ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.30 by jsr166, Sun May 18 23:47:55 2008 UTC vs.
Revision 1.87 by jsr166, Sun Oct 23 23:38:09 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 34 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 48 | Line 54 | import java.io.*;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
52 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
61 <     * full, except transiently within an addX method where it is
62 <     * resized (see doubleCapacity) immediately upon becoming full,
63 <     * thus avoiding head and tail wrapping around to equal each
64 <     * other.  We also guarantee that all array cells not holding
65 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private transient int head;
75 >    transient int head;
76  
77 <    /**
78 <     * The index at which the next element would be added to the tail
78 <     * of the deque (via addLast(E), add(E), or push(E)).
79 <     */
80 <    private transient int tail;
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * The minimum capacity that we'll use for a newly created deque.
82 <     * Must be a power of 2.
83 <     */
84 <    private static final int MIN_INITIAL_CAPACITY = 8;
85 <
86 <    // ******  Array allocation and resizing utilities ******
87 <
88 <    /**
89 <     * Allocate empty array to hold the given number of elements.
90 <     *
91 <     * @param numElements  the number of elements to hold
92 <     */
93 <    private void allocateElements(int numElements) {
94 <        int initialCapacity = MIN_INITIAL_CAPACITY;
95 <        // Find the best power of two to hold elements.
96 <        // Tests "<=" because arrays aren't kept full.
97 <        if (numElements >= initialCapacity) {
98 <            initialCapacity = numElements;
99 <            initialCapacity |= (initialCapacity >>>  1);
100 <            initialCapacity |= (initialCapacity >>>  2);
101 <            initialCapacity |= (initialCapacity >>>  4);
102 <            initialCapacity |= (initialCapacity >>>  8);
103 <            initialCapacity |= (initialCapacity >>> 16);
104 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        int oldCapacity = elements.length;
119 >        int minCapacity;
120 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
121 >            if (minCapacity < 0)
122 >                throw new IllegalStateException("Sorry, deque too big");
123 >            return Integer.MAX_VALUE;
124          }
125 <        elements = (E[]) new Object[initialCapacity];
125 >        if (needed > jump)
126 >            return minCapacity;
127 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
128 >            ? oldCapacity + jump
129 >            : MAX_ARRAY_SIZE;
130      }
131  
132      /**
133 <     * Double the capacity of this deque.  Call only when full, i.e.,
134 <     * when head and tail have wrapped around to become equal.
133 >     * Increases the internal storage of this collection, if necessary,
134 >     * to ensure that it can hold at least the given number of elements.
135 >     *
136 >     * @param minCapacity the desired minimum capacity
137 >     * @since TBD
138       */
139 <    private void doubleCapacity() {
140 <        assert head == tail;
141 <        int p = head;
142 <        int n = elements.length;
122 <        int r = n - p; // number of elements to the right of p
123 <        int newCapacity = n << 1;
124 <        if (newCapacity < 0)
125 <            throw new IllegalStateException("Sorry, deque too big");
126 <        Object[] a = new Object[newCapacity];
127 <        System.arraycopy(elements, p, a, 0, r);
128 <        System.arraycopy(elements, 0, a, r, p);
129 <        elements = (E[])a;
130 <        head = 0;
131 <        tail = n;
139 >    /* public */ void ensureCapacity(int minCapacity) {
140 >        if (minCapacity > elements.length)
141 >            grow(minCapacity - elements.length);
142 >        // checkInvariants();
143      }
144  
145      /**
146 <     * Copies the elements from our element array into the specified array,
136 <     * in order (from first to last element in the deque).  It is assumed
137 <     * that the array is large enough to hold all elements in the deque.
146 >     * Minimizes the internal storage of this collection.
147       *
148 <     * @return its argument
148 >     * @since TBD
149       */
150 <    private <T> T[] copyElements(T[] a) {
151 <        if (head < tail) {
152 <            System.arraycopy(elements, head, a, 0, size());
153 <        } else if (head > tail) {
145 <            int headPortionLen = elements.length - head;
146 <            System.arraycopy(elements, head, a, 0, headPortionLen);
147 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
150 >    /* public */ void trimToSize() {
151 >        if (size < elements.length) {
152 >            elements = toArray();
153 >            head = 0;
154          }
155 <        return a;
155 >        // checkInvariants();
156      }
157  
158      /**
# Line 154 | Line 160 | public class ArrayDeque<E> extends Abstr
160       * sufficient to hold 16 elements.
161       */
162      public ArrayDeque() {
163 <        elements = (E[]) new Object[16];
163 >        elements = new Object[16];
164      }
165  
166      /**
167       * Constructs an empty array deque with an initial capacity
168       * sufficient to hold the specified number of elements.
169       *
170 <     * @param numElements  lower bound on initial capacity of the deque
170 >     * @param numElements lower bound on initial capacity of the deque
171       */
172      public ArrayDeque(int numElements) {
173 <        allocateElements(numElements);
173 >        elements = new Object[numElements];
174      }
175  
176      /**
# Line 178 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * @throws NullPointerException if the specified collection is null
185       */
186      public ArrayDeque(Collection<? extends E> c) {
187 <        allocateElements(c.size());
188 <        addAll(c);
187 >        Object[] elements = c.toArray();
188 >        // defend against c.toArray (incorrectly) not returning Object[]
189 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 >        size = elements.length;
191 >        if (elements.getClass() != Object[].class)
192 >            elements = Arrays.copyOf(elements, size, Object[].class);
193 >        for (Object obj : elements)
194 >            Objects.requireNonNull(obj);
195 >        this.elements = elements;
196 >    }
197 >
198 >    /**
199 >     * Increments i, mod modulus.
200 >     * Precondition and postcondition: 0 <= i < modulus.
201 >     */
202 >    static final int inc(int i, int modulus) {
203 >        if (++i == modulus) i = 0;
204 >        return i;
205 >    }
206 >
207 >    /**
208 >     * Decrements i, mod modulus.
209 >     * Precondition and postcondition: 0 <= i < modulus.
210 >     */
211 >    static final int dec(int i, int modulus) {
212 >        if (--i < 0) i += modulus;
213 >        return i;
214 >    }
215 >
216 >    /**
217 >     * Adds i and j, mod modulus.
218 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
219 >     */
220 >    static final int add(int i, int j, int modulus) {
221 >        if ((i += j) - modulus >= 0) i -= modulus;
222 >        return i;
223 >    }
224 >
225 >    /**
226 >     * Returns the array index of the last element.
227 >     * May return invalid index -1 if there are no elements.
228 >     */
229 >    final int tail() {
230 >        return add(head, size - 1, elements.length);
231 >    }
232 >
233 >    /**
234 >     * Returns element at array index i.
235 >     */
236 >    @SuppressWarnings("unchecked")
237 >    final E elementAt(int i) {
238 >        return (E) elements[i];
239 >    }
240 >
241 >    /**
242 >     * A version of elementAt that checks for null elements.
243 >     * This check doesn't catch all possible comodifications,
244 >     * but does catch ones that corrupt traversal.
245 >     */
246 >    E checkedElementAt(Object[] elements, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
248 >        if (e == null)
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253      // The main insertion and extraction methods are addFirst,
# Line 193 | Line 261 | public class ArrayDeque<E> extends Abstr
261       * @throws NullPointerException if the specified element is null
262       */
263      public void addFirst(E e) {
264 <        if (e == null)
265 <            throw new NullPointerException();
266 <        elements[head = (head - 1) & (elements.length - 1)] = e;
267 <        if (head == tail)
268 <            doubleCapacity();
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        final Object[] elements;
267 >        final int capacity, s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length))
269 >            addFirstSlowPath(e);
270 >        else
271 >            elements[head = dec(head, capacity)] = e;
272 >        size = s + 1;
273 >        // checkInvariants();
274 >    }
275 >
276 >    private void addFirstSlowPath(E e) {
277 >        grow(1);
278 >        final Object[] elements = this.elements;
279 >        elements[head = dec(head, elements.length)] = e;
280      }
281  
282      /**
# Line 209 | Line 288 | public class ArrayDeque<E> extends Abstr
288       * @throws NullPointerException if the specified element is null
289       */
290      public void addLast(E e) {
291 <        if (e == null)
292 <            throw new NullPointerException();
293 <        elements[tail] = e;
294 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
295 <            doubleCapacity();
291 >        // checkInvariants();
292 >        Objects.requireNonNull(e);
293 >        final Object[] elements;
294 >        final int capacity, s;
295 >        if ((s = size) == (capacity = (elements = this.elements).length))
296 >            addLastSlowPath(e);
297 >        else
298 >            elements[add(head, s, capacity)] = e;
299 >        size = s + 1;
300 >        // checkInvariants();
301 >    }
302 >
303 >    private void addLastSlowPath(E e) {
304 >        grow(1);
305 >        final Object[] elements = this.elements;
306 >        elements[add(head, size, elements.length)] = e;
307 >    }
308 >
309 >    /**
310 >     * Adds all of the elements in the specified collection at the end
311 >     * of this deque, as if by calling {@link #addLast} on each one,
312 >     * in the order that they are returned by the collection's
313 >     * iterator.
314 >     *
315 >     * @param c the elements to be inserted into this deque
316 >     * @return {@code true} if this deque changed as a result of the call
317 >     * @throws NullPointerException if the specified collection or any
318 >     *         of its elements are null
319 >     */
320 >    public boolean addAll(Collection<? extends E> c) {
321 >        final int s = size, needed = c.size() - (elements.length - s);
322 >        if (needed > 0)
323 >            grow(needed);
324 >        c.forEach((e) -> addLast(e));
325 >        // checkInvariants();
326 >        return size > s;
327      }
328  
329      /**
330       * Inserts the specified element at the front of this deque.
331       *
332       * @param e the element to add
333 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
333 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
334       * @throws NullPointerException if the specified element is null
335       */
336      public boolean offerFirst(E e) {
# Line 232 | Line 342 | public class ArrayDeque<E> extends Abstr
342       * Inserts the specified element at the end of this deque.
343       *
344       * @param e the element to add
345 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
345 >     * @return {@code true} (as specified by {@link Deque#offerLast})
346       * @throws NullPointerException if the specified element is null
347       */
348      public boolean offerLast(E e) {
# Line 244 | Line 354 | public class ArrayDeque<E> extends Abstr
354       * @throws NoSuchElementException {@inheritDoc}
355       */
356      public E removeFirst() {
357 <        E x = pollFirst();
358 <        if (x == null)
357 >        // checkInvariants();
358 >        E e = pollFirst();
359 >        if (e == null)
360              throw new NoSuchElementException();
361 <        return x;
361 >        return e;
362      }
363  
364      /**
365       * @throws NoSuchElementException {@inheritDoc}
366       */
367      public E removeLast() {
368 <        E x = pollLast();
369 <        if (x == null)
368 >        // checkInvariants();
369 >        E e = pollLast();
370 >        if (e == null)
371              throw new NoSuchElementException();
372 <        return x;
372 >        return e;
373      }
374  
375      public E pollFirst() {
376 <        int h = head;
377 <        E result = elements[h]; // Element is null if deque empty
378 <        if (result == null)
376 >        // checkInvariants();
377 >        final int s, h;
378 >        if ((s = size) == 0)
379              return null;
380 <        elements[h] = null;     // Must null out slot
381 <        head = (h + 1) & (elements.length - 1);
382 <        return result;
380 >        final Object[] elements = this.elements;
381 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
382 >        elements[h] = null;
383 >        head = inc(h, elements.length);
384 >        size = s - 1;
385 >        return e;
386      }
387  
388      public E pollLast() {
389 <        int t = (tail - 1) & (elements.length - 1);
390 <        E result = elements[t];
391 <        if (result == null)
389 >        // checkInvariants();
390 >        final int s, tail;
391 >        if ((s = size) == 0)
392              return null;
393 <        elements[t] = null;
394 <        tail = t;
395 <        return result;
393 >        final Object[] elements = this.elements;
394 >        @SuppressWarnings("unchecked")
395 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
396 >        elements[tail] = null;
397 >        size = s - 1;
398 >        return e;
399      }
400  
401      /**
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        E x = elements[head];
406 <        if (x == null)
407 <            throw new NoSuchElementException();
290 <        return x;
405 >        // checkInvariants();
406 >        if (size == 0) throw new NoSuchElementException();
407 >        return elementAt(head);
408      }
409  
410      /**
411       * @throws NoSuchElementException {@inheritDoc}
412       */
413      public E getLast() {
414 <        E x = elements[(tail - 1) & (elements.length - 1)];
415 <        if (x == null)
416 <            throw new NoSuchElementException();
300 <        return x;
414 >        // checkInvariants();
415 >        if (size == 0) throw new NoSuchElementException();
416 >        return elementAt(tail());
417      }
418  
419      public E peekFirst() {
420 <        return elements[head]; // elements[head] is null if deque empty
420 >        // checkInvariants();
421 >        return (size == 0) ? null : elementAt(head);
422      }
423  
424      public E peekLast() {
425 <        return elements[(tail - 1) & (elements.length - 1)];
425 >        // checkInvariants();
426 >        return (size == 0) ? null : elementAt(tail());
427      }
428  
429      /**
430       * Removes the first occurrence of the specified element in this
431       * deque (when traversing the deque from head to tail).
432       * If the deque does not contain the element, it is unchanged.
433 <     * More formally, removes the first element <tt>e</tt> such that
434 <     * <tt>o.equals(e)</tt> (if such an element exists).
435 <     * Returns <tt>true</tt> if this deque contained the specified element
433 >     * More formally, removes the first element {@code e} such that
434 >     * {@code o.equals(e)} (if such an element exists).
435 >     * Returns {@code true} if this deque contained the specified element
436       * (or equivalently, if this deque changed as a result of the call).
437       *
438       * @param o element to be removed from this deque, if present
439 <     * @return <tt>true</tt> if the deque contained the specified element
439 >     * @return {@code true} if the deque contained the specified element
440       */
441      public boolean removeFirstOccurrence(Object o) {
442 <        if (o == null)
443 <            return false;
444 <        int mask = elements.length - 1;
445 <        int i = head;
446 <        E x;
447 <        while ( (x = elements[i]) != null) {
448 <            if (o.equals(x)) {
449 <                delete(i);
450 <                return true;
442 >        // checkInvariants();
443 >        if (o != null) {
444 >            final Object[] elements = this.elements;
445 >            final int capacity = elements.length;
446 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
447 >                if (o.equals(elements[i])) {
448 >                    delete(i);
449 >                    return true;
450 >                }
451              }
334            i = (i + 1) & mask;
452          }
453          return false;
454      }
# Line 340 | Line 457 | public class ArrayDeque<E> extends Abstr
457       * Removes the last occurrence of the specified element in this
458       * deque (when traversing the deque from head to tail).
459       * If the deque does not contain the element, it is unchanged.
460 <     * More formally, removes the last element <tt>e</tt> such that
461 <     * <tt>o.equals(e)</tt> (if such an element exists).
462 <     * Returns <tt>true</tt> if this deque contained the specified element
460 >     * More formally, removes the last element {@code e} such that
461 >     * {@code o.equals(e)} (if such an element exists).
462 >     * Returns {@code true} if this deque contained the specified element
463       * (or equivalently, if this deque changed as a result of the call).
464       *
465       * @param o element to be removed from this deque, if present
466 <     * @return <tt>true</tt> if the deque contained the specified element
466 >     * @return {@code true} if the deque contained the specified element
467       */
468      public boolean removeLastOccurrence(Object o) {
469 <        if (o == null)
470 <            return false;
471 <        int mask = elements.length - 1;
472 <        int i = (tail - 1) & mask;
473 <        E x;
474 <        while ( (x = elements[i]) != null) {
475 <            if (o.equals(x)) {
476 <                delete(i);
477 <                return true;
469 >        if (o != null) {
470 >            final Object[] elements = this.elements;
471 >            final int capacity = elements.length;
472 >            for (int k = size, i = add(head, k - 1, capacity);
473 >                 --k >= 0; i = dec(i, capacity)) {
474 >                if (o.equals(elements[i])) {
475 >                    delete(i);
476 >                    return true;
477 >                }
478              }
362            i = (i - 1) & mask;
479          }
480          return false;
481      }
# Line 372 | Line 488 | public class ArrayDeque<E> extends Abstr
488       * <p>This method is equivalent to {@link #addLast}.
489       *
490       * @param e the element to add
491 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
491 >     * @return {@code true} (as specified by {@link Collection#add})
492       * @throws NullPointerException if the specified element is null
493       */
494      public boolean add(E e) {
# Line 386 | Line 502 | public class ArrayDeque<E> extends Abstr
502       * <p>This method is equivalent to {@link #offerLast}.
503       *
504       * @param e the element to add
505 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
505 >     * @return {@code true} (as specified by {@link Queue#offer})
506       * @throws NullPointerException if the specified element is null
507       */
508      public boolean offer(E e) {
# Line 411 | Line 527 | public class ArrayDeque<E> extends Abstr
527      /**
528       * Retrieves and removes the head of the queue represented by this deque
529       * (in other words, the first element of this deque), or returns
530 <     * <tt>null</tt> if this deque is empty.
530 >     * {@code null} if this deque is empty.
531       *
532       * <p>This method is equivalent to {@link #pollFirst}.
533       *
534       * @return the head of the queue represented by this deque, or
535 <     *         <tt>null</tt> if this deque is empty
535 >     *         {@code null} if this deque is empty
536       */
537      public E poll() {
538          return pollFirst();
# Line 438 | Line 554 | public class ArrayDeque<E> extends Abstr
554  
555      /**
556       * Retrieves, but does not remove, the head of the queue represented by
557 <     * this deque, or returns <tt>null</tt> if this deque is empty.
557 >     * this deque, or returns {@code null} if this deque is empty.
558       *
559       * <p>This method is equivalent to {@link #peekFirst}.
560       *
561       * @return the head of the queue represented by this deque, or
562 <     *         <tt>null</tt> if this deque is empty
562 >     *         {@code null} if this deque is empty
563       */
564      public E peek() {
565          return peekFirst();
# Line 478 | Line 594 | public class ArrayDeque<E> extends Abstr
594          return removeFirst();
595      }
596  
481    private void checkInvariants() {
482        assert elements[tail] == null;
483        assert head == tail ? elements[head] == null :
484            (elements[head] != null &&
485             elements[(tail - 1) & (elements.length - 1)] != null);
486        assert elements[(head - 1) & (elements.length - 1)] == null;
487    }
488
597      /**
598 <     * Removes the element at the specified position in the elements array,
599 <     * adjusting head and tail as necessary.  This can result in motion of
600 <     * elements backwards or forwards in the array.
598 >     * Removes the element at the specified position in the elements array.
599 >     * This can result in forward or backwards motion of array elements.
600 >     * We optimize for least element motion.
601       *
602       * <p>This method is called delete rather than remove to emphasize
603       * that its semantics differ from those of {@link List#remove(int)}.
604       *
605       * @return true if elements moved backwards
606       */
607 <    private boolean delete(int i) {
608 <        checkInvariants();
609 <        final E[] elements = this.elements;
610 <        final int mask = elements.length - 1;
607 >    boolean delete(int i) {
608 >        // checkInvariants();
609 >        final Object[] elements = this.elements;
610 >        final int capacity = elements.length;
611          final int h = head;
612 <        final int t = tail;
613 <        final int front = (i - h) & mask;
614 <        final int back  = (t - i) & mask;
507 <
508 <        // Invariant: head <= i < tail mod circularity
509 <        if (front >= ((t - h) & mask))
510 <            throw new ConcurrentModificationException();
511 <
512 <        // Optimize for least element motion
612 >        int front;              // number of elements before to-be-deleted elt
613 >        if ((front = i - h) < 0) front += capacity;
614 >        final int back = size - front - 1; // number of elements after
615          if (front < back) {
616 +            // move front elements forwards
617              if (h <= i) {
618                  System.arraycopy(elements, h, elements, h + 1, front);
619              } else { // Wrap around
620                  System.arraycopy(elements, 0, elements, 1, i);
621 <                elements[0] = elements[mask];
622 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
621 >                elements[0] = elements[capacity - 1];
622 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
623              }
624              elements[h] = null;
625 <            head = (h + 1) & mask;
625 >            head = inc(h, capacity);
626 >            size--;
627 >            // checkInvariants();
628              return false;
629          } else {
630 <            if (i < t) { // Copy the null tail as well
630 >            // move back elements backwards
631 >            int tail = tail();
632 >            if (i <= tail) {
633                  System.arraycopy(elements, i + 1, elements, i, back);
527                tail = t - 1;
634              } else { // Wrap around
635 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
636 <                elements[mask] = elements[0];
637 <                System.arraycopy(elements, 1, elements, 0, t);
638 <                tail = (t - 1) & mask;
635 >                int firstLeg = capacity - (i + 1);
636 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
637 >                elements[capacity - 1] = elements[0];
638 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
639              }
640 +            elements[tail] = null;
641 +            size--;
642 +            // checkInvariants();
643              return true;
644          }
645      }
# Line 543 | Line 652 | public class ArrayDeque<E> extends Abstr
652       * @return the number of elements in this deque
653       */
654      public int size() {
655 <        return (tail - head) & (elements.length - 1);
655 >        return size;
656      }
657  
658      /**
659 <     * Returns <tt>true</tt> if this deque contains no elements.
659 >     * Returns {@code true} if this deque contains no elements.
660       *
661 <     * @return <tt>true</tt> if this deque contains no elements
661 >     * @return {@code true} if this deque contains no elements
662       */
663      public boolean isEmpty() {
664 <        return head == tail;
664 >        return size == 0;
665      }
666  
667      /**
# Line 572 | Line 681 | public class ArrayDeque<E> extends Abstr
681      }
682  
683      private class DeqIterator implements Iterator<E> {
684 <        /**
685 <         * Index of element to be returned by subsequent call to next.
577 <         */
578 <        private int cursor = head;
684 >        /** Index of element to be returned by subsequent call to next. */
685 >        int cursor;
686  
687 <        /**
688 <         * Tail recorded at construction (also in remove), to stop
582 <         * iterator and also to check for comodification.
583 <         */
584 <        private int fence = tail;
687 >        /** Number of elements yet to be returned. */
688 >        int remaining = size;
689  
690          /**
691           * Index of element returned by most recent call to next.
692           * Reset to -1 if element is deleted by a call to remove.
693           */
694 <        private int lastRet = -1;
694 >        int lastRet = -1;
695 >
696 >        DeqIterator() { cursor = head; }
697  
698 <        public boolean hasNext() {
699 <            return cursor != fence;
698 >        public final boolean hasNext() {
699 >            return remaining > 0;
700          }
701  
702          public E next() {
703 <            if (cursor == fence)
703 >            if (remaining == 0)
704                  throw new NoSuchElementException();
705 <            E result = elements[cursor];
600 <            // This check doesn't catch all possible comodifications,
601 <            // but does catch the ones that corrupt traversal
602 <            if (tail != fence || result == null)
603 <                throw new ConcurrentModificationException();
705 >            E e = checkedElementAt(elements, cursor);
706              lastRet = cursor;
707 <            cursor = (cursor + 1) & (elements.length - 1);
708 <            return result;
707 >            cursor = inc(cursor, elements.length);
708 >            remaining--;
709 >            return e;
710 >        }
711 >
712 >        void postDelete(boolean leftShifted) {
713 >            if (leftShifted)
714 >                cursor = dec(cursor, elements.length); // undo inc in next
715          }
716  
717 <        public void remove() {
717 >        public final void remove() {
718              if (lastRet < 0)
719                  throw new IllegalStateException();
720 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
613 <                cursor = (cursor - 1) & (elements.length - 1);
614 <                fence = tail;
615 <            }
720 >            postDelete(delete(lastRet));
721              lastRet = -1;
722          }
618    }
619
620    private class DescendingIterator implements Iterator<E> {
621        /*
622         * This class is nearly a mirror-image of DeqIterator, using
623         * tail instead of head for initial cursor, and head instead of
624         * tail for fence.
625         */
626        private int cursor = tail;
627        private int fence = head;
628        private int lastRet = -1;
723  
724 <        public boolean hasNext() {
725 <            return cursor != fence;
724 >        public void forEachRemaining(Consumer<? super E> action) {
725 >            Objects.requireNonNull(action);
726 >            final Object[] elements = ArrayDeque.this.elements;
727 >            final int capacity = elements.length;
728 >            int k = remaining;
729 >            remaining = 0;
730 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
731 >                action.accept(checkedElementAt(elements, i));
732          }
733 +    }
734  
735 <        public E next() {
736 <            if (cursor == fence)
735 >    private class DescendingIterator extends DeqIterator {
736 >        DescendingIterator() { cursor = tail(); }
737 >
738 >        public final E next() {
739 >            if (remaining == 0)
740                  throw new NoSuchElementException();
741 <            cursor = (cursor - 1) & (elements.length - 1);
638 <            E result = elements[cursor];
639 <            if (head != fence || result == null)
640 <                throw new ConcurrentModificationException();
741 >            E e = checkedElementAt(elements, cursor);
742              lastRet = cursor;
743 <            return result;
743 >            cursor = dec(cursor, elements.length);
744 >            remaining--;
745 >            return e;
746          }
747  
748 <        public void remove() {
749 <            if (lastRet < 0)
750 <                throw new IllegalStateException();
751 <            if (!delete(lastRet)) {
752 <                cursor = (cursor + 1) & (elements.length - 1);
753 <                fence = head;
748 >        void postDelete(boolean leftShifted) {
749 >            if (!leftShifted)
750 >                cursor = inc(cursor, elements.length); // undo dec in next
751 >        }
752 >
753 >        public final void forEachRemaining(Consumer<? super E> action) {
754 >            Objects.requireNonNull(action);
755 >            final Object[] elements = ArrayDeque.this.elements;
756 >            final int capacity = elements.length;
757 >            int k = remaining;
758 >            remaining = 0;
759 >            for (int i = cursor; --k >= 0; i = dec(i, capacity))
760 >                action.accept(checkedElementAt(elements, i));
761 >        }
762 >    }
763 >
764 >    /**
765 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
766 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
767 >     * deque.
768 >     *
769 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
770 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
771 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
772 >     * the reporting of additional characteristic values.
773 >     *
774 >     * @return a {@code Spliterator} over the elements in this deque
775 >     * @since 1.8
776 >     */
777 >    public Spliterator<E> spliterator() {
778 >        return new ArrayDequeSpliterator();
779 >    }
780 >
781 >    final class ArrayDequeSpliterator implements Spliterator<E> {
782 >        private int cursor;
783 >        private int remaining; // -1 until late-binding first use
784 >
785 >        /** Constructs late-binding spliterator over all elements. */
786 >        ArrayDequeSpliterator() {
787 >            this.remaining = -1;
788 >        }
789 >
790 >        /** Constructs spliterator over the given slice. */
791 >        ArrayDequeSpliterator(int cursor, int count) {
792 >            this.cursor = cursor;
793 >            this.remaining = count;
794 >        }
795 >
796 >        /** Ensures late-binding initialization; then returns remaining. */
797 >        private int remaining() {
798 >            if (remaining < 0) {
799 >                cursor = head;
800 >                remaining = size;
801              }
802 <            lastRet = -1;
802 >            return remaining;
803 >        }
804 >
805 >        public ArrayDequeSpliterator trySplit() {
806 >            final int mid;
807 >            if ((mid = remaining() >> 1) > 0) {
808 >                int oldCursor = cursor;
809 >                cursor = add(cursor, mid, elements.length);
810 >                remaining -= mid;
811 >                return new ArrayDequeSpliterator(oldCursor, mid);
812 >            }
813 >            return null;
814 >        }
815 >
816 >        public void forEachRemaining(Consumer<? super E> action) {
817 >            Objects.requireNonNull(action);
818 >            final Object[] elements = ArrayDeque.this.elements;
819 >            final int capacity = elements.length;
820 >            int k = remaining();
821 >            remaining = 0;
822 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
823 >                action.accept(checkedElementAt(elements, i));
824 >        }
825 >
826 >        public boolean tryAdvance(Consumer<? super E> action) {
827 >            Objects.requireNonNull(action);
828 >            if (remaining() == 0)
829 >                return false;
830 >            action.accept(checkedElementAt(elements, cursor));
831 >            cursor = inc(cursor, elements.length);
832 >            remaining--;
833 >            return true;
834 >        }
835 >
836 >        public long estimateSize() {
837 >            return remaining();
838 >        }
839 >
840 >        public int characteristics() {
841 >            return Spliterator.NONNULL
842 >                | Spliterator.ORDERED
843 >                | Spliterator.SIZED
844 >                | Spliterator.SUBSIZED;
845 >        }
846 >    }
847 >
848 >    public void forEach(Consumer<? super E> action) {
849 >        // checkInvariants();
850 >        Objects.requireNonNull(action);
851 >        final Object[] elements = this.elements;
852 >        final int capacity = elements.length;
853 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
854 >            action.accept(elementAt(i));
855 >        // checkInvariants();
856 >    }
857 >
858 >    /**
859 >     * Replaces each element of this deque with the result of applying the
860 >     * operator to that element, as specified by {@link List#replaceAll}.
861 >     *
862 >     * @param operator the operator to apply to each element
863 >     * @since TBD
864 >     */
865 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
866 >        Objects.requireNonNull(operator);
867 >        final Object[] elements = this.elements;
868 >        final int capacity = elements.length;
869 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
870 >            elements[i] = operator.apply(elementAt(i));
871 >        // checkInvariants();
872 >    }
873 >
874 >    /**
875 >     * @throws NullPointerException {@inheritDoc}
876 >     */
877 >    public boolean removeIf(Predicate<? super E> filter) {
878 >        Objects.requireNonNull(filter);
879 >        return bulkRemove(filter);
880 >    }
881 >
882 >    /**
883 >     * @throws NullPointerException {@inheritDoc}
884 >     */
885 >    public boolean removeAll(Collection<?> c) {
886 >        Objects.requireNonNull(c);
887 >        return bulkRemove(e -> c.contains(e));
888 >    }
889 >
890 >    /**
891 >     * @throws NullPointerException {@inheritDoc}
892 >     */
893 >    public boolean retainAll(Collection<?> c) {
894 >        Objects.requireNonNull(c);
895 >        return bulkRemove(e -> !c.contains(e));
896 >    }
897 >
898 >    /** Implementation of bulk remove methods. */
899 >    private boolean bulkRemove(Predicate<? super E> filter) {
900 >        // checkInvariants();
901 >        final Object[] elements = this.elements;
902 >        final int capacity = elements.length;
903 >        int i = head, j = i, remaining = size, deleted = 0;
904 >        try {
905 >            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
906 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
907 >                if (filter.test(e))
908 >                    deleted++;
909 >                else {
910 >                    if (j != i)
911 >                        elements[j] = e;
912 >                    j = inc(j, capacity);
913 >                }
914 >            }
915 >            return deleted > 0;
916 >        } catch (Throwable ex) {
917 >            if (deleted > 0)
918 >                for (; remaining > 0;
919 >                     remaining--, i = inc(i, capacity), j = inc(j, capacity))
920 >                    elements[j] = elements[i];
921 >            throw ex;
922 >        } finally {
923 >            size -= deleted;
924 >            for (; --deleted >= 0; j = inc(j, capacity))
925 >                elements[j] = null;
926 >            // checkInvariants();
927          }
928      }
929  
930      /**
931 <     * Returns <tt>true</tt> if this deque contains the specified element.
932 <     * More formally, returns <tt>true</tt> if and only if this deque contains
933 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
931 >     * Returns {@code true} if this deque contains the specified element.
932 >     * More formally, returns {@code true} if and only if this deque contains
933 >     * at least one element {@code e} such that {@code o.equals(e)}.
934       *
935       * @param o object to be checked for containment in this deque
936 <     * @return <tt>true</tt> if this deque contains the specified element
936 >     * @return {@code true} if this deque contains the specified element
937       */
938      public boolean contains(Object o) {
939 <        if (o == null)
940 <            return false;
941 <        int mask = elements.length - 1;
942 <        int i = head;
943 <        E x;
944 <        while ( (x = elements[i]) != null) {
671 <            if (o.equals(x))
672 <                return true;
673 <            i = (i + 1) & mask;
939 >        if (o != null) {
940 >            final Object[] elements = this.elements;
941 >            final int capacity = elements.length;
942 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
943 >                if (o.equals(elements[i]))
944 >                    return true;
945          }
946          return false;
947      }
# Line 678 | Line 949 | public class ArrayDeque<E> extends Abstr
949      /**
950       * Removes a single instance of the specified element from this deque.
951       * If the deque does not contain the element, it is unchanged.
952 <     * More formally, removes the first element <tt>e</tt> such that
953 <     * <tt>o.equals(e)</tt> (if such an element exists).
954 <     * Returns <tt>true</tt> if this deque contained the specified element
952 >     * More formally, removes the first element {@code e} such that
953 >     * {@code o.equals(e)} (if such an element exists).
954 >     * Returns {@code true} if this deque contained the specified element
955       * (or equivalently, if this deque changed as a result of the call).
956       *
957 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
957 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
958       *
959       * @param o element to be removed from this deque, if present
960 <     * @return <tt>true</tt> if this deque contained the specified element
960 >     * @return {@code true} if this deque contained the specified element
961       */
962      public boolean remove(Object o) {
963          return removeFirstOccurrence(o);
# Line 697 | Line 968 | public class ArrayDeque<E> extends Abstr
968       * The deque will be empty after this call returns.
969       */
970      public void clear() {
971 <        int h = head;
972 <        int t = tail;
973 <        if (h != t) { // clear all cells
974 <            head = tail = 0;
975 <            int i = h;
976 <            int mask = elements.length - 1;
977 <            do {
707 <                elements[i] = null;
708 <                i = (i + 1) & mask;
709 <            } while (i != t);
971 >        final Object[] elements = this.elements;
972 >        final int capacity = elements.length, tail = head + size;
973 >        if (capacity - tail >= 0)
974 >            Arrays.fill(elements, head, tail, null);
975 >        else {
976 >            Arrays.fill(elements, head, capacity, null);
977 >            Arrays.fill(elements, 0, tail - capacity, null);
978          }
979 +        size = head = 0;
980 +        // checkInvariants();
981      }
982  
983      /**
# Line 724 | Line 994 | public class ArrayDeque<E> extends Abstr
994       * @return an array containing all of the elements in this deque
995       */
996      public Object[] toArray() {
997 <        return copyElements(new Object[size()]);
997 >        return toArray(Object[].class);
998 >    }
999 >
1000 >    private <T> T[] toArray(Class<T[]> klazz) {
1001 >        final Object[] elements = this.elements;
1002 >        final int capacity = elements.length;
1003 >        final int head = this.head, tail = head + size;
1004 >        final T[] a;
1005 >        if (tail >= 0) {
1006 >            a = Arrays.copyOfRange(elements, head, tail, klazz);
1007 >        } else {
1008 >            // integer overflow!
1009 >            a = Arrays.copyOfRange(elements, 0, size, klazz);
1010 >            System.arraycopy(elements, head, a, 0, capacity - head);
1011 >        }
1012 >        if (tail - capacity > 0)
1013 >            System.arraycopy(elements, 0, a, capacity - head, tail - capacity);
1014 >        return a;
1015      }
1016  
1017      /**
# Line 738 | Line 1025 | public class ArrayDeque<E> extends Abstr
1025       * <p>If this deque fits in the specified array with room to spare
1026       * (i.e., the array has more elements than this deque), the element in
1027       * the array immediately following the end of the deque is set to
1028 <     * <tt>null</tt>.
1028 >     * {@code null}.
1029       *
1030       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1031       * array-based and collection-based APIs.  Further, this method allows
1032       * precise control over the runtime type of the output array, and may,
1033       * under certain circumstances, be used to save allocation costs.
1034       *
1035 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1035 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1036       * The following code can be used to dump the deque into a newly
1037 <     * allocated array of <tt>String</tt>:
1037 >     * allocated array of {@code String}:
1038       *
1039 <     * <pre>
753 <     *     String[] y = x.toArray(new String[0]);</pre>
1039 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1040       *
1041 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1042 <     * <tt>toArray()</tt>.
1041 >     * Note that {@code toArray(new Object[0])} is identical in function to
1042 >     * {@code toArray()}.
1043       *
1044       * @param a the array into which the elements of the deque are to
1045       *          be stored, if it is big enough; otherwise, a new array of the
# Line 764 | Line 1050 | public class ArrayDeque<E> extends Abstr
1050       *         this deque
1051       * @throws NullPointerException if the specified array is null
1052       */
1053 +    @SuppressWarnings("unchecked")
1054      public <T> T[] toArray(T[] a) {
1055 <        int size = size();
1056 <        if (a.length < size)
1057 <            a = (T[])java.lang.reflect.Array.newInstance(
1058 <                    a.getClass().getComponentType(), size);
1059 <        copyElements(a);
1060 <        if (a.length > size)
1055 >        final int size = this.size;
1056 >        if (size > a.length)
1057 >            return toArray((Class<T[]>) a.getClass());
1058 >        final Object[] elements = this.elements;
1059 >        final int capacity = elements.length;
1060 >        final int head = this.head, tail = head + size;
1061 >        if (capacity - tail >= 0)
1062 >            System.arraycopy(elements, head, a, 0, size);
1063 >        else {
1064 >            System.arraycopy(elements, head, a, 0, capacity - head);
1065 >            System.arraycopy(elements, 0, a, capacity - head, tail - capacity);
1066 >        }
1067 >        if (size < a.length)
1068              a[size] = null;
1069          return a;
1070      }
# Line 784 | Line 1078 | public class ArrayDeque<E> extends Abstr
1078       */
1079      public ArrayDeque<E> clone() {
1080          try {
1081 +            @SuppressWarnings("unchecked")
1082              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1083              result.elements = Arrays.copyOf(elements, elements.length);
1084              return result;
790
1085          } catch (CloneNotSupportedException e) {
1086              throw new AssertionError();
1087          }
1088      }
1089  
796    /**
797     * Appease the serialization gods.
798     */
1090      private static final long serialVersionUID = 2340985798034038923L;
1091  
1092      /**
1093 <     * Serialize this deque.
1093 >     * Saves this deque to a stream (that is, serializes it).
1094       *
1095 <     * @serialData The current size (<tt>int</tt>) of the deque,
1095 >     * @param s the stream
1096 >     * @throws java.io.IOException if an I/O error occurs
1097 >     * @serialData The current size ({@code int}) of the deque,
1098       * followed by all of its elements (each an object reference) in
1099       * first-to-last order.
1100       */
1101 <    private void writeObject(ObjectOutputStream s) throws IOException {
1101 >    private void writeObject(java.io.ObjectOutputStream s)
1102 >            throws java.io.IOException {
1103          s.defaultWriteObject();
1104  
1105          // Write out size
1106 <        s.writeInt(size());
1106 >        s.writeInt(size);
1107  
1108          // Write out elements in order.
1109 <        int mask = elements.length - 1;
1110 <        for (int i = head; i != tail; i = (i + 1) & mask)
1109 >        final Object[] elements = this.elements;
1110 >        final int capacity = elements.length;
1111 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1112              s.writeObject(elements[i]);
1113      }
1114  
1115      /**
1116 <     * Deserialize this deque.
1116 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1117 >     * @param s the stream
1118 >     * @throws ClassNotFoundException if the class of a serialized object
1119 >     *         could not be found
1120 >     * @throws java.io.IOException if an I/O error occurs
1121       */
1122 <    private void readObject(ObjectInputStream s)
1123 <            throws IOException, ClassNotFoundException {
1122 >    private void readObject(java.io.ObjectInputStream s)
1123 >            throws java.io.IOException, ClassNotFoundException {
1124          s.defaultReadObject();
1125  
1126          // Read in size and allocate array
1127 <        int size = s.readInt();
829 <        allocateElements(size);
830 <        head = 0;
831 <        tail = size;
1127 >        elements = new Object[size = s.readInt()];
1128  
1129          // Read in all elements in the proper order.
1130          for (int i = 0; i < size; i++)
1131 <            elements[i] = (E)s.readObject();
1131 >            elements[i] = s.readObject();
1132      }
1133 +
1134 +    /** debugging */
1135 +    private void checkInvariants() {
1136 +        try {
1137 +            int capacity = elements.length;
1138 +            assert size >= 0 && size <= capacity;
1139 +            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1140 +                                 || head < capacity);
1141 +            assert size == 0
1142 +                || (elements[head] != null && elements[tail()] != null);
1143 +            assert size == capacity
1144 +                || (elements[dec(head, capacity)] == null
1145 +                    && elements[inc(tail(), capacity)] == null);
1146 +        } catch (Throwable t) {
1147 +            System.err.printf("head=%d size=%d capacity=%d%n",
1148 +                              head, size, elements.length);
1149 +            System.err.printf("elements=%s%n",
1150 +                              Arrays.toString(elements));
1151 +            throw t;
1152 +        }
1153 +    }
1154 +
1155   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines