ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.30 by jsr166, Sun May 18 23:47:55 2008 UTC vs.
Revision 1.91 by jsr166, Tue Oct 25 16:51:17 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own <tt>remove</tt>
34 < * method, the iterator will generally throw a {@link
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35   * ConcurrentModificationException}.  Thus, in the face of concurrent
36   * modification, the iterator fails quickly and cleanly, rather than risking
37   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 34 | Line 40 | import java.io.*;
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
# Line 48 | Line 54 | import java.io.*;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
52 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
61 <     * full, except transiently within an addX method where it is
62 <     * resized (see doubleCapacity) immediately upon becoming full,
63 <     * thus avoiding head and tail wrapping around to equal each
64 <     * other.  We also guarantee that all array cells not holding
65 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private transient int head;
75 >    transient int head;
76  
77 <    /**
78 <     * The index at which the next element would be added to the tail
78 <     * of the deque (via addLast(E), add(E), or push(E)).
79 <     */
80 <    private transient int tail;
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * The minimum capacity that we'll use for a newly created deque.
82 <     * Must be a power of 2.
83 <     */
84 <    private static final int MIN_INITIAL_CAPACITY = 8;
85 <
86 <    // ******  Array allocation and resizing utilities ******
87 <
88 <    /**
89 <     * Allocate empty array to hold the given number of elements.
90 <     *
91 <     * @param numElements  the number of elements to hold
92 <     */
93 <    private void allocateElements(int numElements) {
94 <        int initialCapacity = MIN_INITIAL_CAPACITY;
95 <        // Find the best power of two to hold elements.
96 <        // Tests "<=" because arrays aren't kept full.
97 <        if (numElements >= initialCapacity) {
98 <            initialCapacity = numElements;
99 <            initialCapacity |= (initialCapacity >>>  1);
100 <            initialCapacity |= (initialCapacity >>>  2);
101 <            initialCapacity |= (initialCapacity >>>  4);
102 <            initialCapacity |= (initialCapacity >>>  8);
103 <            initialCapacity |= (initialCapacity >>> 16);
104 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        final int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        final int oldCapacity = elements.length, minCapacity;
119 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
120 >            if (minCapacity < 0)
121 >                throw new IllegalStateException("Sorry, deque too big");
122 >            return Integer.MAX_VALUE;
123          }
124 <        elements = (E[]) new Object[initialCapacity];
124 >        if (needed > jump)
125 >            return minCapacity;
126 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
127 >            ? oldCapacity + jump
128 >            : MAX_ARRAY_SIZE;
129      }
130  
131      /**
132 <     * Double the capacity of this deque.  Call only when full, i.e.,
133 <     * when head and tail have wrapped around to become equal.
132 >     * Increases the internal storage of this collection, if necessary,
133 >     * to ensure that it can hold at least the given number of elements.
134 >     *
135 >     * @param minCapacity the desired minimum capacity
136 >     * @since TBD
137       */
138 <    private void doubleCapacity() {
139 <        assert head == tail;
140 <        int p = head;
141 <        int n = elements.length;
122 <        int r = n - p; // number of elements to the right of p
123 <        int newCapacity = n << 1;
124 <        if (newCapacity < 0)
125 <            throw new IllegalStateException("Sorry, deque too big");
126 <        Object[] a = new Object[newCapacity];
127 <        System.arraycopy(elements, p, a, 0, r);
128 <        System.arraycopy(elements, 0, a, r, p);
129 <        elements = (E[])a;
130 <        head = 0;
131 <        tail = n;
138 >    /* public */ void ensureCapacity(int minCapacity) {
139 >        if (minCapacity > elements.length)
140 >            grow(minCapacity - elements.length);
141 >        // checkInvariants();
142      }
143  
144      /**
145 <     * Copies the elements from our element array into the specified array,
136 <     * in order (from first to last element in the deque).  It is assumed
137 <     * that the array is large enough to hold all elements in the deque.
145 >     * Minimizes the internal storage of this collection.
146       *
147 <     * @return its argument
147 >     * @since TBD
148       */
149 <    private <T> T[] copyElements(T[] a) {
150 <        if (head < tail) {
151 <            System.arraycopy(elements, head, a, 0, size());
152 <        } else if (head > tail) {
145 <            int headPortionLen = elements.length - head;
146 <            System.arraycopy(elements, head, a, 0, headPortionLen);
147 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
149 >    /* public */ void trimToSize() {
150 >        if (size < elements.length) {
151 >            elements = toArray();
152 >            head = 0;
153          }
154 <        return a;
154 >        // checkInvariants();
155      }
156  
157      /**
# Line 154 | Line 159 | public class ArrayDeque<E> extends Abstr
159       * sufficient to hold 16 elements.
160       */
161      public ArrayDeque() {
162 <        elements = (E[]) new Object[16];
162 >        elements = new Object[16];
163      }
164  
165      /**
166       * Constructs an empty array deque with an initial capacity
167       * sufficient to hold the specified number of elements.
168       *
169 <     * @param numElements  lower bound on initial capacity of the deque
169 >     * @param numElements lower bound on initial capacity of the deque
170       */
171      public ArrayDeque(int numElements) {
172 <        allocateElements(numElements);
172 >        elements = new Object[numElements];
173      }
174  
175      /**
# Line 178 | Line 183 | public class ArrayDeque<E> extends Abstr
183       * @throws NullPointerException if the specified collection is null
184       */
185      public ArrayDeque(Collection<? extends E> c) {
186 <        allocateElements(c.size());
187 <        addAll(c);
186 >        Object[] elements = c.toArray();
187 >        // defend against c.toArray (incorrectly) not returning Object[]
188 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 >        size = elements.length;
190 >        if (elements.getClass() != Object[].class)
191 >            elements = Arrays.copyOf(elements, size, Object[].class);
192 >        for (Object obj : elements)
193 >            Objects.requireNonNull(obj);
194 >        this.elements = elements;
195 >    }
196 >
197 >    /**
198 >     * Increments i, mod modulus.
199 >     * Precondition and postcondition: 0 <= i < modulus.
200 >     */
201 >    static final int inc(int i, int modulus) {
202 >        if (++i >= modulus) i = 0;
203 >        return i;
204 >    }
205 >
206 >    /**
207 >     * Decrements i, mod modulus.
208 >     * Precondition and postcondition: 0 <= i < modulus.
209 >     */
210 >    static final int dec(int i, int modulus) {
211 >        if (--i < 0) i = modulus - 1;
212 >        return i;
213 >    }
214 >
215 >    /**
216 >     * Adds i and j, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 >     */
219 >    static final int add(int i, int j, int modulus) {
220 >        if ((i += j) - modulus >= 0) i -= modulus;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Returns the array index of the last element.
226 >     * May return invalid index -1 if there are no elements.
227 >     */
228 >    final int tail() {
229 >        return add(head, size - 1, elements.length);
230 >    }
231 >
232 >    /**
233 >     * Returns element at array index i.
234 >     */
235 >    @SuppressWarnings("unchecked")
236 >    private E elementAt(int i) {
237 >        return (E) elements[i];
238 >    }
239 >
240 >    /**
241 >     * A version of elementAt that checks for null elements.
242 >     * This check doesn't catch all possible comodifications,
243 >     * but does catch ones that corrupt traversal.
244 >     */
245 >    E checkedElementAt(Object[] elements, int i) {
246 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
247 >        if (e == null)
248 >            throw new ConcurrentModificationException();
249 >        return e;
250      }
251  
252      // The main insertion and extraction methods are addFirst,
# Line 193 | Line 260 | public class ArrayDeque<E> extends Abstr
260       * @throws NullPointerException if the specified element is null
261       */
262      public void addFirst(E e) {
263 <        if (e == null)
264 <            throw new NullPointerException();
265 <        elements[head = (head - 1) & (elements.length - 1)] = e;
266 <        if (head == tail)
267 <            doubleCapacity();
263 >        // checkInvariants();
264 >        Objects.requireNonNull(e);
265 >        Object[] elements;
266 >        int capacity, h;
267 >        final int s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
269 >            grow(1);
270 >            capacity = (elements = this.elements).length;
271 >        }
272 >        if ((h = head - 1) < 0) h = capacity - 1;
273 >        elements[head = h] = e;
274 >        size = s + 1;
275 >        // checkInvariants();
276      }
277  
278      /**
# Line 209 | Line 284 | public class ArrayDeque<E> extends Abstr
284       * @throws NullPointerException if the specified element is null
285       */
286      public void addLast(E e) {
287 <        if (e == null)
288 <            throw new NullPointerException();
289 <        elements[tail] = e;
290 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
291 <            doubleCapacity();
287 >        // checkInvariants();
288 >        Objects.requireNonNull(e);
289 >        Object[] elements;
290 >        int capacity;
291 >        final int s;
292 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
293 >            grow(1);
294 >            capacity = (elements = this.elements).length;
295 >        }
296 >        elements[add(head, s, capacity)] = e;
297 >        size = s + 1;
298 >        // checkInvariants();
299 >    }
300 >
301 >    /**
302 >     * Adds all of the elements in the specified collection at the end
303 >     * of this deque, as if by calling {@link #addLast} on each one,
304 >     * in the order that they are returned by the collection's
305 >     * iterator.
306 >     *
307 >     * @param c the elements to be inserted into this deque
308 >     * @return {@code true} if this deque changed as a result of the call
309 >     * @throws NullPointerException if the specified collection or any
310 >     *         of its elements are null
311 >     */
312 >    public boolean addAll(Collection<? extends E> c) {
313 >        final int s = size, needed = c.size() - (elements.length - s);
314 >        if (needed > 0)
315 >            grow(needed);
316 >        c.forEach((e) -> addLast(e));
317 >        // checkInvariants();
318 >        return size > s;
319      }
320  
321      /**
322       * Inserts the specified element at the front of this deque.
323       *
324       * @param e the element to add
325 <     * @return <tt>true</tt> (as specified by {@link Deque#offerFirst})
325 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
326       * @throws NullPointerException if the specified element is null
327       */
328      public boolean offerFirst(E e) {
# Line 232 | Line 334 | public class ArrayDeque<E> extends Abstr
334       * Inserts the specified element at the end of this deque.
335       *
336       * @param e the element to add
337 <     * @return <tt>true</tt> (as specified by {@link Deque#offerLast})
337 >     * @return {@code true} (as specified by {@link Deque#offerLast})
338       * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerLast(E e) {
# Line 244 | Line 346 | public class ArrayDeque<E> extends Abstr
346       * @throws NoSuchElementException {@inheritDoc}
347       */
348      public E removeFirst() {
349 <        E x = pollFirst();
350 <        if (x == null)
349 >        // checkInvariants();
350 >        E e = pollFirst();
351 >        if (e == null)
352              throw new NoSuchElementException();
353 <        return x;
353 >        return e;
354      }
355  
356      /**
357       * @throws NoSuchElementException {@inheritDoc}
358       */
359      public E removeLast() {
360 <        E x = pollLast();
361 <        if (x == null)
360 >        // checkInvariants();
361 >        E e = pollLast();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        return e;
365      }
366  
367      public E pollFirst() {
368 <        int h = head;
369 <        E result = elements[h]; // Element is null if deque empty
370 <        if (result == null)
368 >        // checkInvariants();
369 >        int s, h;
370 >        if ((s = size) <= 0)
371              return null;
372 <        elements[h] = null;     // Must null out slot
373 <        head = (h + 1) & (elements.length - 1);
374 <        return result;
372 >        final Object[] elements = this.elements;
373 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
374 >        elements[h] = null;
375 >        if (++h >= elements.length) h = 0;
376 >        head = h;
377 >        size = s - 1;
378 >        return e;
379      }
380  
381      public E pollLast() {
382 <        int t = (tail - 1) & (elements.length - 1);
383 <        E result = elements[t];
384 <        if (result == null)
382 >        // checkInvariants();
383 >        final int s, tail;
384 >        if ((s = size) <= 0)
385              return null;
386 <        elements[t] = null;
387 <        tail = t;
388 <        return result;
386 >        final Object[] elements = this.elements;
387 >        @SuppressWarnings("unchecked")
388 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
389 >        elements[tail] = null;
390 >        size = s - 1;
391 >        return e;
392      }
393  
394      /**
395       * @throws NoSuchElementException {@inheritDoc}
396       */
397      public E getFirst() {
398 <        E x = elements[head];
399 <        if (x == null)
400 <            throw new NoSuchElementException();
290 <        return x;
398 >        // checkInvariants();
399 >        if (size <= 0) throw new NoSuchElementException();
400 >        return elementAt(head);
401      }
402  
403      /**
404       * @throws NoSuchElementException {@inheritDoc}
405       */
406 +    @SuppressWarnings("unchecked")
407      public E getLast() {
408 <        E x = elements[(tail - 1) & (elements.length - 1)];
409 <        if (x == null)
410 <            throw new NoSuchElementException();
411 <        return x;
408 >        // checkInvariants();
409 >        final int s;
410 >        if ((s = size) <= 0) throw new NoSuchElementException();
411 >        final Object[] elements = this.elements;
412 >        return (E) elements[add(head, s - 1, elements.length)];
413      }
414  
415      public E peekFirst() {
416 <        return elements[head]; // elements[head] is null if deque empty
416 >        // checkInvariants();
417 >        return (size <= 0) ? null : elementAt(head);
418      }
419  
420 +    @SuppressWarnings("unchecked")
421      public E peekLast() {
422 <        return elements[(tail - 1) & (elements.length - 1)];
422 >        // checkInvariants();
423 >        final int s;
424 >        if ((s = size) <= 0) return null;
425 >        final Object[] elements = this.elements;
426 >        return (E) elements[add(head, s - 1, elements.length)];
427      }
428  
429      /**
430       * Removes the first occurrence of the specified element in this
431       * deque (when traversing the deque from head to tail).
432       * If the deque does not contain the element, it is unchanged.
433 <     * More formally, removes the first element <tt>e</tt> such that
434 <     * <tt>o.equals(e)</tt> (if such an element exists).
435 <     * Returns <tt>true</tt> if this deque contained the specified element
433 >     * More formally, removes the first element {@code e} such that
434 >     * {@code o.equals(e)} (if such an element exists).
435 >     * Returns {@code true} if this deque contained the specified element
436       * (or equivalently, if this deque changed as a result of the call).
437       *
438       * @param o element to be removed from this deque, if present
439 <     * @return <tt>true</tt> if the deque contained the specified element
439 >     * @return {@code true} if the deque contained the specified element
440       */
441      public boolean removeFirstOccurrence(Object o) {
442 <        if (o == null)
443 <            return false;
444 <        int mask = elements.length - 1;
445 <        int i = head;
446 <        E x;
447 <        while ( (x = elements[i]) != null) {
448 <            if (o.equals(x)) {
449 <                delete(i);
450 <                return true;
442 >        if (o != null) {
443 >            final Object[] elements = this.elements;
444 >            final int capacity = elements.length;
445 >            int from, end, to, todo;
446 >            todo = (end = (from = head) + size)
447 >                - (to = (capacity - end >= 0) ? end : capacity);
448 >            for (;; from = 0, to = todo, todo = 0) {
449 >                for (int i = from; i < to; i++)
450 >                    if (o.equals(elements[i])) {
451 >                        delete(i);
452 >                        return true;
453 >                    }
454 >                if (todo == 0) break;
455              }
334            i = (i + 1) & mask;
456          }
457          return false;
458      }
# Line 340 | Line 461 | public class ArrayDeque<E> extends Abstr
461       * Removes the last occurrence of the specified element in this
462       * deque (when traversing the deque from head to tail).
463       * If the deque does not contain the element, it is unchanged.
464 <     * More formally, removes the last element <tt>e</tt> such that
465 <     * <tt>o.equals(e)</tt> (if such an element exists).
466 <     * Returns <tt>true</tt> if this deque contained the specified element
464 >     * More formally, removes the last element {@code e} such that
465 >     * {@code o.equals(e)} (if such an element exists).
466 >     * Returns {@code true} if this deque contained the specified element
467       * (or equivalently, if this deque changed as a result of the call).
468       *
469       * @param o element to be removed from this deque, if present
470 <     * @return <tt>true</tt> if the deque contained the specified element
470 >     * @return {@code true} if the deque contained the specified element
471       */
472      public boolean removeLastOccurrence(Object o) {
473 <        if (o == null)
474 <            return false;
475 <        int mask = elements.length - 1;
476 <        int i = (tail - 1) & mask;
477 <        E x;
478 <        while ( (x = elements[i]) != null) {
479 <            if (o.equals(x)) {
480 <                delete(i);
481 <                return true;
473 >        if (o != null) {
474 >            final Object[] elements = this.elements;
475 >            final int capacity = elements.length;
476 >            int from, to, end, todo;
477 >            todo = (to = ((end = (from = tail()) - size) >= -1) ? end : -1) - end;
478 >            for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
479 >                for (int i = from; i > to; i--)
480 >                    if (o.equals(elements[i])) {
481 >                        delete(i);
482 >                        return true;
483 >                    }
484 >                if (todo == 0) break;
485              }
362            i = (i - 1) & mask;
486          }
487          return false;
488      }
# Line 372 | Line 495 | public class ArrayDeque<E> extends Abstr
495       * <p>This method is equivalent to {@link #addLast}.
496       *
497       * @param e the element to add
498 <     * @return <tt>true</tt> (as specified by {@link Collection#add})
498 >     * @return {@code true} (as specified by {@link Collection#add})
499       * @throws NullPointerException if the specified element is null
500       */
501      public boolean add(E e) {
# Line 386 | Line 509 | public class ArrayDeque<E> extends Abstr
509       * <p>This method is equivalent to {@link #offerLast}.
510       *
511       * @param e the element to add
512 <     * @return <tt>true</tt> (as specified by {@link Queue#offer})
512 >     * @return {@code true} (as specified by {@link Queue#offer})
513       * @throws NullPointerException if the specified element is null
514       */
515      public boolean offer(E e) {
# Line 411 | Line 534 | public class ArrayDeque<E> extends Abstr
534      /**
535       * Retrieves and removes the head of the queue represented by this deque
536       * (in other words, the first element of this deque), or returns
537 <     * <tt>null</tt> if this deque is empty.
537 >     * {@code null} if this deque is empty.
538       *
539       * <p>This method is equivalent to {@link #pollFirst}.
540       *
541       * @return the head of the queue represented by this deque, or
542 <     *         <tt>null</tt> if this deque is empty
542 >     *         {@code null} if this deque is empty
543       */
544      public E poll() {
545          return pollFirst();
# Line 438 | Line 561 | public class ArrayDeque<E> extends Abstr
561  
562      /**
563       * Retrieves, but does not remove, the head of the queue represented by
564 <     * this deque, or returns <tt>null</tt> if this deque is empty.
564 >     * this deque, or returns {@code null} if this deque is empty.
565       *
566       * <p>This method is equivalent to {@link #peekFirst}.
567       *
568       * @return the head of the queue represented by this deque, or
569 <     *         <tt>null</tt> if this deque is empty
569 >     *         {@code null} if this deque is empty
570       */
571      public E peek() {
572          return peekFirst();
# Line 478 | Line 601 | public class ArrayDeque<E> extends Abstr
601          return removeFirst();
602      }
603  
481    private void checkInvariants() {
482        assert elements[tail] == null;
483        assert head == tail ? elements[head] == null :
484            (elements[head] != null &&
485             elements[(tail - 1) & (elements.length - 1)] != null);
486        assert elements[(head - 1) & (elements.length - 1)] == null;
487    }
488
604      /**
605 <     * Removes the element at the specified position in the elements array,
606 <     * adjusting head and tail as necessary.  This can result in motion of
607 <     * elements backwards or forwards in the array.
605 >     * Removes the element at the specified position in the elements array.
606 >     * This can result in forward or backwards motion of array elements.
607 >     * We optimize for least element motion.
608       *
609       * <p>This method is called delete rather than remove to emphasize
610       * that its semantics differ from those of {@link List#remove(int)}.
611       *
612       * @return true if elements moved backwards
613       */
614 <    private boolean delete(int i) {
615 <        checkInvariants();
616 <        final E[] elements = this.elements;
617 <        final int mask = elements.length - 1;
614 >    boolean delete(int i) {
615 >        // checkInvariants();
616 >        final Object[] elements = this.elements;
617 >        final int capacity = elements.length;
618          final int h = head;
619 <        final int t = tail;
620 <        final int front = (i - h) & mask;
621 <        final int back  = (t - i) & mask;
507 <
508 <        // Invariant: head <= i < tail mod circularity
509 <        if (front >= ((t - h) & mask))
510 <            throw new ConcurrentModificationException();
511 <
512 <        // Optimize for least element motion
619 >        int front;              // number of elements before to-be-deleted elt
620 >        if ((front = i - h) < 0) front += capacity;
621 >        final int back = size - front - 1; // number of elements after
622          if (front < back) {
623 +            // move front elements forwards
624              if (h <= i) {
625                  System.arraycopy(elements, h, elements, h + 1, front);
626              } else { // Wrap around
627                  System.arraycopy(elements, 0, elements, 1, i);
628 <                elements[0] = elements[mask];
629 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
628 >                elements[0] = elements[capacity - 1];
629 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
630              }
631              elements[h] = null;
632 <            head = (h + 1) & mask;
632 >            if ((head = (h + 1)) >= capacity) head = 0;
633 >            size--;
634 >            // checkInvariants();
635              return false;
636          } else {
637 <            if (i < t) { // Copy the null tail as well
637 >            // move back elements backwards
638 >            int tail = tail();
639 >            if (i <= tail) {
640                  System.arraycopy(elements, i + 1, elements, i, back);
527                tail = t - 1;
641              } else { // Wrap around
642 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
643 <                elements[mask] = elements[0];
644 <                System.arraycopy(elements, 1, elements, 0, t);
645 <                tail = (t - 1) & mask;
642 >                int firstLeg = capacity - (i + 1);
643 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
644 >                elements[capacity - 1] = elements[0];
645 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
646              }
647 +            elements[tail] = null;
648 +            size--;
649 +            // checkInvariants();
650              return true;
651          }
652      }
# Line 543 | Line 659 | public class ArrayDeque<E> extends Abstr
659       * @return the number of elements in this deque
660       */
661      public int size() {
662 <        return (tail - head) & (elements.length - 1);
662 >        return size;
663      }
664  
665      /**
666 <     * Returns <tt>true</tt> if this deque contains no elements.
666 >     * Returns {@code true} if this deque contains no elements.
667       *
668 <     * @return <tt>true</tt> if this deque contains no elements
668 >     * @return {@code true} if this deque contains no elements
669       */
670      public boolean isEmpty() {
671 <        return head == tail;
671 >        return size == 0;
672      }
673  
674      /**
# Line 572 | Line 688 | public class ArrayDeque<E> extends Abstr
688      }
689  
690      private class DeqIterator implements Iterator<E> {
691 <        /**
692 <         * Index of element to be returned by subsequent call to next.
577 <         */
578 <        private int cursor = head;
691 >        /** Index of element to be returned by subsequent call to next. */
692 >        int cursor;
693  
694 <        /**
695 <         * Tail recorded at construction (also in remove), to stop
582 <         * iterator and also to check for comodification.
583 <         */
584 <        private int fence = tail;
694 >        /** Number of elements yet to be returned. */
695 >        int remaining = size;
696  
697          /**
698           * Index of element returned by most recent call to next.
699           * Reset to -1 if element is deleted by a call to remove.
700           */
701 <        private int lastRet = -1;
701 >        int lastRet = -1;
702 >
703 >        DeqIterator() { cursor = head; }
704  
705 <        public boolean hasNext() {
706 <            return cursor != fence;
705 >        public final boolean hasNext() {
706 >            return remaining > 0;
707          }
708  
709          public E next() {
710 <            if (cursor == fence)
710 >            if (remaining <= 0)
711                  throw new NoSuchElementException();
712 <            E result = elements[cursor];
713 <            // This check doesn't catch all possible comodifications,
601 <            // but does catch the ones that corrupt traversal
602 <            if (tail != fence || result == null)
603 <                throw new ConcurrentModificationException();
712 >            final Object[] elements = ArrayDeque.this.elements;
713 >            E e = checkedElementAt(elements, cursor);
714              lastRet = cursor;
715 <            cursor = (cursor + 1) & (elements.length - 1);
716 <            return result;
715 >            if (++cursor >= elements.length) cursor = 0;
716 >            remaining--;
717 >            return e;
718 >        }
719 >
720 >        void postDelete(boolean leftShifted) {
721 >            if (leftShifted)
722 >                if (--cursor < 0) cursor = elements.length - 1;
723          }
724  
725 <        public void remove() {
725 >        public final void remove() {
726              if (lastRet < 0)
727                  throw new IllegalStateException();
728 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
613 <                cursor = (cursor - 1) & (elements.length - 1);
614 <                fence = tail;
615 <            }
728 >            postDelete(delete(lastRet));
729              lastRet = -1;
730          }
618    }
731  
732 <    private class DescendingIterator implements Iterator<E> {
733 <        /*
734 <         * This class is nearly a mirror-image of DeqIterator, using
735 <         * tail instead of head for initial cursor, and head instead of
736 <         * tail for fence.
737 <         */
738 <        private int cursor = tail;
739 <        private int fence = head;
628 <        private int lastRet = -1;
629 <
630 <        public boolean hasNext() {
631 <            return cursor != fence;
732 >        public void forEachRemaining(Consumer<? super E> action) {
733 >            final int k;
734 >            if ((k = remaining) > 0) {
735 >                remaining = 0;
736 >                ArrayDeque.forEachRemaining(action, elements, cursor, k);
737 >                if ((lastRet = cursor + k - 1) >= elements.length)
738 >                    lastRet -= elements.length;
739 >            }
740          }
741 +    }
742  
743 <        public E next() {
744 <            if (cursor == fence)
743 >    private class DescendingIterator extends DeqIterator {
744 >        DescendingIterator() { cursor = tail(); }
745 >
746 >        public final E next() {
747 >            if (remaining <= 0)
748                  throw new NoSuchElementException();
749 <            cursor = (cursor - 1) & (elements.length - 1);
750 <            E result = elements[cursor];
639 <            if (head != fence || result == null)
640 <                throw new ConcurrentModificationException();
749 >            final Object[] elements = ArrayDeque.this.elements;
750 >            E e = checkedElementAt(elements, cursor);
751              lastRet = cursor;
752 <            return result;
752 >            if (--cursor < 0) cursor = elements.length - 1;
753 >            remaining--;
754 >            return e;
755          }
756  
757 <        public void remove() {
758 <            if (lastRet < 0)
759 <                throw new IllegalStateException();
760 <            if (!delete(lastRet)) {
761 <                cursor = (cursor + 1) & (elements.length - 1);
762 <                fence = head;
757 >        void postDelete(boolean leftShifted) {
758 >            if (!leftShifted)
759 >                if (++cursor >= elements.length) cursor = 0;
760 >        }
761 >
762 >        public final void forEachRemaining(Consumer<? super E> action) {
763 >            final int k;
764 >            if ((k = remaining) > 0) {
765 >                remaining = 0;
766 >                forEachRemainingDescending(action, elements, cursor, k);
767 >                if ((lastRet = cursor - (k - 1)) < 0)
768 >                    lastRet += elements.length;
769              }
652            lastRet = -1;
770          }
771      }
772  
773      /**
774 <     * Returns <tt>true</tt> if this deque contains the specified element.
775 <     * More formally, returns <tt>true</tt> if and only if this deque contains
776 <     * at least one element <tt>e</tt> such that <tt>o.equals(e)</tt>.
774 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
775 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
776 >     * deque.
777 >     *
778 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
779 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
780 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
781 >     * the reporting of additional characteristic values.
782 >     *
783 >     * @return a {@code Spliterator} over the elements in this deque
784 >     * @since 1.8
785 >     */
786 >    public Spliterator<E> spliterator() {
787 >        return new ArrayDequeSpliterator();
788 >    }
789 >
790 >    final class ArrayDequeSpliterator implements Spliterator<E> {
791 >        private int cursor;
792 >        private int remaining; // -1 until late-binding first use
793 >
794 >        /** Constructs late-binding spliterator over all elements. */
795 >        ArrayDequeSpliterator() {
796 >            this.remaining = -1;
797 >        }
798 >
799 >        /** Constructs spliterator over the given slice. */
800 >        ArrayDequeSpliterator(int cursor, int count) {
801 >            this.cursor = cursor;
802 >            this.remaining = count;
803 >        }
804 >
805 >        /** Ensures late-binding initialization; then returns remaining. */
806 >        private int remaining() {
807 >            if (remaining < 0) {
808 >                cursor = head;
809 >                remaining = size;
810 >            }
811 >            return remaining;
812 >        }
813 >
814 >        public ArrayDequeSpliterator trySplit() {
815 >            final int mid;
816 >            if ((mid = remaining() >> 1) > 0) {
817 >                int oldCursor = cursor;
818 >                cursor = add(cursor, mid, elements.length);
819 >                remaining -= mid;
820 >                return new ArrayDequeSpliterator(oldCursor, mid);
821 >            }
822 >            return null;
823 >        }
824 >
825 >        public void forEachRemaining(Consumer<? super E> action) {
826 >            final int k = remaining(); // side effect!
827 >            remaining = 0;
828 >            ArrayDeque.forEachRemaining(action, elements, cursor, k);
829 >        }
830 >
831 >        public boolean tryAdvance(Consumer<? super E> action) {
832 >            Objects.requireNonNull(action);
833 >            final int k;
834 >            if ((k = remaining()) <= 0)
835 >                return false;
836 >            action.accept(checkedElementAt(elements, cursor));
837 >            if (++cursor >= elements.length) cursor = 0;
838 >            remaining = k - 1;
839 >            return true;
840 >        }
841 >
842 >        public long estimateSize() {
843 >            return remaining();
844 >        }
845 >
846 >        public int characteristics() {
847 >            return Spliterator.NONNULL
848 >                | Spliterator.ORDERED
849 >                | Spliterator.SIZED
850 >                | Spliterator.SUBSIZED;
851 >        }
852 >    }
853 >
854 >    @SuppressWarnings("unchecked")
855 >    public void forEach(Consumer<? super E> action) {
856 >        Objects.requireNonNull(action);
857 >        final Object[] elements = this.elements;
858 >        final int capacity = elements.length;
859 >        int from, end, to, todo;
860 >        todo = (end = (from = head) + size)
861 >            - (to = (capacity - end >= 0) ? end : capacity);
862 >        for (;; from = 0, to = todo, todo = 0) {
863 >            for (int i = from; i < to; i++)
864 >                action.accept((E) elements[i]);
865 >            if (todo == 0) break;
866 >        }
867 >        // checkInvariants();
868 >    }
869 >
870 >    /**
871 >     * A variant of forEach that also checks for concurrent
872 >     * modification, for use in iterators.
873 >     */
874 >    static <E> void forEachRemaining(
875 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
876 >        Objects.requireNonNull(action);
877 >        final int capacity = elements.length;
878 >        int end, to, todo;
879 >        todo = (end = from + remaining)
880 >            - (to = (capacity - end >= 0) ? end : capacity);
881 >        for (;; from = 0, to = todo, todo = 0) {
882 >            for (int i = from; i < to; i++) {
883 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
884 >                if (e == null)
885 >                    throw new ConcurrentModificationException();
886 >                action.accept(e);
887 >            }
888 >            if (todo == 0) break;
889 >        }
890 >    }
891 >
892 >    static <E> void forEachRemainingDescending(
893 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
894 >        Objects.requireNonNull(action);
895 >        final int capacity = elements.length;
896 >        int end, to, todo;
897 >        todo = (to = ((end = from - remaining) >= -1) ? end : -1) - end;
898 >        for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
899 >            for (int i = from; i > to; i--) {
900 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
901 >                if (e == null)
902 >                    throw new ConcurrentModificationException();
903 >                action.accept(e);
904 >            }
905 >            if (todo == 0) break;
906 >        }
907 >    }
908 >
909 >    /**
910 >     * Replaces each element of this deque with the result of applying the
911 >     * operator to that element, as specified by {@link List#replaceAll}.
912 >     *
913 >     * @param operator the operator to apply to each element
914 >     * @since TBD
915 >     */
916 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
917 >        Objects.requireNonNull(operator);
918 >        final Object[] elements = this.elements;
919 >        final int capacity = elements.length;
920 >        int from, end, to, todo;
921 >        todo = (end = (from = head) + size)
922 >            - (to = (capacity - end >= 0) ? end : capacity);
923 >        for (;; from = 0, to = todo, todo = 0) {
924 >            for (int i = from; i < to; i++)
925 >                elements[i] = operator.apply(elementAt(i));
926 >            if (todo == 0) break;
927 >        }
928 >        // checkInvariants();
929 >    }
930 >
931 >    /**
932 >     * @throws NullPointerException {@inheritDoc}
933 >     */
934 >    public boolean removeIf(Predicate<? super E> filter) {
935 >        Objects.requireNonNull(filter);
936 >        return bulkRemove(filter);
937 >    }
938 >
939 >    /**
940 >     * @throws NullPointerException {@inheritDoc}
941 >     */
942 >    public boolean removeAll(Collection<?> c) {
943 >        Objects.requireNonNull(c);
944 >        return bulkRemove(e -> c.contains(e));
945 >    }
946 >
947 >    /**
948 >     * @throws NullPointerException {@inheritDoc}
949 >     */
950 >    public boolean retainAll(Collection<?> c) {
951 >        Objects.requireNonNull(c);
952 >        return bulkRemove(e -> !c.contains(e));
953 >    }
954 >
955 >    /** Implementation of bulk remove methods. */
956 >    private boolean bulkRemove(Predicate<? super E> filter) {
957 >        // checkInvariants();
958 >        final Object[] elements = this.elements;
959 >        final int capacity = elements.length;
960 >        int i = head, j = i, remaining = size, deleted = 0;
961 >        try {
962 >            for (; remaining > 0; remaining--) {
963 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
964 >                if (filter.test(e))
965 >                    deleted++;
966 >                else {
967 >                    if (j != i)
968 >                        elements[j] = e;
969 >                    if (++j >= capacity) j = 0;
970 >                }
971 >                if (++i >= capacity) i = 0;
972 >            }
973 >            return deleted > 0;
974 >        } catch (Throwable ex) {
975 >            if (deleted > 0)
976 >                for (; remaining > 0; remaining--) {
977 >                    elements[j] = elements[i];
978 >                    if (++i >= capacity) i = 0;
979 >                    if (++j >= capacity) j = 0;
980 >                }
981 >            throw ex;
982 >        } finally {
983 >            size -= deleted;
984 >            clearSlice(elements, j, deleted);
985 >            // checkInvariants();
986 >        }
987 >    }
988 >
989 >    /**
990 >     * Returns {@code true} if this deque contains the specified element.
991 >     * More formally, returns {@code true} if and only if this deque contains
992 >     * at least one element {@code e} such that {@code o.equals(e)}.
993       *
994       * @param o object to be checked for containment in this deque
995 <     * @return <tt>true</tt> if this deque contains the specified element
995 >     * @return {@code true} if this deque contains the specified element
996       */
997      public boolean contains(Object o) {
998 <        if (o == null)
999 <            return false;
1000 <        int mask = elements.length - 1;
1001 <        int i = head;
1002 <        E x;
1003 <        while ( (x = elements[i]) != null) {
1004 <            if (o.equals(x))
1005 <                return true;
1006 <            i = (i + 1) & mask;
998 >        if (o != null) {
999 >            final Object[] elements = this.elements;
1000 >            final int capacity = elements.length;
1001 >            int from, end, to, todo;
1002 >            todo = (end = (from = head) + size)
1003 >                - (to = (capacity - end >= 0) ? end : capacity);
1004 >            for (;; from = 0, to = todo, todo = 0) {
1005 >                for (int i = from; i < to; i++)
1006 >                    if (o.equals(elements[i]))
1007 >                        return true;
1008 >                if (todo == 0) break;
1009 >            }
1010          }
1011          return false;
1012      }
# Line 678 | Line 1014 | public class ArrayDeque<E> extends Abstr
1014      /**
1015       * Removes a single instance of the specified element from this deque.
1016       * If the deque does not contain the element, it is unchanged.
1017 <     * More formally, removes the first element <tt>e</tt> such that
1018 <     * <tt>o.equals(e)</tt> (if such an element exists).
1019 <     * Returns <tt>true</tt> if this deque contained the specified element
1017 >     * More formally, removes the first element {@code e} such that
1018 >     * {@code o.equals(e)} (if such an element exists).
1019 >     * Returns {@code true} if this deque contained the specified element
1020       * (or equivalently, if this deque changed as a result of the call).
1021       *
1022 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1022 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1023       *
1024       * @param o element to be removed from this deque, if present
1025 <     * @return <tt>true</tt> if this deque contained the specified element
1025 >     * @return {@code true} if this deque contained the specified element
1026       */
1027      public boolean remove(Object o) {
1028          return removeFirstOccurrence(o);
# Line 697 | Line 1033 | public class ArrayDeque<E> extends Abstr
1033       * The deque will be empty after this call returns.
1034       */
1035      public void clear() {
1036 <        int h = head;
1037 <        int t = tail;
1038 <        if (h != t) { // clear all cells
1039 <            head = tail = 0;
1040 <            int i = h;
1041 <            int mask = elements.length - 1;
1042 <            do {
1043 <                elements[i] = null;
1044 <                i = (i + 1) & mask;
1045 <            } while (i != t);
1046 <        }
1036 >        clearSlice(elements, head, size);
1037 >        size = head = 0;
1038 >        // checkInvariants();
1039 >    }
1040 >
1041 >    /**
1042 >     * Nulls out count elements, starting at array index from.
1043 >     */
1044 >    private static void clearSlice(Object[] elements, int from, int count) {
1045 >        final int capacity = elements.length, end = from + count;
1046 >        final int leg = (capacity - end >= 0) ? end : capacity;
1047 >        Arrays.fill(elements, from, leg, null);
1048 >        if (leg != end)
1049 >            Arrays.fill(elements, 0, end - capacity, null);
1050      }
1051  
1052      /**
# Line 724 | Line 1063 | public class ArrayDeque<E> extends Abstr
1063       * @return an array containing all of the elements in this deque
1064       */
1065      public Object[] toArray() {
1066 <        return copyElements(new Object[size()]);
1066 >        return toArray(Object[].class);
1067 >    }
1068 >
1069 >    private <T> T[] toArray(Class<T[]> klazz) {
1070 >        final Object[] elements = this.elements;
1071 >        final int capacity = elements.length;
1072 >        final int head = this.head, end = head + size;
1073 >        final T[] a;
1074 >        if (end >= 0) {
1075 >            a = Arrays.copyOfRange(elements, head, end, klazz);
1076 >        } else {
1077 >            // integer overflow!
1078 >            a = Arrays.copyOfRange(elements, 0, size, klazz);
1079 >            System.arraycopy(elements, head, a, 0, capacity - head);
1080 >        }
1081 >        if (end - capacity > 0)
1082 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1083 >        return a;
1084      }
1085  
1086      /**
# Line 738 | Line 1094 | public class ArrayDeque<E> extends Abstr
1094       * <p>If this deque fits in the specified array with room to spare
1095       * (i.e., the array has more elements than this deque), the element in
1096       * the array immediately following the end of the deque is set to
1097 <     * <tt>null</tt>.
1097 >     * {@code null}.
1098       *
1099       * <p>Like the {@link #toArray()} method, this method acts as bridge between
1100       * array-based and collection-based APIs.  Further, this method allows
1101       * precise control over the runtime type of the output array, and may,
1102       * under certain circumstances, be used to save allocation costs.
1103       *
1104 <     * <p>Suppose <tt>x</tt> is a deque known to contain only strings.
1104 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1105       * The following code can be used to dump the deque into a newly
1106 <     * allocated array of <tt>String</tt>:
1106 >     * allocated array of {@code String}:
1107       *
1108 <     * <pre>
753 <     *     String[] y = x.toArray(new String[0]);</pre>
1108 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1109       *
1110 <     * Note that <tt>toArray(new Object[0])</tt> is identical in function to
1111 <     * <tt>toArray()</tt>.
1110 >     * Note that {@code toArray(new Object[0])} is identical in function to
1111 >     * {@code toArray()}.
1112       *
1113       * @param a the array into which the elements of the deque are to
1114       *          be stored, if it is big enough; otherwise, a new array of the
# Line 764 | Line 1119 | public class ArrayDeque<E> extends Abstr
1119       *         this deque
1120       * @throws NullPointerException if the specified array is null
1121       */
1122 +    @SuppressWarnings("unchecked")
1123      public <T> T[] toArray(T[] a) {
1124 <        int size = size();
1125 <        if (a.length < size)
1126 <            a = (T[])java.lang.reflect.Array.newInstance(
1127 <                    a.getClass().getComponentType(), size);
1128 <        copyElements(a);
1129 <        if (a.length > size)
1124 >        final int size = this.size;
1125 >        if (size > a.length)
1126 >            return toArray((Class<T[]>) a.getClass());
1127 >        final Object[] elements = this.elements;
1128 >        final int capacity = elements.length;
1129 >        final int head = this.head, end = head + size;
1130 >        final int front = (capacity - end >= 0) ? size : capacity - head;
1131 >        System.arraycopy(elements, head, a, 0, front);
1132 >        if (front != size)
1133 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1134 >        if (size < a.length)
1135              a[size] = null;
1136          return a;
1137      }
# Line 784 | Line 1145 | public class ArrayDeque<E> extends Abstr
1145       */
1146      public ArrayDeque<E> clone() {
1147          try {
1148 +            @SuppressWarnings("unchecked")
1149              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1150              result.elements = Arrays.copyOf(elements, elements.length);
1151              return result;
790
1152          } catch (CloneNotSupportedException e) {
1153              throw new AssertionError();
1154          }
1155      }
1156  
796    /**
797     * Appease the serialization gods.
798     */
1157      private static final long serialVersionUID = 2340985798034038923L;
1158  
1159      /**
1160 <     * Serialize this deque.
1160 >     * Saves this deque to a stream (that is, serializes it).
1161       *
1162 <     * @serialData The current size (<tt>int</tt>) of the deque,
1162 >     * @param s the stream
1163 >     * @throws java.io.IOException if an I/O error occurs
1164 >     * @serialData The current size ({@code int}) of the deque,
1165       * followed by all of its elements (each an object reference) in
1166       * first-to-last order.
1167       */
1168 <    private void writeObject(ObjectOutputStream s) throws IOException {
1168 >    private void writeObject(java.io.ObjectOutputStream s)
1169 >            throws java.io.IOException {
1170          s.defaultWriteObject();
1171  
1172          // Write out size
1173 <        s.writeInt(size());
1173 >        s.writeInt(size);
1174  
1175          // Write out elements in order.
1176 <        int mask = elements.length - 1;
1177 <        for (int i = head; i != tail; i = (i + 1) & mask)
1178 <            s.writeObject(elements[i]);
1176 >        final Object[] elements = this.elements;
1177 >        final int capacity = elements.length;
1178 >        int from, end, to, todo;
1179 >        todo = (end = (from = head) + size)
1180 >            - (to = (capacity - end >= 0) ? end : capacity);
1181 >        for (;; from = 0, to = todo, todo = 0) {
1182 >            for (int i = from; i < to; i++)
1183 >                s.writeObject(elements[i]);
1184 >            if (todo == 0) break;
1185 >        }
1186      }
1187  
1188      /**
1189 <     * Deserialize this deque.
1189 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1190 >     * @param s the stream
1191 >     * @throws ClassNotFoundException if the class of a serialized object
1192 >     *         could not be found
1193 >     * @throws java.io.IOException if an I/O error occurs
1194       */
1195 <    private void readObject(ObjectInputStream s)
1196 <            throws IOException, ClassNotFoundException {
1195 >    private void readObject(java.io.ObjectInputStream s)
1196 >            throws java.io.IOException, ClassNotFoundException {
1197          s.defaultReadObject();
1198  
1199          // Read in size and allocate array
1200 <        int size = s.readInt();
829 <        allocateElements(size);
830 <        head = 0;
831 <        tail = size;
1200 >        elements = new Object[size = s.readInt()];
1201  
1202          // Read in all elements in the proper order.
1203          for (int i = 0; i < size; i++)
1204 <            elements[i] = (E)s.readObject();
1204 >            elements[i] = s.readObject();
1205      }
1206 +
1207 +    /** debugging */
1208 +    void checkInvariants() {
1209 +        try {
1210 +            int capacity = elements.length;
1211 +            // assert size >= 0 && size <= capacity;
1212 +            // assert head >= 0;
1213 +            // assert capacity == 0 || head < capacity;
1214 +            // assert size == 0 || elements[head] != null;
1215 +            // assert size == 0 || elements[tail()] != null;
1216 +            // assert size == capacity || elements[dec(head, capacity)] == null;
1217 +            // assert size == capacity || elements[inc(tail(), capacity)] == null;
1218 +        } catch (Throwable t) {
1219 +            System.err.printf("head=%d size=%d capacity=%d%n",
1220 +                              head, size, elements.length);
1221 +            System.err.printf("elements=%s%n",
1222 +                              Arrays.toString(elements));
1223 +            throw t;
1224 +        }
1225 +    }
1226 +
1227   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines