] = s.readObject();
1252 >    }
1253  
1254 +    /** debugging */
1255 +    void checkInvariants() {
1256 +        // Use head and tail fields with empty slot at tail strategy.
1257 +        // head == tail disambiguates to "empty".
1258 +        try {
1259 +            int capacity = elements.length;
1260 +            // assert 0 <= head && head < capacity;
1261 +            // assert 0 <= tail && tail < capacity;
1262 +            // assert capacity > 0;
1263 +            // assert size() < capacity;
1264 +            // assert head == tail || elements[head] != null;
1265 +            // assert elements[tail] == null;
1266 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1267 +        } catch (Throwable t) {
1268 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1269 +                              head, tail, elements.length);
1270 +            System.err.printf("elements=%s%n",
1271 +                              Arrays.toString(elements));
1272 +            throw t;
1273 +        }
1274      }
1275 +
1276   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines