ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.30 by jsr166, Sun May 18 23:47:55 2008 UTC vs.
Revision 1.124 by jsr166, Mon Nov 28 02:52:36 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 34 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 48 | Line 54 | import java.io.*;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
52 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.  Having only
72 +     * one hot inner loop body instead of two or three eases human
73 +     * maintenance and encourages VM loop inlining into the caller.
74 +     */
75 +
76      /**
77       * The array in which the elements of the deque are stored.
78 <     * The capacity of the deque is the length of this array, which is
79 <     * always a power of two. The array is never allowed to become
61 <     * full, except transiently within an addX method where it is
62 <     * resized (see doubleCapacity) immediately upon becoming full,
63 <     * thus avoiding head and tail wrapping around to equal each
64 <     * other.  We also guarantee that all array cells not holding
65 <     * deque elements are always null.
78 >     * All array cells not holding deque elements are always null.
79 >     * The array always has at least one null slot (at tail).
80       */
81 <    private transient E[] elements;
81 >    transient Object[] elements;
82  
83      /**
84       * The index of the element at the head of the deque (which is the
85       * element that would be removed by remove() or pop()); or an
86 <     * arbitrary number equal to tail if the deque is empty.
86 >     * arbitrary number 0 <= head < elements.length equal to tail if
87 >     * the deque is empty.
88       */
89 <    private transient int head;
89 >    transient int head;
90  
91      /**
92       * The index at which the next element would be added to the tail
93 <     * of the deque (via addLast(E), add(E), or push(E)).
93 >     * of the deque (via addLast(E), add(E), or push(E));
94 >     * elements[tail] is always null.
95       */
96 <    private transient int tail;
96 >    transient int tail;
97  
98      /**
99 <     * The minimum capacity that we'll use for a newly created deque.
100 <     * Must be a power of 2.
101 <     */
102 <    private static final int MIN_INITIAL_CAPACITY = 8;
103 <
104 <    // ******  Array allocation and resizing utilities ******
105 <
106 <    /**
107 <     * Allocate empty array to hold the given number of elements.
108 <     *
109 <     * @param numElements  the number of elements to hold
110 <     */
111 <    private void allocateElements(int numElements) {
112 <        int initialCapacity = MIN_INITIAL_CAPACITY;
113 <        // Find the best power of two to hold elements.
114 <        // Tests "<=" because arrays aren't kept full.
115 <        if (numElements >= initialCapacity) {
116 <            initialCapacity = numElements;
117 <            initialCapacity |= (initialCapacity >>>  1);
118 <            initialCapacity |= (initialCapacity >>>  2);
119 <            initialCapacity |= (initialCapacity >>>  4);
120 <            initialCapacity |= (initialCapacity >>>  8);
121 <            initialCapacity |= (initialCapacity >>> 16);
122 <            initialCapacity++;
99 >     * The maximum size of array to allocate.
100 >     * Some VMs reserve some header words in an array.
101 >     * Attempts to allocate larger arrays may result in
102 >     * OutOfMemoryError: Requested array size exceeds VM limit
103 >     */
104 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105 >
106 >    /**
107 >     * Increases the capacity of this deque by at least the given amount.
108 >     *
109 >     * @param needed the required minimum extra capacity; must be positive
110 >     */
111 >    private void grow(int needed) {
112 >        // overflow-conscious code
113 >        final int oldCapacity = elements.length;
114 >        int newCapacity;
115 >        // Double capacity if small; else grow by 50%
116 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 >        if (jump < needed
118 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 >            newCapacity = newCapacity(needed, jump);
120 >        elements = Arrays.copyOf(elements, newCapacity);
121 >        // Exceptionally, here tail == head needs to be disambiguated
122 >        if (tail < head || (tail == head && elements[head] != null)) {
123 >            // wrap around; slide first leg forward to end of array
124 >            int newSpace = newCapacity - oldCapacity;
125 >            System.arraycopy(elements, head,
126 >                             elements, head + newSpace,
127 >                             oldCapacity - head);
128 >            Arrays.fill(elements, head, head + newSpace, null);
129 >            head += newSpace;
130 >        }
131 >        // checkInvariants();
132 >    }
133  
134 <            if (initialCapacity < 0)   // Too many elements, must back off
135 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
134 >    /** Capacity calculation for edge conditions, especially overflow. */
135 >    private int newCapacity(int needed, int jump) {
136 >        final int oldCapacity = elements.length, minCapacity;
137 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 >            if (minCapacity < 0)
139 >                throw new IllegalStateException("Sorry, deque too big");
140 >            return Integer.MAX_VALUE;
141          }
142 <        elements = (E[]) new Object[initialCapacity];
142 >        if (needed > jump)
143 >            return minCapacity;
144 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 >            ? oldCapacity + jump
146 >            : MAX_ARRAY_SIZE;
147      }
148  
149      /**
150 <     * Double the capacity of this deque.  Call only when full, i.e.,
151 <     * when head and tail have wrapped around to become equal.
150 >     * Increases the internal storage of this collection, if necessary,
151 >     * to ensure that it can hold at least the given number of elements.
152 >     *
153 >     * @param minCapacity the desired minimum capacity
154 >     * @since TBD
155       */
156 <    private void doubleCapacity() {
157 <        assert head == tail;
158 <        int p = head;
159 <        int n = elements.length;
160 <        int r = n - p; // number of elements to the right of p
123 <        int newCapacity = n << 1;
124 <        if (newCapacity < 0)
125 <            throw new IllegalStateException("Sorry, deque too big");
126 <        Object[] a = new Object[newCapacity];
127 <        System.arraycopy(elements, p, a, 0, r);
128 <        System.arraycopy(elements, 0, a, r, p);
129 <        elements = (E[])a;
130 <        head = 0;
131 <        tail = n;
156 >    /* public */ void ensureCapacity(int minCapacity) {
157 >        int needed;
158 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 >            grow(needed);
160 >        // checkInvariants();
161      }
162  
163      /**
164 <     * Copies the elements from our element array into the specified array,
136 <     * in order (from first to last element in the deque).  It is assumed
137 <     * that the array is large enough to hold all elements in the deque.
164 >     * Minimizes the internal storage of this collection.
165       *
166 <     * @return its argument
166 >     * @since TBD
167       */
168 <    private <T> T[] copyElements(T[] a) {
169 <        if (head < tail) {
170 <            System.arraycopy(elements, head, a, 0, size());
171 <        } else if (head > tail) {
172 <            int headPortionLen = elements.length - head;
173 <            System.arraycopy(elements, head, a, 0, headPortionLen);
147 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
168 >    /* public */ void trimToSize() {
169 >        int size;
170 >        if ((size = size()) + 1 < elements.length) {
171 >            elements = toArray(new Object[size + 1]);
172 >            head = 0;
173 >            tail = size;
174          }
175 <        return a;
175 >        // checkInvariants();
176      }
177  
178      /**
# Line 154 | Line 180 | public class ArrayDeque<E> extends Abstr
180       * sufficient to hold 16 elements.
181       */
182      public ArrayDeque() {
183 <        elements = (E[]) new Object[16];
183 >        elements = new Object[16];
184      }
185  
186      /**
187       * Constructs an empty array deque with an initial capacity
188       * sufficient to hold the specified number of elements.
189       *
190 <     * @param numElements  lower bound on initial capacity of the deque
190 >     * @param numElements lower bound on initial capacity of the deque
191       */
192      public ArrayDeque(int numElements) {
193 <        allocateElements(numElements);
193 >        elements =
194 >            new Object[(numElements < 1) ? 1 :
195 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 >                       numElements + 1];
197      }
198  
199      /**
# Line 178 | Line 207 | public class ArrayDeque<E> extends Abstr
207       * @throws NullPointerException if the specified collection is null
208       */
209      public ArrayDeque(Collection<? extends E> c) {
210 <        allocateElements(c.size());
210 >        this(c.size());
211          addAll(c);
212      }
213  
214 +    /**
215 +     * Increments i, mod modulus.
216 +     * Precondition and postcondition: 0 <= i < modulus.
217 +     */
218 +    static final int inc(int i, int modulus) {
219 +        if (++i >= modulus) i = 0;
220 +        return i;
221 +    }
222 +
223 +    /**
224 +     * Decrements i, mod modulus.
225 +     * Precondition and postcondition: 0 <= i < modulus.
226 +     */
227 +    static final int dec(int i, int modulus) {
228 +        if (--i < 0) i = modulus - 1;
229 +        return i;
230 +    }
231 +
232 +    /**
233 +     * Circularly adds the given distance to index i, mod modulus.
234 +     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 +     * @return index 0 <= i < modulus
236 +     */
237 +    static final int add(int i, int distance, int modulus) {
238 +        if ((i += distance) - modulus >= 0) i -= modulus;
239 +        return i;
240 +    }
241 +
242 +    /**
243 +     * Subtracts j from i, mod modulus.
244 +     * Index i must be logically ahead of index j.
245 +     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 +     * @return the "circular distance" from j to i; corner case i == j
247 +     * is diambiguated to "empty", returning 0.
248 +     */
249 +    static final int sub(int i, int j, int modulus) {
250 +        if ((i -= j) < 0) i += modulus;
251 +        return i;
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
# Line 195 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
# Line 211 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        c.forEach(this::addLast);
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
334       * Inserts the specified element at the front of this deque.
335       *
336       * @param e the element to add
337 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
337 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
338       * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerFirst(E e) {
# Line 232 | Line 346 | public class ArrayDeque<E> extends Abstr
346       * Inserts the specified element at the end of this deque.
347       *
348       * @param e the element to add
349 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
349 >     * @return {@code true} (as specified by {@link Deque#offerLast})
350       * @throws NullPointerException if the specified element is null
351       */
352      public boolean offerLast(E e) {
# Line 244 | Line 358 | public class ArrayDeque<E> extends Abstr
358       * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369       * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379      public E pollFirst() {
380 <        int h = head;
381 <        E result = elements[h]; // Element is null if deque empty
382 <        if (result == null)
383 <            return null;
384 <        elements[h] = null;     // Must null out slot
385 <        head = (h + 1) & (elements.length - 1);
386 <        return result;
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386 >        }
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391      public E pollLast() {
392 <        int t = (tail - 1) & (elements.length - 1);
393 <        E result = elements[t];
394 <        if (result == null)
395 <            return null;
396 <        elements[t] = null;
397 <        tail = t;
398 <        return result;
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return x;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413       * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        E x = elements[(tail - 1) & (elements.length - 1)];
417 <        if (x == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return x;
420 >        // checkInvariants();
421 >        return e;
422      }
423  
424      public E peekFirst() {
425 <        return elements[head]; // elements[head] is null if deque empty
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427      }
428  
429      public E peekLast() {
430 <        return elements[(tail - 1) & (elements.length - 1)];
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
436       * Removes the first occurrence of the specified element in this
437       * deque (when traversing the deque from head to tail).
438       * If the deque does not contain the element, it is unchanged.
439 <     * More formally, removes the first element <tt>e</tt> such that
440 <     * <tt>o.equals(e)</tt> (if such an element exists).
441 <     * Returns <tt>true</tt> if this deque contained the specified element
439 >     * More formally, removes the first element {@code e} such that
440 >     * {@code o.equals(e)} (if such an element exists).
441 >     * Returns {@code true} if this deque contained the specified element
442       * (or equivalently, if this deque changed as a result of the call).
443       *
444       * @param o element to be removed from this deque, if present
445 <     * @return <tt>true</tt> if the deque contained the specified element
445 >     * @return {@code true} if the deque contained the specified element
446       */
447      public boolean removeFirstOccurrence(Object o) {
448 <        if (o == null)
449 <            return false;
450 <        int mask = elements.length - 1;
451 <        int i = head;
452 <        E x;
453 <        while ( (x = elements[i]) != null) {
454 <            if (o.equals(x)) {
455 <                delete(i);
456 <                return true;
448 >        if (o != null) {
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
334            i = (i + 1) & mask;
459          }
460          return false;
461      }
# Line 340 | Line 464 | public class ArrayDeque<E> extends Abstr
464       * Removes the last occurrence of the specified element in this
465       * deque (when traversing the deque from head to tail).
466       * If the deque does not contain the element, it is unchanged.
467 <     * More formally, removes the last element <tt>e</tt> such that
468 <     * <tt>o.equals(e)</tt> (if such an element exists).
469 <     * Returns <tt>true</tt> if this deque contained the specified element
467 >     * More formally, removes the last element {@code e} such that
468 >     * {@code o.equals(e)} (if such an element exists).
469 >     * Returns {@code true} if this deque contained the specified element
470       * (or equivalently, if this deque changed as a result of the call).
471       *
472       * @param o element to be removed from this deque, if present
473 <     * @return <tt>true</tt> if the deque contained the specified element
473 >     * @return {@code true} if the deque contained the specified element
474       */
475      public boolean removeLastOccurrence(Object o) {
476 <        if (o == null)
477 <            return false;
478 <        int mask = elements.length - 1;
479 <        int i = (tail - 1) & mask;
480 <        E x;
481 <        while ( (x = elements[i]) != null) {
482 <            if (o.equals(x)) {
483 <                delete(i);
484 <                return true;
476 >        if (o != null) {
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
362            i = (i - 1) & mask;
487          }
488          return false;
489      }
# Line 372 | Line 496 | public class ArrayDeque<E> extends Abstr
496       * <p>This method is equivalent to {@link #addLast}.
497       *
498       * @param e the element to add
499 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
499 >     * @return {@code true} (as specified by {@link Collection#add})
500       * @throws NullPointerException if the specified element is null
501       */
502      public boolean add(E e) {
# Line 386 | Line 510 | public class ArrayDeque<E> extends Abstr
510       * <p>This method is equivalent to {@link #offerLast}.
511       *
512       * @param e the element to add
513 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
513 >     * @return {@code true} (as specified by {@link Queue#offer})
514       * @throws NullPointerException if the specified element is null
515       */
516      public boolean offer(E e) {
# Line 411 | Line 535 | public class ArrayDeque<E> extends Abstr
535      /**
536       * Retrieves and removes the head of the queue represented by this deque
537       * (in other words, the first element of this deque), or returns
538 <     * <tt>null</tt> if this deque is empty.
538 >     * {@code null} if this deque is empty.
539       *
540       * <p>This method is equivalent to {@link #pollFirst}.
541       *
542       * @return the head of the queue represented by this deque, or
543 <     *         <tt>null</tt> if this deque is empty
543 >     *         {@code null} if this deque is empty
544       */
545      public E poll() {
546          return pollFirst();
# Line 438 | Line 562 | public class ArrayDeque<E> extends Abstr
562  
563      /**
564       * Retrieves, but does not remove, the head of the queue represented by
565 <     * this deque, or returns <tt>null</tt> if this deque is empty.
565 >     * this deque, or returns {@code null} if this deque is empty.
566       *
567       * <p>This method is equivalent to {@link #peekFirst}.
568       *
569       * @return the head of the queue represented by this deque, or
570 <     *         <tt>null</tt> if this deque is empty
570 >     *         {@code null} if this deque is empty
571       */
572      public E peek() {
573          return peekFirst();
# Line 478 | Line 602 | public class ArrayDeque<E> extends Abstr
602          return removeFirst();
603      }
604  
481    private void checkInvariants() {
482        assert elements[tail] == null;
483        assert head == tail ? elements[head] == null :
484            (elements[head] != null &&
485             elements[(tail - 1) & (elements.length - 1)] != null);
486        assert elements[(head - 1) & (elements.length - 1)] == null;
487    }
488
605      /**
606 <     * Removes the element at the specified position in the elements array,
607 <     * adjusting head and tail as necessary.  This can result in motion of
608 <     * elements backwards or forwards in the array.
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609       *
610       * <p>This method is called delete rather than remove to emphasize
611       * that its semantics differ from those of {@link List#remove(int)}.
612       *
613 <     * @return true if elements moved backwards
613 >     * @return true if elements near tail moved backwards
614       */
615 <    private boolean delete(int i) {
616 <        checkInvariants();
617 <        final E[] elements = this.elements;
618 <        final int mask = elements.length - 1;
619 <        final int h = head;
620 <        final int t = tail;
621 <        final int front = (i - h) & mask;
622 <        final int back  = (t - i) & mask;
623 <
508 <        // Invariant: head <= i < tail mod circularity
509 <        if (front >= ((t - h) & mask))
510 <            throw new ConcurrentModificationException();
511 <
512 <        // Optimize for least element motion
615 >    boolean delete(int i) {
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624          if (front < back) {
625 +            // move front elements forwards
626              if (h <= i) {
627 <                System.arraycopy(elements, h, elements, h + 1, front);
627 >                System.arraycopy(es, h, es, h + 1, front);
628              } else { // Wrap around
629 <                System.arraycopy(elements, 0, elements, 1, i);
630 <                elements[0] = elements[mask];
631 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
629 >                System.arraycopy(es, 0, es, 1, i);
630 >                es[0] = es[capacity - 1];
631 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
632              }
633 <            elements[h] = null;
634 <            head = (h + 1) & mask;
633 >            es[h] = null;
634 >            head = inc(h, capacity);
635 >            // checkInvariants();
636              return false;
637          } else {
638 <            if (i < t) { // Copy the null tail as well
639 <                System.arraycopy(elements, i + 1, elements, i, back);
640 <                tail = t - 1;
638 >            // move back elements backwards
639 >            tail = dec(t, capacity);
640 >            if (i <= tail) {
641 >                System.arraycopy(es, i + 1, es, i, back);
642              } else { // Wrap around
643 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
644 <                elements[mask] = elements[0];
645 <                System.arraycopy(elements, 1, elements, 0, t);
532 <                tail = (t - 1) & mask;
643 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644 >                es[capacity - 1] = es[0];
645 >                System.arraycopy(es, 1, es, 0, t - 1);
646              }
647 +            es[tail] = null;
648 +            // checkInvariants();
649              return true;
650          }
651      }
# Line 543 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this deque contains no elements.
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this deque contains no elements
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670          return head == tail;
# Line 572 | Line 687 | public class ArrayDeque<E> extends Abstr
687      }
688  
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
577 <         */
578 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
582 <         * iterator and also to check for comodification.
583 <         */
584 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701 >
702 >        DeqIterator() { cursor = head; }
703  
704 <        public boolean hasNext() {
705 <            return cursor != fence;
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            E result = elements[cursor];
712 <            // This check doesn't catch all possible comodifications,
713 <            // but does catch the ones that corrupt traversal
714 <            if (tail != fence || result == null)
715 <                throw new ConcurrentModificationException();
604 <            lastRet = cursor;
605 <            cursor = (cursor + 1) & (elements.length - 1);
606 <            return result;
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713 >            cursor = inc(lastRet = cursor, es.length);
714 >            remaining--;
715 >            return e;
716          }
717  
718 <        public void remove() {
718 >        void postDelete(boolean leftShifted) {
719 >            if (leftShifted)
720 >                cursor = dec(cursor, elements.length);
721 >        }
722 >
723 >        public final void remove() {
724              if (lastRet < 0)
725                  throw new IllegalStateException();
726 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
613 <                cursor = (cursor - 1) & (elements.length - 1);
614 <                fence = tail;
615 <            }
726 >            postDelete(delete(lastRet));
727              lastRet = -1;
728          }
729 +
730 +        public void forEachRemaining(Consumer<? super E> action) {
731 +            Objects.requireNonNull(action);
732 +            int r;
733 +            if ((r = remaining) <= 0)
734 +                return;
735 +            remaining = 0;
736 +            final Object[] es = elements;
737 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
738 +                throw new ConcurrentModificationException();
739 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
740 +                 ; i = 0, to = end) {
741 +                for (; i < to; i++)
742 +                    action.accept(elementAt(es, i));
743 +                if (to == end) {
744 +                    if (end != tail)
745 +                        throw new ConcurrentModificationException();
746 +                    lastRet = dec(end, es.length);
747 +                    break;
748 +                }
749 +            }
750 +        }
751      }
752  
753 <    private class DescendingIterator implements Iterator<E> {
754 <        /*
622 <         * This class is nearly a mirror-image of DeqIterator, using
623 <         * tail instead of head for initial cursor, and head instead of
624 <         * tail for fence.
625 <         */
626 <        private int cursor = tail;
627 <        private int fence = head;
628 <        private int lastRet = -1;
753 >    private class DescendingIterator extends DeqIterator {
754 >        DescendingIterator() { cursor = dec(tail, elements.length); }
755  
756 <        public boolean hasNext() {
757 <            return cursor != fence;
756 >        public final E next() {
757 >            if (remaining <= 0)
758 >                throw new NoSuchElementException();
759 >            final Object[] es = elements;
760 >            E e = nonNullElementAt(es, cursor);
761 >            cursor = dec(lastRet = cursor, es.length);
762 >            remaining--;
763 >            return e;
764          }
765  
766 <        public E next() {
767 <            if (cursor == fence)
768 <                throw new NoSuchElementException();
769 <            cursor = (cursor - 1) & (elements.length - 1);
770 <            E result = elements[cursor];
771 <            if (head != fence || result == null)
766 >        void postDelete(boolean leftShifted) {
767 >            if (!leftShifted)
768 >                cursor = inc(cursor, elements.length);
769 >        }
770 >
771 >        public final void forEachRemaining(Consumer<? super E> action) {
772 >            Objects.requireNonNull(action);
773 >            int r;
774 >            if ((r = remaining) <= 0)
775 >                return;
776 >            remaining = 0;
777 >            final Object[] es = elements;
778 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
779                  throw new ConcurrentModificationException();
780 <            lastRet = cursor;
781 <            return result;
780 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
781 >                 ; i = es.length - 1, to = end) {
782 >                // hotspot generates faster code than for: i >= to !
783 >                for (; i > to - 1; i--)
784 >                    action.accept(elementAt(es, i));
785 >                if (to == end) {
786 >                    if (end != head)
787 >                        throw new ConcurrentModificationException();
788 >                    lastRet = end;
789 >                    break;
790 >                }
791 >            }
792          }
793 +    }
794  
795 <        public void remove() {
796 <            if (lastRet < 0)
797 <                throw new IllegalStateException();
798 <            if (!delete(lastRet)) {
799 <                cursor = (cursor + 1) & (elements.length - 1);
800 <                fence = head;
795 >    /**
796 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
797 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
798 >     * deque.
799 >     *
800 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
801 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
802 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
803 >     * the reporting of additional characteristic values.
804 >     *
805 >     * @return a {@code Spliterator} over the elements in this deque
806 >     * @since 1.8
807 >     */
808 >    public Spliterator<E> spliterator() {
809 >        return new DeqSpliterator();
810 >    }
811 >
812 >    final class DeqSpliterator implements Spliterator<E> {
813 >        private int fence;      // -1 until first use
814 >        private int cursor;     // current index, modified on traverse/split
815 >
816 >        /** Constructs late-binding spliterator over all elements. */
817 >        DeqSpliterator() {
818 >            this.fence = -1;
819 >        }
820 >
821 >        /** Constructs spliterator over the given range. */
822 >        DeqSpliterator(int origin, int fence) {
823 >            // assert 0 <= origin && origin < elements.length;
824 >            // assert 0 <= fence && fence < elements.length;
825 >            this.cursor = origin;
826 >            this.fence = fence;
827 >        }
828 >
829 >        /** Ensures late-binding initialization; then returns fence. */
830 >        private int getFence() { // force initialization
831 >            int t;
832 >            if ((t = fence) < 0) {
833 >                t = fence = tail;
834 >                cursor = head;
835              }
836 <            lastRet = -1;
836 >            return t;
837 >        }
838 >
839 >        public DeqSpliterator trySplit() {
840 >            final Object[] es = elements;
841 >            final int i, n;
842 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 >                ? null
844 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
845 >        }
846 >
847 >        public void forEachRemaining(Consumer<? super E> action) {
848 >            if (action == null)
849 >                throw new NullPointerException();
850 >            final int end = getFence(), cursor = this.cursor;
851 >            final Object[] es = elements;
852 >            if (cursor != end) {
853 >                this.cursor = end;
854 >                // null check at both ends of range is sufficient
855 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 >                    throw new ConcurrentModificationException();
857 >                for (int i = cursor, to = (i <= end) ? end : es.length;
858 >                     ; i = 0, to = end) {
859 >                    for (; i < to; i++)
860 >                        action.accept(elementAt(es, i));
861 >                    if (to == end) break;
862 >                }
863 >            }
864 >        }
865 >
866 >        public boolean tryAdvance(Consumer<? super E> action) {
867 >            Objects.requireNonNull(action);
868 >            final Object[] es = elements;
869 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
870 >            final int i;
871 >            if ((i = cursor) == fence)
872 >                return false;
873 >            E e = nonNullElementAt(es, i);
874 >            cursor = inc(i, es.length);
875 >            action.accept(e);
876 >            return true;
877 >        }
878 >
879 >        public long estimateSize() {
880 >            return sub(getFence(), cursor, elements.length);
881 >        }
882 >
883 >        public int characteristics() {
884 >            return Spliterator.NONNULL
885 >                | Spliterator.ORDERED
886 >                | Spliterator.SIZED
887 >                | Spliterator.SUBSIZED;
888          }
889      }
890  
891 +    public void forEach(Consumer<? super E> action) {
892 +        Objects.requireNonNull(action);
893 +        final Object[] es = elements;
894 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
895 +             ; i = 0, to = end) {
896 +            for (; i < to; i++)
897 +                action.accept(elementAt(es, i));
898 +            if (to == end) {
899 +                if (end != tail) throw new ConcurrentModificationException();
900 +                break;
901 +            }
902 +        }
903 +        // checkInvariants();
904 +    }
905 +
906      /**
907 <     * Returns <tt>true</tt> if this deque contains the specified element.
908 <     * More formally, returns <tt>true</tt> if and only if this deque contains
909 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
907 >     * Replaces each element of this deque with the result of applying the
908 >     * operator to that element, as specified by {@link List#replaceAll}.
909 >     *
910 >     * @param operator the operator to apply to each element
911 >     * @since TBD
912 >     */
913 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
914 >        Objects.requireNonNull(operator);
915 >        final Object[] es = elements;
916 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
917 >             ; i = 0, to = end) {
918 >            for (; i < to; i++)
919 >                es[i] = operator.apply(elementAt(es, i));
920 >            if (to == end) {
921 >                if (end != tail) throw new ConcurrentModificationException();
922 >                break;
923 >            }
924 >        }
925 >        // checkInvariants();
926 >    }
927 >
928 >    /**
929 >     * @throws NullPointerException {@inheritDoc}
930 >     */
931 >    public boolean removeIf(Predicate<? super E> filter) {
932 >        Objects.requireNonNull(filter);
933 >        return bulkRemove(filter);
934 >    }
935 >
936 >    /**
937 >     * @throws NullPointerException {@inheritDoc}
938 >     */
939 >    public boolean removeAll(Collection<?> c) {
940 >        Objects.requireNonNull(c);
941 >        return bulkRemove(e -> c.contains(e));
942 >    }
943 >
944 >    /**
945 >     * @throws NullPointerException {@inheritDoc}
946 >     */
947 >    public boolean retainAll(Collection<?> c) {
948 >        Objects.requireNonNull(c);
949 >        return bulkRemove(e -> !c.contains(e));
950 >    }
951 >
952 >    /** Implementation of bulk remove methods. */
953 >    private boolean bulkRemove(Predicate<? super E> filter) {
954 >        // checkInvariants();
955 >        final Object[] es = elements;
956 >        // Optimize for initial run of survivors
957 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
958 >             ; i = 0, to = end) {
959 >            for (; i < to; i++)
960 >                if (filter.test(elementAt(es, i)))
961 >                    return bulkRemoveModified(filter, i);
962 >            if (to == end) {
963 >                if (end != tail) throw new ConcurrentModificationException();
964 >                break;
965 >            }
966 >        }
967 >        return false;
968 >    }
969 >
970 >    // A tiny bit set implementation
971 >
972 >    private static long[] nBits(int n) {
973 >        return new long[((n - 1) >> 6) + 1];
974 >    }
975 >    private static void setBit(long[] bits, int i) {
976 >        bits[i >> 6] |= 1L << i;
977 >    }
978 >    private static boolean isClear(long[] bits, int i) {
979 >        return (bits[i >> 6] & (1L << i)) == 0;
980 >    }
981 >
982 >    /**
983 >     * Helper for bulkRemove, in case of at least one deletion.
984 >     * Tolerate predicates that reentrantly access the collection for
985 >     * read (but writers still get CME), so traverse once to find
986 >     * elements to delete, a second pass to physically expunge.
987 >     *
988 >     * @param beg valid index of first element to be deleted
989 >     */
990 >    private boolean bulkRemoveModified(
991 >        Predicate<? super E> filter, final int beg) {
992 >        final Object[] es = elements;
993 >        final int capacity = es.length;
994 >        final int end = tail;
995 >        final long[] deathRow = nBits(sub(end, beg, capacity));
996 >        deathRow[0] = 1L;   // set bit 0
997 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
998 >             ; i = 0, to = end, k -= capacity) {
999 >            for (; i < to; i++)
1000 >                if (filter.test(elementAt(es, i)))
1001 >                    setBit(deathRow, i - k);
1002 >            if (to == end) break;
1003 >        }
1004 >        // a two-finger traversal, with hare i reading, tortoise w writing
1005 >        int w = beg;
1006 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1007 >             ; w = 0) { // w rejoins i on second leg
1008 >            // In this loop, i and w are on the same leg, with i > w
1009 >            for (; i < to; i++)
1010 >                if (isClear(deathRow, i - k))
1011 >                    es[w++] = es[i];
1012 >            if (to == end) break;
1013 >            // In this loop, w is on the first leg, i on the second
1014 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1015 >                if (isClear(deathRow, i - k))
1016 >                    es[w++] = es[i];
1017 >            if (i >= to) {
1018 >                if (w == capacity) w = 0; // "corner" case
1019 >                break;
1020 >            }
1021 >        }
1022 >        if (end != tail) throw new ConcurrentModificationException();
1023 >        circularClear(es, tail = w, end);
1024 >        // checkInvariants();
1025 >        return true;
1026 >    }
1027 >
1028 >    /**
1029 >     * Returns {@code true} if this deque contains the specified element.
1030 >     * More formally, returns {@code true} if and only if this deque contains
1031 >     * at least one element {@code e} such that {@code o.equals(e)}.
1032       *
1033       * @param o object to be checked for containment in this deque
1034 <     * @return <tt>true</tt> if this deque contains the specified element
1034 >     * @return {@code true} if this deque contains the specified element
1035       */
1036      public boolean contains(Object o) {
1037 <        if (o == null)
1038 <            return false;
1039 <        int mask = elements.length - 1;
1040 <        int i = head;
1041 <        E x;
1042 <        while ( (x = elements[i]) != null) {
1043 <            if (o.equals(x))
1044 <                return true;
1045 <            i = (i + 1) & mask;
1037 >        if (o != null) {
1038 >            final Object[] es = elements;
1039 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1040 >                 ; i = 0, to = end) {
1041 >                for (; i < to; i++)
1042 >                    if (o.equals(es[i]))
1043 >                        return true;
1044 >                if (to == end) break;
1045 >            }
1046          }
1047          return false;
1048      }
# Line 678 | Line 1050 | public class ArrayDeque<E> extends Abstr
1050      /**
1051       * Removes a single instance of the specified element from this deque.
1052       * If the deque does not contain the element, it is unchanged.
1053 <     * More formally, removes the first element <tt>e</tt> such that
1054 <     * <tt>o.equals(e)</tt> (if such an element exists).
1055 <     * Returns <tt>true</tt> if this deque contained the specified element
1053 >     * More formally, removes the first element {@code e} such that
1054 >     * {@code o.equals(e)} (if such an element exists).
1055 >     * Returns {@code true} if this deque contained the specified element
1056       * (or equivalently, if this deque changed as a result of the call).
1057       *
1058 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1058 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1059       *
1060       * @param o element to be removed from this deque, if present
1061 <     * @return <tt>true</tt> if this deque contained the specified element
1061 >     * @return {@code true} if this deque contained the specified element
1062       */
1063      public boolean remove(Object o) {
1064          return removeFirstOccurrence(o);
# Line 697 | Line 1069 | public class ArrayDeque<E> extends Abstr
1069       * The deque will be empty after this call returns.
1070       */
1071      public void clear() {
1072 <        int h = head;
1073 <        int t = tail;
1074 <        if (h != t) { // clear all cells
1075 <            head = tail = 0;
1076 <            int i = h;
1077 <            int mask = elements.length - 1;
1078 <            do {
1079 <                elements[i] = null;
1080 <                i = (i + 1) & mask;
1081 <            } while (i != t);
1072 >        circularClear(elements, head, tail);
1073 >        head = tail = 0;
1074 >        // checkInvariants();
1075 >    }
1076 >
1077 >    /**
1078 >     * Nulls out slots starting at array index i, upto index end.
1079 >     */
1080 >    private static void circularClear(Object[] es, int i, int end) {
1081 >        for (int to = (i <= end) ? end : es.length;
1082 >             ; i = 0, to = end) {
1083 >            Arrays.fill(es, i, to, null);
1084 >            if (to == end) break;
1085          }
1086      }
1087  
# Line 724 | Line 1099 | public class ArrayDeque<E> extends Abstr
1099       * @return an array containing all of the elements in this deque
1100       */
1101      public Object[] toArray() {
1102 <        return copyElements(new Object[size()]);
1102 >        return toArray(Object[].class);
1103 >    }
1104 >
1105 >    private <T> T[] toArray(Class<T[]> klazz) {
1106 >        final Object[] es = elements;
1107 >        final T[] a;
1108 >        final int head = this.head, tail = this.tail, end;
1109 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1110 >            // Uses null extension feature of copyOfRange
1111 >            a = Arrays.copyOfRange(es, head, end, klazz);
1112 >        } else {
1113 >            // integer overflow!
1114 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1115 >            System.arraycopy(es, head, a, 0, es.length - head);
1116 >        }
1117 >        if (end != tail)
1118 >            System.arraycopy(es, 0, a, es.length - head, tail);
1119 >        return a;
1120      }
1121  
1122      /**
# Line 738 | Line 1130 | public class ArrayDeque<E> extends Abstr
1130       * <p>If this deque fits in the specified array with room to spare
1131       * (i.e., the array has more elements than this deque), the element in
1132       * the array immediately following the end of the deque is set to
1133 <     * <tt>null</tt>.
1133 >     * {@code null}.
1134       *
1135       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1136       * array-based and collection-based APIs.  Further, this method allows
1137       * precise control over the runtime type of the output array, and may,
1138       * under certain circumstances, be used to save allocation costs.
1139       *
1140 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1140 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1141       * The following code can be used to dump the deque into a newly
1142 <     * allocated array of <tt>String</tt>:
1142 >     * allocated array of {@code String}:
1143       *
1144 <     * <pre>
753 <     *     String[] y = x.toArray(new String[0]);</pre>
1144 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1145       *
1146 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1147 <     * <tt>toArray()</tt>.
1146 >     * Note that {@code toArray(new Object[0])} is identical in function to
1147 >     * {@code toArray()}.
1148       *
1149       * @param a the array into which the elements of the deque are to
1150       *          be stored, if it is big enough; otherwise, a new array of the
# Line 764 | Line 1155 | public class ArrayDeque<E> extends Abstr
1155       *         this deque
1156       * @throws NullPointerException if the specified array is null
1157       */
1158 +    @SuppressWarnings("unchecked")
1159      public <T> T[] toArray(T[] a) {
1160 <        int size = size();
1161 <        if (a.length < size)
1162 <            a = (T[])java.lang.reflect.Array.newInstance(
1163 <                    a.getClass().getComponentType(), size);
1164 <        copyElements(a);
1165 <        if (a.length > size)
1160 >        final int size;
1161 >        if ((size = size()) > a.length)
1162 >            return toArray((Class<T[]>) a.getClass());
1163 >        final Object[] es = elements;
1164 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1165 >             ; i = 0, len = tail) {
1166 >            System.arraycopy(es, i, a, j, len);
1167 >            if ((j += len) == size) break;
1168 >        }
1169 >        if (size < a.length)
1170              a[size] = null;
1171          return a;
1172      }
# Line 784 | Line 1180 | public class ArrayDeque<E> extends Abstr
1180       */
1181      public ArrayDeque<E> clone() {
1182          try {
1183 +            @SuppressWarnings("unchecked")
1184              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1185              result.elements = Arrays.copyOf(elements, elements.length);
1186              return result;
790
1187          } catch (CloneNotSupportedException e) {
1188              throw new AssertionError();
1189          }
1190      }
1191  
796    /**
797     * Appease the serialization gods.
798     */
1192      private static final long serialVersionUID = 2340985798034038923L;
1193  
1194      /**
1195 <     * Serialize this deque.
1195 >     * Saves this deque to a stream (that is, serializes it).
1196       *
1197 <     * @serialData The current size (<tt>int</tt>) of the deque,
1197 >     * @param s the stream
1198 >     * @throws java.io.IOException if an I/O error occurs
1199 >     * @serialData The current size ({@code int}) of the deque,
1200       * followed by all of its elements (each an object reference) in
1201       * first-to-last order.
1202       */
1203 <    private void writeObject(ObjectOutputStream s) throws IOException {
1203 >    private void writeObject(java.io.ObjectOutputStream s)
1204 >            throws java.io.IOException {
1205          s.defaultWriteObject();
1206  
1207          // Write out size
1208          s.writeInt(size());
1209  
1210          // Write out elements in order.
1211 <        int mask = elements.length - 1;
1212 <        for (int i = head; i != tail; i = (i + 1) & mask)
1213 <            s.writeObject(elements[i]);
1211 >        final Object[] es = elements;
1212 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1213 >             ; i = 0, to = end) {
1214 >            for (; i < to; i++)
1215 >                s.writeObject(es[i]);
1216 >            if (to == end) break;
1217 >        }
1218      }
1219  
1220      /**
1221 <     * Deserialize this deque.
1221 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1222 >     * @param s the stream
1223 >     * @throws ClassNotFoundException if the class of a serialized object
1224 >     *         could not be found
1225 >     * @throws java.io.IOException if an I/O error occurs
1226       */
1227 <    private void readObject(ObjectInputStream s)
1228 <            throws IOException, ClassNotFoundException {
1227 >    private void readObject(java.io.ObjectInputStream s)
1228 >            throws java.io.IOException, ClassNotFoundException {
1229          s.defaultReadObject();
1230  
1231          // Read in size and allocate array
1232          int size = s.readInt();
1233 <        allocateElements(size);
1234 <        head = 0;
831 <        tail = size;
1233 >        elements = new Object[size + 1];
1234 >        this.tail = size;
1235  
1236          // Read in all elements in the proper order.
1237          for (int i = 0; i < size; i++)
1238 <            elements[i] = (E)s.readObject();
1238 >            elements[i] = s.readObject();
1239      }
1240 +
1241 +    /** debugging */
1242 +    void checkInvariants() {
1243 +        // Use head and tail fields with empty slot at tail strategy.
1244 +        // head == tail disambiguates to "empty".
1245 +        try {
1246 +            int capacity = elements.length;
1247 +            // assert 0 <= head && head < capacity;
1248 +            // assert 0 <= tail && tail < capacity;
1249 +            // assert capacity > 0;
1250 +            // assert size() < capacity;
1251 +            // assert head == tail || elements[head] != null;
1252 +            // assert elements[tail] == null;
1253 +            // assert head == tail || elements[dec(tail, capacity)] != null;
1254 +        } catch (Throwable t) {
1255 +            System.err.printf("head=%d tail=%d capacity=%d%n",
1256 +                              head, tail, elements.length);
1257 +            System.err.printf("elements=%s%n",
1258 +                              Arrays.toString(elements));
1259 +            throw t;
1260 +        }
1261 +    }
1262 +
1263   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines