ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.25 by jsr166, Sat Sep 17 17:22:17 2005 UTC vs.
Revision 1.84 by jsr166, Sun Oct 23 16:08:46 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.util.*; // for javadoc (till 6280605 is fixed)
8 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 16 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 35 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 45 | Line 50 | import java.io.*;
50   * Iterator} interfaces.
51   *
52   * <p>This class is a member of the
53 < * <a href="{@docRoot}/../guide/collections/index.html">
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
53 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
62 <     * full, except transiently within an addX method where it is
63 <     * resized (see doubleCapacity) immediately upon becoming full,
64 <     * thus avoiding head and tail wrapping around to equal each
65 <     * other.  We also guarantee that all array cells not holding
66 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private transient int head;
75 >    transient int head;
76  
77 <    /**
78 <     * The index at which the next element would be added to the tail
79 <     * of the deque (via addLast(E), add(E), or push(E)).
80 <     */
81 <    private transient int tail;
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * The minimum capacity that we'll use for a newly created deque.
82 <     * Must be a power of 2.
83 <     */
84 <    private static final int MIN_INITIAL_CAPACITY = 8;
85 <
86 <    // ******  Array allocation and resizing utilities ******
87 <
88 <    /**
89 <     * Allocate empty array to hold the given number of elements.
90 <     *
91 <     * @param numElements  the number of elements to hold
92 <     */
93 <    private void allocateElements(int numElements) {
94 <        int initialCapacity = MIN_INITIAL_CAPACITY;
95 <        // Find the best power of two to hold elements.
96 <        // Tests "<=" because arrays aren't kept full.
97 <        if (numElements >= initialCapacity) {
98 <            initialCapacity = numElements;
99 <            initialCapacity |= (initialCapacity >>>  1);
100 <            initialCapacity |= (initialCapacity >>>  2);
101 <            initialCapacity |= (initialCapacity >>>  4);
102 <            initialCapacity |= (initialCapacity >>>  8);
103 <            initialCapacity |= (initialCapacity >>> 16);
104 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        int oldCapacity = elements.length;
119 >        int minCapacity;
120 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
121 >            if (minCapacity < 0)
122 >                throw new IllegalStateException("Sorry, deque too big");
123 >            return Integer.MAX_VALUE;
124          }
125 <        elements = (E[]) new Object[initialCapacity];
125 >        if (needed > jump)
126 >            return minCapacity;
127 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
128 >            ? oldCapacity + jump
129 >            : MAX_ARRAY_SIZE;
130      }
131  
132      /**
133 <     * Double the capacity of this deque.  Call only when full, i.e.,
134 <     * when head and tail have wrapped around to become equal.
133 >     * Increases the internal storage of this collection, if necessary,
134 >     * to ensure that it can hold at least the given number of elements.
135 >     *
136 >     * @param minCapacity the desired minimum capacity
137 >     * @since TBD
138       */
139 <    private void doubleCapacity() {
140 <        assert head == tail;
141 <        int p = head;
142 <        int n = elements.length;
123 <        int r = n - p; // number of elements to the right of p
124 <        int newCapacity = n << 1;
125 <        if (newCapacity < 0)
126 <            throw new IllegalStateException("Sorry, deque too big");
127 <        Object[] a = new Object[newCapacity];
128 <        System.arraycopy(elements, p, a, 0, r);
129 <        System.arraycopy(elements, 0, a, r, p);
130 <        elements = (E[])a;
131 <        head = 0;
132 <        tail = n;
139 >    /* public */ void ensureCapacity(int minCapacity) {
140 >        if (minCapacity > elements.length)
141 >            grow(minCapacity - elements.length);
142 >        // checkInvariants();
143      }
144  
145      /**
146 <     * Copies the elements from our element array into the specified array,
137 <     * in order (from first to last element in the deque).  It is assumed
138 <     * that the array is large enough to hold all elements in the deque.
146 >     * Minimizes the internal storage of this collection.
147       *
148 <     * @return its argument
148 >     * @since TBD
149       */
150 <    private <T> T[] copyElements(T[] a) {
151 <        if (head < tail) {
152 <            System.arraycopy(elements, head, a, 0, size());
153 <        } else if (head > tail) {
146 <            int headPortionLen = elements.length - head;
147 <            System.arraycopy(elements, head, a, 0, headPortionLen);
148 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
150 >    /* public */ void trimToSize() {
151 >        if (size < elements.length) {
152 >            elements = toArray();
153 >            head = 0;
154          }
155 <        return a;
155 >        // checkInvariants();
156      }
157  
158      /**
# Line 155 | Line 160 | public class ArrayDeque<E> extends Abstr
160       * sufficient to hold 16 elements.
161       */
162      public ArrayDeque() {
163 <        elements = (E[]) new Object[16];
163 >        elements = new Object[16];
164      }
165  
166      /**
167       * Constructs an empty array deque with an initial capacity
168       * sufficient to hold the specified number of elements.
169       *
170 <     * @param numElements  lower bound on initial capacity of the deque
170 >     * @param numElements lower bound on initial capacity of the deque
171       */
172      public ArrayDeque(int numElements) {
173 <        allocateElements(numElements);
173 >        elements = new Object[numElements];
174      }
175  
176      /**
# Line 179 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * @throws NullPointerException if the specified collection is null
185       */
186      public ArrayDeque(Collection<? extends E> c) {
187 <        allocateElements(c.size());
188 <        addAll(c);
187 >        Object[] elements = c.toArray();
188 >        // defend against c.toArray (incorrectly) not returning Object[]
189 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 >        if (elements.getClass() != Object[].class)
191 >            elements = Arrays.copyOf(elements, size, Object[].class);
192 >        for (Object obj : elements)
193 >            Objects.requireNonNull(obj);
194 >        size = elements.length;
195 >        this.elements = elements;
196 >    }
197 >
198 >    /**
199 >     * Increments i, mod modulus.
200 >     * Precondition and postcondition: 0 <= i < modulus.
201 >     */
202 >    static final int inc(int i, int modulus) {
203 >        if (++i == modulus) i = 0;
204 >        return i;
205 >    }
206 >
207 >    /**
208 >     * Decrements i, mod modulus.
209 >     * Precondition and postcondition: 0 <= i < modulus.
210 >     */
211 >    static final int dec(int i, int modulus) {
212 >        if (--i < 0) i += modulus;
213 >        return i;
214 >    }
215 >
216 >    /**
217 >     * Adds i and j, mod modulus.
218 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
219 >     */
220 >    static final int add(int i, int j, int modulus) {
221 >        if ((i += j) - modulus >= 0) i -= modulus;
222 >        return i;
223 >    }
224 >
225 >    /**
226 >     * Returns the array index of the last element.
227 >     * May return invalid index -1 if there are no elements.
228 >     */
229 >    final int tail() {
230 >        return add(head, size - 1, elements.length);
231 >    }
232 >
233 >    /**
234 >     * Returns element at array index i.
235 >     */
236 >    @SuppressWarnings("unchecked")
237 >    final E elementAt(int i) {
238 >        return (E) elements[i];
239 >    }
240 >
241 >    /**
242 >     * A version of elementAt that checks for null elements.
243 >     * This check doesn't catch all possible comodifications,
244 >     * but does catch ones that corrupt traversal.
245 >     */
246 >    E checkedElementAt(Object[] elements, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
248 >        if (e == null)
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253      // The main insertion and extraction methods are addFirst,
# Line 194 | Line 261 | public class ArrayDeque<E> extends Abstr
261       * @throws NullPointerException if the specified element is null
262       */
263      public void addFirst(E e) {
264 <        if (e == null)
265 <            throw new NullPointerException();
266 <        elements[head = (head - 1) & (elements.length - 1)] = e;
267 <        if (head == tail)
268 <            doubleCapacity();
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        final Object[] elements;
267 >        final int capacity, s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length))
269 >            addFirstSlowPath(e);
270 >        else
271 >            elements[head = dec(head, capacity)] = e;
272 >        size = s + 1;
273 >        // checkInvariants();
274 >    }
275 >
276 >    private void addFirstSlowPath(E e) {
277 >        grow(1);
278 >        final Object[] elements = this.elements;
279 >        elements[head = dec(head, elements.length)] = e;
280      }
281  
282      /**
# Line 210 | Line 288 | public class ArrayDeque<E> extends Abstr
288       * @throws NullPointerException if the specified element is null
289       */
290      public void addLast(E e) {
291 <        if (e == null)
292 <            throw new NullPointerException();
293 <        elements[tail] = e;
294 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
295 <            doubleCapacity();
291 >        // checkInvariants();
292 >        Objects.requireNonNull(e);
293 >        final Object[] elements;
294 >        final int capacity, s;
295 >        if ((s = size) == (capacity = (elements = this.elements).length))
296 >            addLastSlowPath(e);
297 >        else
298 >            elements[add(head, s, capacity)] = e;
299 >        size = s + 1;
300 >        // checkInvariants();
301 >    }
302 >
303 >    private void addLastSlowPath(E e) {
304 >        grow(1);
305 >        final Object[] elements = this.elements;
306 >        elements[add(head, size, elements.length)] = e;
307 >    }
308 >
309 >    /**
310 >     * Adds all of the elements in the specified collection at the end
311 >     * of this deque, as if by calling {@link #addLast} on each one,
312 >     * in the order that they are returned by the collection's
313 >     * iterator.
314 >     *
315 >     * @param c the elements to be inserted into this deque
316 >     * @return {@code true} if this deque changed as a result of the call
317 >     * @throws NullPointerException if the specified collection or any
318 >     *         of its elements are null
319 >     */
320 >    @Override
321 >    public boolean addAll(Collection<? extends E> c) {
322 >        // checkInvariants();
323 >        Object[] a, elements;
324 >        int newcomers, capacity, s = size;
325 >        if ((newcomers = (a = c.toArray()).length) == 0)
326 >            return false;
327 >        while ((capacity = (elements = this.elements).length) - s < newcomers)
328 >            grow(newcomers - (capacity - s));
329 >        int i = add(head, s, capacity);
330 >        for (Object x : a) {
331 >            Objects.requireNonNull(x);
332 >            elements[i] = x;
333 >            i = inc(i, capacity);
334 >            size++;
335 >        }
336 >        return true;
337      }
338  
339      /**
340       * Inserts the specified element at the front of this deque.
341       *
342       * @param e the element to add
343 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
343 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
344       * @throws NullPointerException if the specified element is null
345       */
346      public boolean offerFirst(E e) {
# Line 233 | Line 352 | public class ArrayDeque<E> extends Abstr
352       * Inserts the specified element at the end of this deque.
353       *
354       * @param e the element to add
355 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
355 >     * @return {@code true} (as specified by {@link Deque#offerLast})
356       * @throws NullPointerException if the specified element is null
357       */
358      public boolean offerLast(E e) {
# Line 245 | Line 364 | public class ArrayDeque<E> extends Abstr
364       * @throws NoSuchElementException {@inheritDoc}
365       */
366      public E removeFirst() {
367 <        E x = pollFirst();
368 <        if (x == null)
367 >        // checkInvariants();
368 >        E e = pollFirst();
369 >        if (e == null)
370              throw new NoSuchElementException();
371 <        return x;
371 >        return e;
372      }
373  
374      /**
375       * @throws NoSuchElementException {@inheritDoc}
376       */
377      public E removeLast() {
378 <        E x = pollLast();
379 <        if (x == null)
378 >        // checkInvariants();
379 >        E e = pollLast();
380 >        if (e == null)
381              throw new NoSuchElementException();
382 <        return x;
382 >        return e;
383      }
384  
385      public E pollFirst() {
386 <        int h = head;
387 <        E result = elements[h]; // Element is null if deque empty
388 <        if (result == null)
386 >        // checkInvariants();
387 >        final int s, h;
388 >        if ((s = size) == 0)
389              return null;
390 <        elements[h] = null;     // Must null out slot
391 <        head = (h + 1) & (elements.length - 1);
392 <        return result;
390 >        final Object[] elements = this.elements;
391 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
392 >        elements[h] = null;
393 >        head = inc(h, elements.length);
394 >        size = s - 1;
395 >        return e;
396      }
397  
398      public E pollLast() {
399 <        int t = (tail - 1) & (elements.length - 1);
400 <        E result = elements[t];
401 <        if (result == null)
399 >        // checkInvariants();
400 >        final int s, tail;
401 >        if ((s = size) == 0)
402              return null;
403 <        elements[t] = null;
404 <        tail = t;
405 <        return result;
403 >        final Object[] elements = this.elements;
404 >        @SuppressWarnings("unchecked")
405 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
406 >        elements[tail] = null;
407 >        size = s - 1;
408 >        return e;
409      }
410  
411      /**
412       * @throws NoSuchElementException {@inheritDoc}
413       */
414      public E getFirst() {
415 <        E x = elements[head];
416 <        if (x == null)
417 <            throw new NoSuchElementException();
291 <        return x;
415 >        // checkInvariants();
416 >        if (size == 0) throw new NoSuchElementException();
417 >        return elementAt(head);
418      }
419  
420      /**
421       * @throws NoSuchElementException {@inheritDoc}
422       */
423      public E getLast() {
424 <        E x = elements[(tail - 1) & (elements.length - 1)];
425 <        if (x == null)
426 <            throw new NoSuchElementException();
301 <        return x;
424 >        // checkInvariants();
425 >        if (size == 0) throw new NoSuchElementException();
426 >        return elementAt(tail());
427      }
428  
429      public E peekFirst() {
430 <        return elements[head]; // elements[head] is null if deque empty
430 >        // checkInvariants();
431 >        return (size == 0) ? null : elementAt(head);
432      }
433  
434      public E peekLast() {
435 <        return elements[(tail - 1) & (elements.length - 1)];
435 >        // checkInvariants();
436 >        return (size == 0) ? null : elementAt(tail());
437      }
438  
439      /**
440       * Removes the first occurrence of the specified element in this
441       * deque (when traversing the deque from head to tail).
442       * If the deque does not contain the element, it is unchanged.
443 <     * More formally, removes the first element <tt>e</tt> such that
444 <     * <tt>o.equals(e)</tt> (if such an element exists).
445 <     * Returns <tt>true</tt> if this deque contained the specified element
443 >     * More formally, removes the first element {@code e} such that
444 >     * {@code o.equals(e)} (if such an element exists).
445 >     * Returns {@code true} if this deque contained the specified element
446       * (or equivalently, if this deque changed as a result of the call).
447       *
448       * @param o element to be removed from this deque, if present
449 <     * @return <tt>true</tt> if the deque contained the specified element
449 >     * @return {@code true} if the deque contained the specified element
450       */
451      public boolean removeFirstOccurrence(Object o) {
452 <        if (o == null)
453 <            return false;
454 <        int mask = elements.length - 1;
455 <        int i = head;
456 <        E x;
457 <        while ( (x = elements[i]) != null) {
458 <            if (o.equals(x)) {
459 <                delete(i);
460 <                return true;
452 >        // checkInvariants();
453 >        if (o != null) {
454 >            final Object[] elements = this.elements;
455 >            final int capacity = elements.length;
456 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
457 >                if (o.equals(elements[i])) {
458 >                    delete(i);
459 >                    return true;
460 >                }
461              }
335            i = (i + 1) & mask;
462          }
463          return false;
464      }
# Line 341 | Line 467 | public class ArrayDeque<E> extends Abstr
467       * Removes the last occurrence of the specified element in this
468       * deque (when traversing the deque from head to tail).
469       * If the deque does not contain the element, it is unchanged.
470 <     * More formally, removes the last element <tt>e</tt> such that
471 <     * <tt>o.equals(e)</tt> (if such an element exists).
472 <     * Returns <tt>true</tt> if this deque contained the specified element
470 >     * More formally, removes the last element {@code e} such that
471 >     * {@code o.equals(e)} (if such an element exists).
472 >     * Returns {@code true} if this deque contained the specified element
473       * (or equivalently, if this deque changed as a result of the call).
474       *
475       * @param o element to be removed from this deque, if present
476 <     * @return <tt>true</tt> if the deque contained the specified element
476 >     * @return {@code true} if the deque contained the specified element
477       */
478      public boolean removeLastOccurrence(Object o) {
479 <        if (o == null)
480 <            return false;
481 <        int mask = elements.length - 1;
482 <        int i = (tail - 1) & mask;
483 <        E x;
484 <        while ( (x = elements[i]) != null) {
485 <            if (o.equals(x)) {
486 <                delete(i);
487 <                return true;
479 >        if (o != null) {
480 >            final Object[] elements = this.elements;
481 >            final int capacity = elements.length;
482 >            for (int k = size, i = add(head, k - 1, capacity);
483 >                 --k >= 0; i = dec(i, capacity)) {
484 >                if (o.equals(elements[i])) {
485 >                    delete(i);
486 >                    return true;
487 >                }
488              }
363            i = (i - 1) & mask;
489          }
490          return false;
491      }
# Line 373 | Line 498 | public class ArrayDeque<E> extends Abstr
498       * <p>This method is equivalent to {@link #addLast}.
499       *
500       * @param e the element to add
501 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
501 >     * @return {@code true} (as specified by {@link Collection#add})
502       * @throws NullPointerException if the specified element is null
503       */
504      public boolean add(E e) {
# Line 387 | Line 512 | public class ArrayDeque<E> extends Abstr
512       * <p>This method is equivalent to {@link #offerLast}.
513       *
514       * @param e the element to add
515 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
515 >     * @return {@code true} (as specified by {@link Queue#offer})
516       * @throws NullPointerException if the specified element is null
517       */
518      public boolean offer(E e) {
# Line 412 | Line 537 | public class ArrayDeque<E> extends Abstr
537      /**
538       * Retrieves and removes the head of the queue represented by this deque
539       * (in other words, the first element of this deque), or returns
540 <     * <tt>null</tt> if this deque is empty.
540 >     * {@code null} if this deque is empty.
541       *
542       * <p>This method is equivalent to {@link #pollFirst}.
543       *
544       * @return the head of the queue represented by this deque, or
545 <     *         <tt>null</tt> if this deque is empty
545 >     *         {@code null} if this deque is empty
546       */
547      public E poll() {
548          return pollFirst();
# Line 439 | Line 564 | public class ArrayDeque<E> extends Abstr
564  
565      /**
566       * Retrieves, but does not remove, the head of the queue represented by
567 <     * this deque, or returns <tt>null</tt> if this deque is empty.
567 >     * this deque, or returns {@code null} if this deque is empty.
568       *
569       * <p>This method is equivalent to {@link #peekFirst}.
570       *
571       * @return the head of the queue represented by this deque, or
572 <     *         <tt>null</tt> if this deque is empty
572 >     *         {@code null} if this deque is empty
573       */
574      public E peek() {
575          return peekFirst();
# Line 479 | Line 604 | public class ArrayDeque<E> extends Abstr
604          return removeFirst();
605      }
606  
482    private void checkInvariants() {
483        assert elements[tail] == null;
484        assert head == tail ? elements[head] == null :
485            (elements[head] != null &&
486             elements[(tail - 1) & (elements.length - 1)] != null);
487        assert elements[(head - 1) & (elements.length - 1)] == null;
488    }
489
607      /**
608 <     * Removes the element at the specified position in the elements array,
609 <     * adjusting head and tail as necessary.  This can result in motion of
610 <     * elements backwards or forwards in the array.
608 >     * Removes the element at the specified position in the elements array.
609 >     * This can result in forward or backwards motion of array elements.
610 >     * We optimize for least element motion.
611       *
612       * <p>This method is called delete rather than remove to emphasize
613       * that its semantics differ from those of {@link List#remove(int)}.
614       *
615       * @return true if elements moved backwards
616       */
617 <    private boolean delete(int i) {
618 <        checkInvariants();
619 <        final E[] elements = this.elements;
620 <        final int mask = elements.length - 1;
621 <        final int h = head;
622 <        final int t = tail;
623 <        final int front = (i - h) & mask;
624 <        final int back  = (t - i) & mask;
625 <
626 <        // Invariant: head <= i < tail mod circularity
627 <        if (front >= ((t - h) & mask))
628 <            throw new ConcurrentModificationException();
629 <
630 <        // Optimize for least element motion
631 <        if (front < back) {
632 <            if (h <= i) {
633 <                System.arraycopy(elements, h, elements, h + 1, front);
634 <            } else { // Wrap around
635 <                System.arraycopy(elements, 0, elements, 1, i);
636 <                elements[0] = elements[mask];
637 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
638 <            }
639 <            elements[h] = null;
640 <            head = (h + 1) & mask;
641 <            return false;
642 <        } else {
643 <            if (i < t) { // Copy the null tail as well
644 <                System.arraycopy(elements, i + 1, elements, i, back);
645 <                tail = t - 1;
646 <            } else { // Wrap around
647 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
648 <                elements[mask] = elements[0];
649 <                System.arraycopy(elements, 1, elements, 0, t);
650 <                tail = (t - 1) & mask;
651 <            }
652 <            return true;
653 <        }
617 >    boolean delete(int i) {
618 >        // checkInvariants();
619 >        final Object[] elements = this.elements;
620 >        final int capacity = elements.length;
621 >        final int h = head;
622 >        int front;              // number of elements before to-be-deleted elt
623 >        if ((front = i - h) < 0) front += capacity;
624 >        final int back = size - front - 1; // number of elements after
625 >        if (front < back) {
626 >            // move front elements forwards
627 >            if (h <= i) {
628 >                System.arraycopy(elements, h, elements, h + 1, front);
629 >            } else { // Wrap around
630 >                System.arraycopy(elements, 0, elements, 1, i);
631 >                elements[0] = elements[capacity - 1];
632 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
633 >            }
634 >            elements[h] = null;
635 >            head = inc(h, capacity);
636 >            size--;
637 >            // checkInvariants();
638 >            return false;
639 >        } else {
640 >            // move back elements backwards
641 >            int tail = tail();
642 >            if (i <= tail) {
643 >                System.arraycopy(elements, i + 1, elements, i, back);
644 >            } else { // Wrap around
645 >                int firstLeg = capacity - (i + 1);
646 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
647 >                elements[capacity - 1] = elements[0];
648 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
649 >            }
650 >            elements[tail] = null;
651 >            size--;
652 >            // checkInvariants();
653 >            return true;
654 >        }
655      }
656  
657      // *** Collection Methods ***
# Line 544 | Line 662 | public class ArrayDeque<E> extends Abstr
662       * @return the number of elements in this deque
663       */
664      public int size() {
665 <        return (tail - head) & (elements.length - 1);
665 >        return size;
666      }
667  
668      /**
669 <     * Returns <tt>true</tt> if this deque contains no elements.
669 >     * Returns {@code true} if this deque contains no elements.
670       *
671 <     * @return <tt>true</tt> if this deque contains no elements
671 >     * @return {@code true} if this deque contains no elements
672       */
673      public boolean isEmpty() {
674 <        return head == tail;
674 >        return size == 0;
675      }
676  
677      /**
# Line 573 | Line 691 | public class ArrayDeque<E> extends Abstr
691      }
692  
693      private class DeqIterator implements Iterator<E> {
694 <        /**
695 <         * Index of element to be returned by subsequent call to next.
578 <         */
579 <        private int cursor = head;
694 >        /** Index of element to be returned by subsequent call to next. */
695 >        int cursor;
696  
697 <        /**
698 <         * Tail recorded at construction (also in remove), to stop
583 <         * iterator and also to check for comodification.
584 <         */
585 <        private int fence = tail;
697 >        /** Number of elements yet to be returned. */
698 >        int remaining = size;
699  
700          /**
701           * Index of element returned by most recent call to next.
702           * Reset to -1 if element is deleted by a call to remove.
703           */
704 <        private int lastRet = -1;
704 >        int lastRet = -1;
705 >
706 >        DeqIterator() { cursor = head; }
707  
708 <        public boolean hasNext() {
709 <            return cursor != fence;
708 >        public final boolean hasNext() {
709 >            return remaining > 0;
710          }
711  
712          public E next() {
713 <            E result;
599 <            if (cursor == fence)
713 >            if (remaining == 0)
714                  throw new NoSuchElementException();
715 <            // This check doesn't catch all possible comodifications,
602 <            // but does catch the ones that corrupt traversal
603 <            if (tail != fence || (result = elements[cursor]) == null)
604 <                throw new ConcurrentModificationException();
715 >            E e = checkedElementAt(elements, cursor);
716              lastRet = cursor;
717 <            cursor = (cursor + 1) & (elements.length - 1);
718 <            return result;
717 >            cursor = inc(cursor, elements.length);
718 >            remaining--;
719 >            return e;
720 >        }
721 >
722 >        void postDelete(boolean leftShifted) {
723 >            if (leftShifted)
724 >                cursor = dec(cursor, elements.length); // undo inc in next
725          }
726  
727 <        public void remove() {
727 >        public final void remove() {
728              if (lastRet < 0)
729                  throw new IllegalStateException();
730 <            if (delete(lastRet)) // if left-shifted, undo increment in next()
614 <                cursor = (cursor - 1) & (elements.length - 1);
730 >            postDelete(delete(lastRet));
731              lastRet = -1;
616            fence = tail;
732          }
618    }
619
620    private class DescendingIterator implements Iterator<E> {
621        /*
622         * This class is nearly a mirror-image of DeqIterator, using
623         * (tail-1) instead of head for initial cursor, (head-1)
624         * instead of tail for fence, and elements.length instead of -1
625         * for sentinel. It shares the same structure, but not many
626         * actual lines of code.
627         */
628        private int cursor = (tail - 1) & (elements.length - 1);
629        private int fence =  (head - 1) & (elements.length - 1);
630        private int lastRet = elements.length;
733  
734 <        public boolean hasNext() {
735 <            return cursor != fence;
734 >        public void forEachRemaining(Consumer<? super E> action) {
735 >            Objects.requireNonNull(action);
736 >            final Object[] elements = ArrayDeque.this.elements;
737 >            final int capacity = elements.length;
738 >            int k = remaining;
739 >            remaining = 0;
740 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
741 >                action.accept(checkedElementAt(elements, i));
742          }
743 +    }
744  
745 <        public E next() {
746 <            E result;
747 <            if (cursor == fence)
745 >    private class DescendingIterator extends DeqIterator {
746 >        DescendingIterator() { cursor = tail(); }
747 >
748 >        public final E next() {
749 >            if (remaining == 0)
750                  throw new NoSuchElementException();
751 <            if (((head - 1) & (elements.length - 1)) != fence ||
641 <                (result = elements[cursor]) == null)
642 <                throw new ConcurrentModificationException();
751 >            E e = checkedElementAt(elements, cursor);
752              lastRet = cursor;
753 <            cursor = (cursor - 1) & (elements.length - 1);
754 <            return result;
753 >            cursor = dec(cursor, elements.length);
754 >            remaining--;
755 >            return e;
756          }
757  
758 <        public void remove() {
759 <            if (lastRet >= elements.length)
760 <                throw new IllegalStateException();
761 <            if (!delete(lastRet))
762 <                cursor = (cursor + 1) & (elements.length - 1);
763 <            lastRet = elements.length;
764 <            fence = (head - 1) & (elements.length - 1);
758 >        void postDelete(boolean leftShifted) {
759 >            if (!leftShifted)
760 >                cursor = inc(cursor, elements.length); // undo dec in next
761 >        }
762 >
763 >        public final void forEachRemaining(Consumer<? super E> action) {
764 >            Objects.requireNonNull(action);
765 >            final Object[] elements = ArrayDeque.this.elements;
766 >            final int capacity = elements.length;
767 >            int k = remaining;
768 >            remaining = 0;
769 >            for (int i = cursor; --k >= 0; i = dec(i, capacity))
770 >                action.accept(checkedElementAt(elements, i));
771 >        }
772 >    }
773 >
774 >    /**
775 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
776 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
777 >     * deque.
778 >     *
779 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
780 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
781 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
782 >     * the reporting of additional characteristic values.
783 >     *
784 >     * @return a {@code Spliterator} over the elements in this deque
785 >     * @since 1.8
786 >     */
787 >    public Spliterator<E> spliterator() {
788 >        return new ArrayDequeSpliterator();
789 >    }
790 >
791 >    final class ArrayDequeSpliterator implements Spliterator<E> {
792 >        private int cursor;
793 >        private int remaining; // -1 until late-binding first use
794 >
795 >        /** Constructs late-binding spliterator over all elements. */
796 >        ArrayDequeSpliterator() {
797 >            this.remaining = -1;
798 >        }
799 >
800 >        /** Constructs spliterator over the given slice. */
801 >        ArrayDequeSpliterator(int cursor, int count) {
802 >            this.cursor = cursor;
803 >            this.remaining = count;
804 >        }
805 >
806 >        /** Ensures late-binding initialization; then returns remaining. */
807 >        private int remaining() {
808 >            if (remaining < 0) {
809 >                cursor = head;
810 >                remaining = size;
811 >            }
812 >            return remaining;
813 >        }
814 >
815 >        public ArrayDequeSpliterator trySplit() {
816 >            final int mid;
817 >            if ((mid = remaining() >> 1) > 0) {
818 >                int oldCursor = cursor;
819 >                cursor = add(cursor, mid, elements.length);
820 >                remaining -= mid;
821 >                return new ArrayDequeSpliterator(oldCursor, mid);
822 >            }
823 >            return null;
824 >        }
825 >
826 >        public void forEachRemaining(Consumer<? super E> action) {
827 >            Objects.requireNonNull(action);
828 >            final Object[] elements = ArrayDeque.this.elements;
829 >            final int capacity = elements.length;
830 >            int k = remaining();
831 >            remaining = 0;
832 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
833 >                action.accept(checkedElementAt(elements, i));
834 >        }
835 >
836 >        public boolean tryAdvance(Consumer<? super E> action) {
837 >            Objects.requireNonNull(action);
838 >            if (remaining() == 0)
839 >                return false;
840 >            action.accept(checkedElementAt(elements, cursor));
841 >            cursor = inc(cursor, elements.length);
842 >            remaining--;
843 >            return true;
844 >        }
845 >
846 >        public long estimateSize() {
847 >            return remaining();
848 >        }
849 >
850 >        public int characteristics() {
851 >            return Spliterator.NONNULL
852 >                | Spliterator.ORDERED
853 >                | Spliterator.SIZED
854 >                | Spliterator.SUBSIZED;
855 >        }
856 >    }
857 >
858 >    @Override
859 >    public void forEach(Consumer<? super E> action) {
860 >        // checkInvariants();
861 >        Objects.requireNonNull(action);
862 >        final Object[] elements = this.elements;
863 >        final int capacity = elements.length;
864 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
865 >            action.accept(elementAt(i));
866 >        // checkInvariants();
867 >    }
868 >
869 >    /**
870 >     * Replaces each element of this deque with the result of applying the
871 >     * operator to that element, as specified by {@link List#replaceAll}.
872 >     *
873 >     * @param operator the operator to apply to each element
874 >     * @since TBD
875 >     */
876 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
877 >        Objects.requireNonNull(operator);
878 >        final Object[] elements = this.elements;
879 >        final int capacity = elements.length;
880 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
881 >            elements[i] = operator.apply(elementAt(i));
882 >        // checkInvariants();
883 >    }
884 >
885 >    /**
886 >     * @throws NullPointerException {@inheritDoc}
887 >     */
888 >    @Override
889 >    public boolean removeIf(Predicate<? super E> filter) {
890 >        Objects.requireNonNull(filter);
891 >        return bulkRemove(filter);
892 >    }
893 >
894 >    /**
895 >     * @throws NullPointerException {@inheritDoc}
896 >     */
897 >    @Override
898 >    public boolean removeAll(Collection<?> c) {
899 >        Objects.requireNonNull(c);
900 >        return bulkRemove(e -> c.contains(e));
901 >    }
902 >
903 >    /**
904 >     * @throws NullPointerException {@inheritDoc}
905 >     */
906 >    @Override
907 >    public boolean retainAll(Collection<?> c) {
908 >        Objects.requireNonNull(c);
909 >        return bulkRemove(e -> !c.contains(e));
910 >    }
911 >
912 >    /** Implementation of bulk remove methods. */
913 >    private boolean bulkRemove(Predicate<? super E> filter) {
914 >        // checkInvariants();
915 >        final Object[] elements = this.elements;
916 >        final int capacity = elements.length;
917 >        int i = head, j = i, remaining = size, deleted = 0;
918 >        try {
919 >            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
920 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
921 >                if (filter.test(e))
922 >                    deleted++;
923 >                else {
924 >                    if (j != i)
925 >                        elements[j] = e;
926 >                    j = inc(j, capacity);
927 >                }
928 >            }
929 >            return deleted > 0;
930 >        } catch (Throwable ex) {
931 >            if (deleted > 0)
932 >                for (; remaining > 0;
933 >                     remaining--, i = inc(i, capacity), j = inc(j, capacity))
934 >                    elements[j] = elements[i];
935 >            throw ex;
936 >        } finally {
937 >            size -= deleted;
938 >            for (; --deleted >= 0; j = inc(j, capacity))
939 >                elements[j] = null;
940 >            // checkInvariants();
941          }
942      }
943  
944      /**
945 <     * Returns <tt>true</tt> if this deque contains the specified element.
946 <     * More formally, returns <tt>true</tt> if and only if this deque contains
947 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
945 >     * Returns {@code true} if this deque contains the specified element.
946 >     * More formally, returns {@code true} if and only if this deque contains
947 >     * at least one element {@code e} such that {@code o.equals(e)}.
948       *
949       * @param o object to be checked for containment in this deque
950 <     * @return <tt>true</tt> if this deque contains the specified element
950 >     * @return {@code true} if this deque contains the specified element
951       */
952      public boolean contains(Object o) {
953 <        if (o == null)
954 <            return false;
955 <        int mask = elements.length - 1;
956 <        int i = head;
957 <        E x;
958 <        while ( (x = elements[i]) != null) {
673 <            if (o.equals(x))
674 <                return true;
675 <            i = (i + 1) & mask;
953 >        if (o != null) {
954 >            final Object[] elements = this.elements;
955 >            final int capacity = elements.length;
956 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
957 >                if (o.equals(elements[i]))
958 >                    return true;
959          }
960          return false;
961      }
# Line 680 | Line 963 | public class ArrayDeque<E> extends Abstr
963      /**
964       * Removes a single instance of the specified element from this deque.
965       * If the deque does not contain the element, it is unchanged.
966 <     * More formally, removes the first element <tt>e</tt> such that
967 <     * <tt>o.equals(e)</tt> (if such an element exists).
968 <     * Returns <tt>true</tt> if this deque contained the specified element
966 >     * More formally, removes the first element {@code e} such that
967 >     * {@code o.equals(e)} (if such an element exists).
968 >     * Returns {@code true} if this deque contained the specified element
969       * (or equivalently, if this deque changed as a result of the call).
970       *
971 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
971 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
972       *
973       * @param o element to be removed from this deque, if present
974 <     * @return <tt>true</tt> if this deque contained the specified element
974 >     * @return {@code true} if this deque contained the specified element
975       */
976      public boolean remove(Object o) {
977          return removeFirstOccurrence(o);
# Line 699 | Line 982 | public class ArrayDeque<E> extends Abstr
982       * The deque will be empty after this call returns.
983       */
984      public void clear() {
985 <        int h = head;
986 <        int t = tail;
987 <        if (h != t) { // clear all cells
988 <            head = tail = 0;
989 <            int i = h;
990 <            int mask = elements.length - 1;
991 <            do {
992 <                elements[i] = null;
993 <                i = (i + 1) & mask;
711 <            } while (i != t);
985 >        final Object[] elements = this.elements;
986 >        final int capacity = elements.length;
987 >        final int h = this.head;
988 >        final int s = size;
989 >        if (capacity - h >= s)
990 >            Arrays.fill(elements, h, h + s, null);
991 >        else {
992 >            Arrays.fill(elements, h, capacity, null);
993 >            Arrays.fill(elements, 0, s - capacity + h, null);
994          }
995 +        size = head = 0;
996 +        // checkInvariants();
997      }
998  
999      /**
# Line 726 | Line 1010 | public class ArrayDeque<E> extends Abstr
1010       * @return an array containing all of the elements in this deque
1011       */
1012      public Object[] toArray() {
1013 <        return copyElements(new Object[size()]);
1013 >        final int head = this.head;
1014 >        final int firstLeg;
1015 >        Object[] a = Arrays.copyOfRange(elements, head, head + size);
1016 >        if ((firstLeg = elements.length - head) < size)
1017 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1018 >        return a;
1019      }
1020  
1021      /**
# Line 740 | Line 1029 | public class ArrayDeque<E> extends Abstr
1029       * <p>If this deque fits in the specified array with room to spare
1030       * (i.e., the array has more elements than this deque), the element in
1031       * the array immediately following the end of the deque is set to
1032 <     * <tt>null</tt>.
1032 >     * {@code null}.
1033       *
1034       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1035       * array-based and collection-based APIs.  Further, this method allows
1036       * precise control over the runtime type of the output array, and may,
1037       * under certain circumstances, be used to save allocation costs.
1038       *
1039 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1039 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1040       * The following code can be used to dump the deque into a newly
1041 <     * allocated array of <tt>String</tt>:
1041 >     * allocated array of {@code String}:
1042       *
1043 <     * <pre>
755 <     *     String[] y = x.toArray(new String[0]);</pre>
1043 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1044       *
1045 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1046 <     * <tt>toArray()</tt>.
1045 >     * Note that {@code toArray(new Object[0])} is identical in function to
1046 >     * {@code toArray()}.
1047       *
1048       * @param a the array into which the elements of the deque are to
1049       *          be stored, if it is big enough; otherwise, a new array of the
# Line 766 | Line 1054 | public class ArrayDeque<E> extends Abstr
1054       *         this deque
1055       * @throws NullPointerException if the specified array is null
1056       */
1057 +    @SuppressWarnings("unchecked")
1058      public <T> T[] toArray(T[] a) {
1059 <        int size = size();
1060 <        if (a.length < size)
1061 <            a = (T[])java.lang.reflect.Array.newInstance(
1062 <                    a.getClass().getComponentType(), size);
1063 <        copyElements(a);
1064 <        if (a.length > size)
1065 <            a[size] = null;
1059 >        final Object[] elements = this.elements;
1060 >        final int head = this.head;
1061 >        final int firstLeg;
1062 >        boolean wrap = (firstLeg = elements.length - head) < size;
1063 >        if (size > a.length) {
1064 >            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
1065 >                                         a.getClass());
1066 >        } else {
1067 >            System.arraycopy(elements, head, a, 0, wrap ? firstLeg : size);
1068 >            if (size < a.length)
1069 >                a[size] = null;
1070 >        }
1071 >        if (wrap)
1072 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1073          return a;
1074      }
1075  
# Line 786 | Line 1082 | public class ArrayDeque<E> extends Abstr
1082       */
1083      public ArrayDeque<E> clone() {
1084          try {
1085 +            @SuppressWarnings("unchecked")
1086              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1087 <            // These two lines are currently faster than cloning the array:
791 <            result.elements = (E[]) new Object[elements.length];
792 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1087 >            result.elements = Arrays.copyOf(elements, elements.length);
1088              return result;
794
1089          } catch (CloneNotSupportedException e) {
1090              throw new AssertionError();
1091          }
1092      }
1093  
800    /**
801     * Appease the serialization gods.
802     */
1094      private static final long serialVersionUID = 2340985798034038923L;
1095  
1096      /**
1097 <     * Serialize this deque.
1097 >     * Saves this deque to a stream (that is, serializes it).
1098       *
1099 <     * @serialData The current size (<tt>int</tt>) of the deque,
1099 >     * @param s the stream
1100 >     * @throws java.io.IOException if an I/O error occurs
1101 >     * @serialData The current size ({@code int}) of the deque,
1102       * followed by all of its elements (each an object reference) in
1103       * first-to-last order.
1104       */
1105 <    private void writeObject(ObjectOutputStream s) throws IOException {
1105 >    private void writeObject(java.io.ObjectOutputStream s)
1106 >            throws java.io.IOException {
1107          s.defaultWriteObject();
1108  
1109          // Write out size
1110 <        s.writeInt(size());
1110 >        s.writeInt(size);
1111  
1112          // Write out elements in order.
1113 <        int mask = elements.length - 1;
1114 <        for (int i = head; i != tail; i = (i + 1) & mask)
1113 >        final Object[] elements = this.elements;
1114 >        final int capacity = elements.length;
1115 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1116              s.writeObject(elements[i]);
1117      }
1118  
1119      /**
1120 <     * Deserialize this deque.
1120 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1121 >     * @param s the stream
1122 >     * @throws ClassNotFoundException if the class of a serialized object
1123 >     *         could not be found
1124 >     * @throws java.io.IOException if an I/O error occurs
1125       */
1126 <    private void readObject(ObjectInputStream s)
1127 <            throws IOException, ClassNotFoundException {
1126 >    private void readObject(java.io.ObjectInputStream s)
1127 >            throws java.io.IOException, ClassNotFoundException {
1128          s.defaultReadObject();
1129  
1130          // Read in size and allocate array
1131 <        int size = s.readInt();
833 <        allocateElements(size);
834 <        head = 0;
835 <        tail = size;
1131 >        elements = new Object[size = s.readInt()];
1132  
1133          // Read in all elements in the proper order.
1134          for (int i = 0; i < size; i++)
1135 <            elements[i] = (E)s.readObject();
1135 >            elements[i] = s.readObject();
1136 >    }
1137 >
1138 >    /** debugging */
1139 >    private void checkInvariants() {
1140 >        try {
1141 >            int capacity = elements.length;
1142 >            assert size >= 0 && size <= capacity;
1143 >            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1144 >                                 || head < capacity);
1145 >            assert size == 0
1146 >                || (elements[head] != null && elements[tail()] != null);
1147 >            assert size == capacity
1148 >                || (elements[dec(head, capacity)] == null
1149 >                    && elements[inc(tail(), capacity)] == null);
1150 >        } catch (Throwable t) {
1151 >            System.err.printf("head=%d size=%d capacity=%d%n",
1152 >                              head, size, elements.length);
1153 >            System.err.printf("elements=%s%n",
1154 >                              Arrays.toString(elements));
1155 >            throw t;
1156 >        }
1157      }
1158 +
1159   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines