ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.43 by jsr166, Wed Jan 16 21:25:33 2013 UTC vs.
Revision 1.134 by jsr166, Sat Jun 30 22:35:55 2018 UTC

# Line 1 | Line 1
1   /*
2 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3 *
4 * This code is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License version 2 only, as
6 * published by the Free Software Foundation.  Oracle designates this
7 * particular file as subject to the "Classpath" exception as provided
8 * by Oracle in the LICENSE file that accompanied this code.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 */
24
25 /*
26 * This file is available under and governed by the GNU General Public
27 * License version 2 only, as published by the Free Software Foundation.
28 * However, the following notice accompanied the original version of this
29 * file:
30 *
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3   * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.util.Spliterator;
8 < import java.util.stream.Stream;
9 < import java.util.stream.Streams;
10 < import java.util.function.Block;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12 > import jdk.internal.misc.SharedSecrets;
13  
14   /**
15   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 48 | Line 21 | import java.util.function.Block;
21   * when used as a queue.
22   *
23   * <p>Most {@code ArrayDeque} operations run in amortized constant time.
24 < * Exceptions include {@link #remove(Object) remove}, {@link
25 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
26 < * removeLastOccurrence}, {@link #contains contains}, {@link #iterator
27 < * iterator.remove()}, and the bulk operations, all of which run in linear
28 < * time.
24 > * Exceptions include
25 > * {@link #remove(Object) remove},
26 > * {@link #removeFirstOccurrence removeFirstOccurrence},
27 > * {@link #removeLastOccurrence removeLastOccurrence},
28 > * {@link #contains contains},
29 > * {@link #iterator iterator.remove()},
30 > * and the bulk operations, all of which run in linear time.
31   *
32 < * <p>The iterators returned by this class's {@code iterator} method are
33 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
34 < * is created, in any way except through the iterator's own {@code remove}
35 < * method, the iterator will generally throw a {@link
32 > * <p>The iterators returned by this class's {@link #iterator() iterator}
33 > * method are <em>fail-fast</em>: If the deque is modified at any time after
34 > * the iterator is created, in any way except through the iterator's own
35 > * {@code remove} method, the iterator will generally throw a {@link
36   * ConcurrentModificationException}.  Thus, in the face of concurrent
37   * modification, the iterator fails quickly and cleanly, rather than risking
38   * arbitrary, non-deterministic behavior at an undetermined time in the
# Line 76 | Line 51 | import java.util.function.Block;
51   * Iterator} interfaces.
52   *
53   * <p>This class is a member of the
54 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
55   * Java Collections Framework</a>.
56   *
57   * @author  Josh Bloch and Doug Lea
58 + * @param <E> the type of elements held in this deque
59   * @since   1.6
84 * @param <E> the type of elements held in this collection
60   */
61   public class ArrayDeque<E> extends AbstractCollection<E>
62 <                           implements Deque<E>, Cloneable, java.io.Serializable
62 >                           implements Deque<E>, Cloneable, Serializable
63   {
64 +    /*
65 +     * VMs excel at optimizing simple array loops where indices are
66 +     * incrementing or decrementing over a valid slice, e.g.
67 +     *
68 +     * for (int i = start; i < end; i++) ... elements[i]
69 +     *
70 +     * Because in a circular array, elements are in general stored in
71 +     * two disjoint such slices, we help the VM by writing unusual
72 +     * nested loops for all traversals over the elements.  Having only
73 +     * one hot inner loop body instead of two or three eases human
74 +     * maintenance and encourages VM loop inlining into the caller.
75 +     */
76 +
77      /**
78       * The array in which the elements of the deque are stored.
79 <     * The capacity of the deque is the length of this array, which is
80 <     * always a power of two. The array is never allowed to become
93 <     * full, except transiently within an addX method where it is
94 <     * resized (see doubleCapacity) immediately upon becoming full,
95 <     * thus avoiding head and tail wrapping around to equal each
96 <     * other.  We also guarantee that all array cells not holding
97 <     * deque elements are always null.
79 >     * All array cells not holding deque elements are always null.
80 >     * The array always has at least one null slot (at tail).
81       */
82 <    transient Object[] elements; // non-private to simplify nested class access
82 >    transient Object[] elements;
83  
84      /**
85       * The index of the element at the head of the deque (which is the
86       * element that would be removed by remove() or pop()); or an
87 <     * arbitrary number equal to tail if the deque is empty.
87 >     * arbitrary number 0 <= head < elements.length equal to tail if
88 >     * the deque is empty.
89       */
90      transient int head;
91  
92      /**
93       * The index at which the next element would be added to the tail
94 <     * of the deque (via addLast(E), add(E), or push(E)).
94 >     * of the deque (via addLast(E), add(E), or push(E));
95 >     * elements[tail] is always null.
96       */
97      transient int tail;
98  
99      /**
100 <     * The minimum capacity that we'll use for a newly created deque.
101 <     * Must be a power of 2.
100 >     * The maximum size of array to allocate.
101 >     * Some VMs reserve some header words in an array.
102 >     * Attempts to allocate larger arrays may result in
103 >     * OutOfMemoryError: Requested array size exceeds VM limit
104       */
105 <    private static final int MIN_INITIAL_CAPACITY = 8;
119 <
120 <    // ******  Array allocation and resizing utilities ******
105 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
106  
107      /**
108 <     * Allocates empty array to hold the given number of elements.
108 >     * Increases the capacity of this deque by at least the given amount.
109       *
110 <     * @param numElements  the number of elements to hold
110 >     * @param needed the required minimum extra capacity; must be positive
111       */
112 <    private void allocateElements(int numElements) {
113 <        int initialCapacity = MIN_INITIAL_CAPACITY;
114 <        // Find the best power of two to hold elements.
115 <        // Tests "<=" because arrays aren't kept full.
116 <        if (numElements >= initialCapacity) {
117 <            initialCapacity = numElements;
118 <            initialCapacity |= (initialCapacity >>>  1);
119 <            initialCapacity |= (initialCapacity >>>  2);
120 <            initialCapacity |= (initialCapacity >>>  4);
121 <            initialCapacity |= (initialCapacity >>>  8);
122 <            initialCapacity |= (initialCapacity >>> 16);
123 <            initialCapacity++;
112 >    private void grow(int needed) {
113 >        // overflow-conscious code
114 >        final int oldCapacity = elements.length;
115 >        int newCapacity;
116 >        // Double capacity if small; else grow by 50%
117 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
118 >        if (jump < needed
119 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
120 >            newCapacity = newCapacity(needed, jump);
121 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
122 >        // Exceptionally, here tail == head needs to be disambiguated
123 >        if (tail < head || (tail == head && es[head] != null)) {
124 >            // wrap around; slide first leg forward to end of array
125 >            int newSpace = newCapacity - oldCapacity;
126 >            System.arraycopy(es, head,
127 >                             es, head + newSpace,
128 >                             oldCapacity - head);
129 >            for (int i = head, to = (head += newSpace); i < to; i++)
130 >                es[i] = null;
131 >        }
132 >        // checkInvariants();
133 >    }
134  
135 <            if (initialCapacity < 0)   // Too many elements, must back off
136 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
135 >    /** Capacity calculation for edge conditions, especially overflow. */
136 >    private int newCapacity(int needed, int jump) {
137 >        final int oldCapacity = elements.length, minCapacity;
138 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
139 >            if (minCapacity < 0)
140 >                throw new IllegalStateException("Sorry, deque too big");
141 >            return Integer.MAX_VALUE;
142          }
143 <        elements = new Object[initialCapacity];
143 >        if (needed > jump)
144 >            return minCapacity;
145 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
146 >            ? oldCapacity + jump
147 >            : MAX_ARRAY_SIZE;
148      }
149  
150      /**
151 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
152 <     * when head and tail have wrapped around to become equal.
151 >     * Increases the internal storage of this collection, if necessary,
152 >     * to ensure that it can hold at least the given number of elements.
153 >     *
154 >     * @param minCapacity the desired minimum capacity
155 >     * @since TBD
156       */
157 <    private void doubleCapacity() {
158 <        assert head == tail;
159 <        int p = head;
160 <        int n = elements.length;
161 <        int r = n - p; // number of elements to the right of p
155 <        int newCapacity = n << 1;
156 <        if (newCapacity < 0)
157 <            throw new IllegalStateException("Sorry, deque too big");
158 <        Object[] a = new Object[newCapacity];
159 <        System.arraycopy(elements, p, a, 0, r);
160 <        System.arraycopy(elements, 0, a, r, p);
161 <        elements = a;
162 <        head = 0;
163 <        tail = n;
157 >    /* public */ void ensureCapacity(int minCapacity) {
158 >        int needed;
159 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
160 >            grow(needed);
161 >        // checkInvariants();
162      }
163  
164      /**
165 <     * Copies the elements from our element array into the specified array,
168 <     * in order (from first to last element in the deque).  It is assumed
169 <     * that the array is large enough to hold all elements in the deque.
165 >     * Minimizes the internal storage of this collection.
166       *
167 <     * @return its argument
167 >     * @since TBD
168       */
169 <    private <T> T[] copyElements(T[] a) {
170 <        if (head < tail) {
171 <            System.arraycopy(elements, head, a, 0, size());
172 <        } else if (head > tail) {
173 <            int headPortionLen = elements.length - head;
174 <            System.arraycopy(elements, head, a, 0, headPortionLen);
179 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
169 >    /* public */ void trimToSize() {
170 >        int size;
171 >        if ((size = size()) + 1 < elements.length) {
172 >            elements = toArray(new Object[size + 1]);
173 >            head = 0;
174 >            tail = size;
175          }
176 <        return a;
176 >        // checkInvariants();
177      }
178  
179      /**
# Line 186 | Line 181 | public class ArrayDeque<E> extends Abstr
181       * sufficient to hold 16 elements.
182       */
183      public ArrayDeque() {
184 <        elements = new Object[16];
184 >        elements = new Object[16 + 1];
185      }
186  
187      /**
188       * Constructs an empty array deque with an initial capacity
189       * sufficient to hold the specified number of elements.
190       *
191 <     * @param numElements  lower bound on initial capacity of the deque
191 >     * @param numElements lower bound on initial capacity of the deque
192       */
193      public ArrayDeque(int numElements) {
194 <        allocateElements(numElements);
194 >        elements =
195 >            new Object[(numElements < 1) ? 1 :
196 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
197 >                       numElements + 1];
198      }
199  
200      /**
# Line 210 | Line 208 | public class ArrayDeque<E> extends Abstr
208       * @throws NullPointerException if the specified collection is null
209       */
210      public ArrayDeque(Collection<? extends E> c) {
211 <        allocateElements(c.size());
212 <        addAll(c);
211 >        this(c.size());
212 >        copyElements(c);
213 >    }
214 >
215 >    /**
216 >     * Circularly increments i, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus.
218 >     */
219 >    static final int inc(int i, int modulus) {
220 >        if (++i >= modulus) i = 0;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Circularly decrements i, mod modulus.
226 >     * Precondition and postcondition: 0 <= i < modulus.
227 >     */
228 >    static final int dec(int i, int modulus) {
229 >        if (--i < 0) i = modulus - 1;
230 >        return i;
231 >    }
232 >
233 >    /**
234 >     * Circularly adds the given distance to index i, mod modulus.
235 >     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
236 >     * @return index 0 <= i < modulus
237 >     */
238 >    static final int inc(int i, int distance, int modulus) {
239 >        if ((i += distance) - modulus >= 0) i -= modulus;
240 >        return i;
241 >    }
242 >
243 >    /**
244 >     * Subtracts j from i, mod modulus.
245 >     * Index i must be logically ahead of index j.
246 >     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
247 >     * @return the "circular distance" from j to i; corner case i == j
248 >     * is disambiguated to "empty", returning 0.
249 >     */
250 >    static final int sub(int i, int j, int modulus) {
251 >        if ((i -= j) < 0) i += modulus;
252 >        return i;
253 >    }
254 >
255 >    /**
256 >     * Returns element at array index i.
257 >     * This is a slight abuse of generics, accepted by javac.
258 >     */
259 >    @SuppressWarnings("unchecked")
260 >    static final <E> E elementAt(Object[] es, int i) {
261 >        return (E) es[i];
262 >    }
263 >
264 >    /**
265 >     * A version of elementAt that checks for null elements.
266 >     * This check doesn't catch all possible comodifications,
267 >     * but does catch ones that corrupt traversal.
268 >     */
269 >    static final <E> E nonNullElementAt(Object[] es, int i) {
270 >        @SuppressWarnings("unchecked") E e = (E) es[i];
271 >        if (e == null)
272 >            throw new ConcurrentModificationException();
273 >        return e;
274      }
275  
276      // The main insertion and extraction methods are addFirst,
# Line 227 | Line 286 | public class ArrayDeque<E> extends Abstr
286      public void addFirst(E e) {
287          if (e == null)
288              throw new NullPointerException();
289 <        elements[head = (head - 1) & (elements.length - 1)] = e;
289 >        final Object[] es = elements;
290 >        es[head = dec(head, es.length)] = e;
291          if (head == tail)
292 <            doubleCapacity();
292 >            grow(1);
293 >        // checkInvariants();
294      }
295  
296      /**
# Line 243 | Line 304 | public class ArrayDeque<E> extends Abstr
304      public void addLast(E e) {
305          if (e == null)
306              throw new NullPointerException();
307 <        elements[tail] = e;
308 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
309 <            doubleCapacity();
307 >        final Object[] es = elements;
308 >        es[tail] = e;
309 >        if (head == (tail = inc(tail, es.length)))
310 >            grow(1);
311 >        // checkInvariants();
312 >    }
313 >
314 >    /**
315 >     * Adds all of the elements in the specified collection at the end
316 >     * of this deque, as if by calling {@link #addLast} on each one,
317 >     * in the order that they are returned by the collection's iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327 >            grow(needed);
328 >        copyElements(c);
329 >        // checkInvariants();
330 >        return size() > s;
331 >    }
332 >
333 >    private void copyElements(Collection<? extends E> c) {
334 >        c.forEach(this::addLast);
335      }
336  
337      /**
# Line 276 | Line 362 | public class ArrayDeque<E> extends Abstr
362       * @throws NoSuchElementException {@inheritDoc}
363       */
364      public E removeFirst() {
365 <        E x = pollFirst();
366 <        if (x == null)
365 >        E e = pollFirst();
366 >        if (e == null)
367              throw new NoSuchElementException();
368 <        return x;
368 >        // checkInvariants();
369 >        return e;
370      }
371  
372      /**
373       * @throws NoSuchElementException {@inheritDoc}
374       */
375      public E removeLast() {
376 <        E x = pollLast();
377 <        if (x == null)
376 >        E e = pollLast();
377 >        if (e == null)
378              throw new NoSuchElementException();
379 <        return x;
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383      public E pollFirst() {
384 <        int h = head;
385 <        @SuppressWarnings("unchecked")
386 <        E result = (E) elements[h];
387 <        // Element is null if deque empty
388 <        if (result == null)
389 <            return null;
390 <        elements[h] = null;     // Must null out slot
391 <        head = (h + 1) & (elements.length - 1);
392 <        return result;
384 >        final Object[] es;
385 >        final int h;
386 >        E e = elementAt(es = elements, h = head);
387 >        if (e != null) {
388 >            es[h] = null;
389 >            head = inc(h, es.length);
390 >        }
391 >        // checkInvariants();
392 >        return e;
393      }
394  
395      public E pollLast() {
396 <        int t = (tail - 1) & (elements.length - 1);
397 <        @SuppressWarnings("unchecked")
398 <        E result = (E) elements[t];
399 <        if (result == null)
400 <            return null;
401 <        elements[t] = null;
402 <        tail = t;
315 <        return result;
396 >        final Object[] es;
397 >        final int t;
398 >        E e = elementAt(es = elements, t = dec(tail, es.length));
399 >        if (e != null)
400 >            es[tail = t] = null;
401 >        // checkInvariants();
402 >        return e;
403      }
404  
405      /**
406       * @throws NoSuchElementException {@inheritDoc}
407       */
408      public E getFirst() {
409 <        @SuppressWarnings("unchecked")
410 <        E result = (E) elements[head];
324 <        if (result == null)
409 >        E e = elementAt(elements, head);
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return result;
412 >        // checkInvariants();
413 >        return e;
414      }
415  
416      /**
417       * @throws NoSuchElementException {@inheritDoc}
418       */
419      public E getLast() {
420 <        @SuppressWarnings("unchecked")
421 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
422 <        if (result == null)
420 >        final Object[] es = elements;
421 >        E e = elementAt(es, dec(tail, es.length));
422 >        if (e == null)
423              throw new NoSuchElementException();
424 <        return result;
424 >        // checkInvariants();
425 >        return e;
426      }
427  
340    @SuppressWarnings("unchecked")
428      public E peekFirst() {
429 <        // elements[head] is null if deque empty
430 <        return (E) elements[head];
429 >        // checkInvariants();
430 >        return elementAt(elements, head);
431      }
432  
346    @SuppressWarnings("unchecked")
433      public E peekLast() {
434 <        return (E) elements[(tail - 1) & (elements.length - 1)];
434 >        // checkInvariants();
435 >        final Object[] es;
436 >        return elementAt(es = elements, dec(tail, es.length));
437      }
438  
439      /**
# Line 361 | Line 449 | public class ArrayDeque<E> extends Abstr
449       * @return {@code true} if the deque contained the specified element
450       */
451      public boolean removeFirstOccurrence(Object o) {
452 <        if (o == null)
453 <            return false;
454 <        int mask = elements.length - 1;
455 <        int i = head;
456 <        Object x;
457 <        while ( (x = elements[i]) != null) {
458 <            if (o.equals(x)) {
459 <                delete(i);
460 <                return true;
452 >        if (o != null) {
453 >            final Object[] es = elements;
454 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
455 >                 ; i = 0, to = end) {
456 >                for (; i < to; i++)
457 >                    if (o.equals(es[i])) {
458 >                        delete(i);
459 >                        return true;
460 >                    }
461 >                if (to == end) break;
462              }
374            i = (i + 1) & mask;
463          }
464          return false;
465      }
# Line 389 | Line 477 | public class ArrayDeque<E> extends Abstr
477       * @return {@code true} if the deque contained the specified element
478       */
479      public boolean removeLastOccurrence(Object o) {
480 <        if (o == null)
481 <            return false;
482 <        int mask = elements.length - 1;
483 <        int i = (tail - 1) & mask;
484 <        Object x;
485 <        while ( (x = elements[i]) != null) {
486 <            if (o.equals(x)) {
487 <                delete(i);
488 <                return true;
480 >        if (o != null) {
481 >            final Object[] es = elements;
482 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
483 >                 ; i = es.length, to = end) {
484 >                for (i--; i > to - 1; i--)
485 >                    if (o.equals(es[i])) {
486 >                        delete(i);
487 >                        return true;
488 >                    }
489 >                if (to == end) break;
490              }
402            i = (i - 1) & mask;
491          }
492          return false;
493      }
# Line 436 | Line 524 | public class ArrayDeque<E> extends Abstr
524      /**
525       * Retrieves and removes the head of the queue represented by this deque.
526       *
527 <     * This method differs from {@link #poll poll} only in that it throws an
528 <     * exception if this deque is empty.
527 >     * This method differs from {@link #poll() poll()} only in that it
528 >     * throws an exception if this deque is empty.
529       *
530       * <p>This method is equivalent to {@link #removeFirst}.
531       *
# Line 518 | Line 606 | public class ArrayDeque<E> extends Abstr
606          return removeFirst();
607      }
608  
521    private void checkInvariants() {
522        assert elements[tail] == null;
523        assert head == tail ? elements[head] == null :
524            (elements[head] != null &&
525             elements[(tail - 1) & (elements.length - 1)] != null);
526        assert elements[(head - 1) & (elements.length - 1)] == null;
527    }
528
609      /**
610 <     * Removes the element at the specified position in the elements array,
611 <     * adjusting head and tail as necessary.  This can result in motion of
612 <     * elements backwards or forwards in the array.
610 >     * Removes the element at the specified position in the elements array.
611 >     * This can result in forward or backwards motion of array elements.
612 >     * We optimize for least element motion.
613       *
614       * <p>This method is called delete rather than remove to emphasize
615       * that its semantics differ from those of {@link List#remove(int)}.
616       *
617 <     * @return true if elements moved backwards
617 >     * @return true if elements near tail moved backwards
618       */
619 <    private boolean delete(int i) {
620 <        checkInvariants();
621 <        final Object[] elements = this.elements;
622 <        final int mask = elements.length - 1;
623 <        final int h = head;
624 <        final int t = tail;
625 <        final int front = (i - h) & mask;
626 <        final int back  = (t - i) & mask;
627 <
548 <        // Invariant: head <= i < tail mod circularity
549 <        if (front >= ((t - h) & mask))
550 <            throw new ConcurrentModificationException();
551 <
552 <        // Optimize for least element motion
619 >    boolean delete(int i) {
620 >        // checkInvariants();
621 >        final Object[] es = elements;
622 >        final int capacity = es.length;
623 >        final int h, t;
624 >        // number of elements before to-be-deleted elt
625 >        final int front = sub(i, h = head, capacity);
626 >        // number of elements after to-be-deleted elt
627 >        final int back = sub(t = tail, i, capacity) - 1;
628          if (front < back) {
629 +            // move front elements forwards
630              if (h <= i) {
631 <                System.arraycopy(elements, h, elements, h + 1, front);
631 >                System.arraycopy(es, h, es, h + 1, front);
632              } else { // Wrap around
633 <                System.arraycopy(elements, 0, elements, 1, i);
634 <                elements[0] = elements[mask];
635 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
633 >                System.arraycopy(es, 0, es, 1, i);
634 >                es[0] = es[capacity - 1];
635 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
636              }
637 <            elements[h] = null;
638 <            head = (h + 1) & mask;
637 >            es[h] = null;
638 >            head = inc(h, capacity);
639 >            // checkInvariants();
640              return false;
641          } else {
642 <            if (i < t) { // Copy the null tail as well
643 <                System.arraycopy(elements, i + 1, elements, i, back);
644 <                tail = t - 1;
642 >            // move back elements backwards
643 >            tail = dec(t, capacity);
644 >            if (i <= tail) {
645 >                System.arraycopy(es, i + 1, es, i, back);
646              } else { // Wrap around
647 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
648 <                elements[mask] = elements[0];
649 <                System.arraycopy(elements, 1, elements, 0, t);
572 <                tail = (t - 1) & mask;
647 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
648 >                es[capacity - 1] = es[0];
649 >                System.arraycopy(es, 1, es, 0, t - 1);
650              }
651 +            es[tail] = null;
652 +            // checkInvariants();
653              return true;
654          }
655      }
# Line 583 | Line 662 | public class ArrayDeque<E> extends Abstr
662       * @return the number of elements in this deque
663       */
664      public int size() {
665 <        return (tail - head) & (elements.length - 1);
665 >        return sub(tail, head, elements.length);
666      }
667  
668      /**
# Line 612 | Line 691 | public class ArrayDeque<E> extends Abstr
691      }
692  
693      private class DeqIterator implements Iterator<E> {
694 <        /**
695 <         * Index of element to be returned by subsequent call to next.
617 <         */
618 <        private int cursor = head;
694 >        /** Index of element to be returned by subsequent call to next. */
695 >        int cursor;
696  
697 <        /**
698 <         * Tail recorded at construction (also in remove), to stop
622 <         * iterator and also to check for comodification.
623 <         */
624 <        private int fence = tail;
697 >        /** Number of elements yet to be returned. */
698 >        int remaining = size();
699  
700          /**
701           * Index of element returned by most recent call to next.
702           * Reset to -1 if element is deleted by a call to remove.
703           */
704 <        private int lastRet = -1;
704 >        int lastRet = -1;
705 >
706 >        DeqIterator() { cursor = head; }
707  
708 <        public boolean hasNext() {
709 <            return cursor != fence;
708 >        public final boolean hasNext() {
709 >            return remaining > 0;
710          }
711  
712          public E next() {
713 <            if (cursor == fence)
713 >            if (remaining <= 0)
714                  throw new NoSuchElementException();
715 <            @SuppressWarnings("unchecked")
716 <            E result = (E) elements[cursor];
717 <            // This check doesn't catch all possible comodifications,
718 <            // but does catch the ones that corrupt traversal
719 <            if (tail != fence || result == null)
644 <                throw new ConcurrentModificationException();
645 <            lastRet = cursor;
646 <            cursor = (cursor + 1) & (elements.length - 1);
647 <            return result;
715 >            final Object[] es = elements;
716 >            E e = nonNullElementAt(es, cursor);
717 >            cursor = inc(lastRet = cursor, es.length);
718 >            remaining--;
719 >            return e;
720          }
721  
722 <        public void remove() {
722 >        void postDelete(boolean leftShifted) {
723 >            if (leftShifted)
724 >                cursor = dec(cursor, elements.length);
725 >        }
726 >
727 >        public final void remove() {
728              if (lastRet < 0)
729                  throw new IllegalStateException();
730 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
654 <                cursor = (cursor - 1) & (elements.length - 1);
655 <                fence = tail;
656 <            }
730 >            postDelete(delete(lastRet));
731              lastRet = -1;
732          }
659    }
660
661    private class DescendingIterator implements Iterator<E> {
662        /*
663         * This class is nearly a mirror-image of DeqIterator, using
664         * tail instead of head for initial cursor, and head instead of
665         * tail for fence.
666         */
667        private int cursor = tail;
668        private int fence = head;
669        private int lastRet = -1;
733  
734 <        public boolean hasNext() {
735 <            return cursor != fence;
734 >        public void forEachRemaining(Consumer<? super E> action) {
735 >            Objects.requireNonNull(action);
736 >            int r;
737 >            if ((r = remaining) <= 0)
738 >                return;
739 >            remaining = 0;
740 >            final Object[] es = elements;
741 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
742 >                throw new ConcurrentModificationException();
743 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
744 >                 ; i = 0, to = end) {
745 >                for (; i < to; i++)
746 >                    action.accept(elementAt(es, i));
747 >                if (to == end) {
748 >                    if (end != tail)
749 >                        throw new ConcurrentModificationException();
750 >                    lastRet = dec(end, es.length);
751 >                    break;
752 >                }
753 >            }
754          }
755 +    }
756  
757 <        public E next() {
758 <            if (cursor == fence)
757 >    private class DescendingIterator extends DeqIterator {
758 >        DescendingIterator() { cursor = dec(tail, elements.length); }
759 >
760 >        public final E next() {
761 >            if (remaining <= 0)
762                  throw new NoSuchElementException();
763 <            cursor = (cursor - 1) & (elements.length - 1);
764 <            @SuppressWarnings("unchecked")
765 <            E result = (E) elements[cursor];
766 <            if (head != fence || result == null)
763 >            final Object[] es = elements;
764 >            E e = nonNullElementAt(es, cursor);
765 >            cursor = dec(lastRet = cursor, es.length);
766 >            remaining--;
767 >            return e;
768 >        }
769 >
770 >        void postDelete(boolean leftShifted) {
771 >            if (!leftShifted)
772 >                cursor = inc(cursor, elements.length);
773 >        }
774 >
775 >        public final void forEachRemaining(Consumer<? super E> action) {
776 >            Objects.requireNonNull(action);
777 >            int r;
778 >            if ((r = remaining) <= 0)
779 >                return;
780 >            remaining = 0;
781 >            final Object[] es = elements;
782 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
783                  throw new ConcurrentModificationException();
784 <            lastRet = cursor;
785 <            return result;
784 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
785 >                 ; i = es.length - 1, to = end) {
786 >                // hotspot generates faster code than for: i >= to !
787 >                for (; i > to - 1; i--)
788 >                    action.accept(elementAt(es, i));
789 >                if (to == end) {
790 >                    if (end != head)
791 >                        throw new ConcurrentModificationException();
792 >                    lastRet = end;
793 >                    break;
794 >                }
795 >            }
796          }
797 +    }
798  
799 <        public void remove() {
800 <            if (lastRet < 0)
801 <                throw new IllegalStateException();
802 <            if (!delete(lastRet)) {
803 <                cursor = (cursor + 1) & (elements.length - 1);
804 <                fence = head;
799 >    /**
800 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
801 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
802 >     * deque.
803 >     *
804 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
805 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
806 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
807 >     * the reporting of additional characteristic values.
808 >     *
809 >     * @return a {@code Spliterator} over the elements in this deque
810 >     * @since 1.8
811 >     */
812 >    public Spliterator<E> spliterator() {
813 >        return new DeqSpliterator();
814 >    }
815 >
816 >    final class DeqSpliterator implements Spliterator<E> {
817 >        private int fence;      // -1 until first use
818 >        private int cursor;     // current index, modified on traverse/split
819 >
820 >        /** Constructs late-binding spliterator over all elements. */
821 >        DeqSpliterator() {
822 >            this.fence = -1;
823 >        }
824 >
825 >        /** Constructs spliterator over the given range. */
826 >        DeqSpliterator(int origin, int fence) {
827 >            // assert 0 <= origin && origin < elements.length;
828 >            // assert 0 <= fence && fence < elements.length;
829 >            this.cursor = origin;
830 >            this.fence = fence;
831 >        }
832 >
833 >        /** Ensures late-binding initialization; then returns fence. */
834 >        private int getFence() { // force initialization
835 >            int t;
836 >            if ((t = fence) < 0) {
837 >                t = fence = tail;
838 >                cursor = head;
839              }
840 <            lastRet = -1;
840 >            return t;
841 >        }
842 >
843 >        public DeqSpliterator trySplit() {
844 >            final Object[] es = elements;
845 >            final int i, n;
846 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
847 >                ? null
848 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
849          }
850 +
851 +        public void forEachRemaining(Consumer<? super E> action) {
852 +            if (action == null)
853 +                throw new NullPointerException();
854 +            final int end = getFence(), cursor = this.cursor;
855 +            final Object[] es = elements;
856 +            if (cursor != end) {
857 +                this.cursor = end;
858 +                // null check at both ends of range is sufficient
859 +                if (es[cursor] == null || es[dec(end, es.length)] == null)
860 +                    throw new ConcurrentModificationException();
861 +                for (int i = cursor, to = (i <= end) ? end : es.length;
862 +                     ; i = 0, to = end) {
863 +                    for (; i < to; i++)
864 +                        action.accept(elementAt(es, i));
865 +                    if (to == end) break;
866 +                }
867 +            }
868 +        }
869 +
870 +        public boolean tryAdvance(Consumer<? super E> action) {
871 +            Objects.requireNonNull(action);
872 +            final Object[] es = elements;
873 +            if (fence < 0) { fence = tail; cursor = head; } // late-binding
874 +            final int i;
875 +            if ((i = cursor) == fence)
876 +                return false;
877 +            E e = nonNullElementAt(es, i);
878 +            cursor = inc(i, es.length);
879 +            action.accept(e);
880 +            return true;
881 +        }
882 +
883 +        public long estimateSize() {
884 +            return sub(getFence(), cursor, elements.length);
885 +        }
886 +
887 +        public int characteristics() {
888 +            return Spliterator.NONNULL
889 +                | Spliterator.ORDERED
890 +                | Spliterator.SIZED
891 +                | Spliterator.SUBSIZED;
892 +        }
893 +    }
894 +
895 +    /**
896 +     * @throws NullPointerException {@inheritDoc}
897 +     */
898 +    public void forEach(Consumer<? super E> action) {
899 +        Objects.requireNonNull(action);
900 +        final Object[] es = elements;
901 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
902 +             ; i = 0, to = end) {
903 +            for (; i < to; i++)
904 +                action.accept(elementAt(es, i));
905 +            if (to == end) {
906 +                if (end != tail) throw new ConcurrentModificationException();
907 +                break;
908 +            }
909 +        }
910 +        // checkInvariants();
911 +    }
912 +
913 +    /**
914 +     * Replaces each element of this deque with the result of applying the
915 +     * operator to that element, as specified by {@link List#replaceAll}.
916 +     *
917 +     * @param operator the operator to apply to each element
918 +     * @since TBD
919 +     */
920 +    /* public */ void replaceAll(UnaryOperator<E> operator) {
921 +        Objects.requireNonNull(operator);
922 +        final Object[] es = elements;
923 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
924 +             ; i = 0, to = end) {
925 +            for (; i < to; i++)
926 +                es[i] = operator.apply(elementAt(es, i));
927 +            if (to == end) {
928 +                if (end != tail) throw new ConcurrentModificationException();
929 +                break;
930 +            }
931 +        }
932 +        // checkInvariants();
933 +    }
934 +
935 +    /**
936 +     * @throws NullPointerException {@inheritDoc}
937 +     */
938 +    public boolean removeIf(Predicate<? super E> filter) {
939 +        Objects.requireNonNull(filter);
940 +        return bulkRemove(filter);
941 +    }
942 +
943 +    /**
944 +     * @throws NullPointerException {@inheritDoc}
945 +     */
946 +    public boolean removeAll(Collection<?> c) {
947 +        Objects.requireNonNull(c);
948 +        return bulkRemove(e -> c.contains(e));
949 +    }
950 +
951 +    /**
952 +     * @throws NullPointerException {@inheritDoc}
953 +     */
954 +    public boolean retainAll(Collection<?> c) {
955 +        Objects.requireNonNull(c);
956 +        return bulkRemove(e -> !c.contains(e));
957 +    }
958 +
959 +    /** Implementation of bulk remove methods. */
960 +    private boolean bulkRemove(Predicate<? super E> filter) {
961 +        // checkInvariants();
962 +        final Object[] es = elements;
963 +        // Optimize for initial run of survivors
964 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
965 +             ; i = 0, to = end) {
966 +            for (; i < to; i++)
967 +                if (filter.test(elementAt(es, i)))
968 +                    return bulkRemoveModified(filter, i);
969 +            if (to == end) {
970 +                if (end != tail) throw new ConcurrentModificationException();
971 +                break;
972 +            }
973 +        }
974 +        return false;
975 +    }
976 +
977 +    // A tiny bit set implementation
978 +
979 +    private static long[] nBits(int n) {
980 +        return new long[((n - 1) >> 6) + 1];
981 +    }
982 +    private static void setBit(long[] bits, int i) {
983 +        bits[i >> 6] |= 1L << i;
984 +    }
985 +    private static boolean isClear(long[] bits, int i) {
986 +        return (bits[i >> 6] & (1L << i)) == 0;
987 +    }
988 +
989 +    /**
990 +     * Helper for bulkRemove, in case of at least one deletion.
991 +     * Tolerate predicates that reentrantly access the collection for
992 +     * read (but writers still get CME), so traverse once to find
993 +     * elements to delete, a second pass to physically expunge.
994 +     *
995 +     * @param beg valid index of first element to be deleted
996 +     */
997 +    private boolean bulkRemoveModified(
998 +        Predicate<? super E> filter, final int beg) {
999 +        final Object[] es = elements;
1000 +        final int capacity = es.length;
1001 +        final int end = tail;
1002 +        final long[] deathRow = nBits(sub(end, beg, capacity));
1003 +        deathRow[0] = 1L;   // set bit 0
1004 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1005 +             ; i = 0, to = end, k -= capacity) {
1006 +            for (; i < to; i++)
1007 +                if (filter.test(elementAt(es, i)))
1008 +                    setBit(deathRow, i - k);
1009 +            if (to == end) break;
1010 +        }
1011 +        // a two-finger traversal, with hare i reading, tortoise w writing
1012 +        int w = beg;
1013 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1014 +             ; w = 0) { // w rejoins i on second leg
1015 +            // In this loop, i and w are on the same leg, with i > w
1016 +            for (; i < to; i++)
1017 +                if (isClear(deathRow, i - k))
1018 +                    es[w++] = es[i];
1019 +            if (to == end) break;
1020 +            // In this loop, w is on the first leg, i on the second
1021 +            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1022 +                if (isClear(deathRow, i - k))
1023 +                    es[w++] = es[i];
1024 +            if (i >= to) {
1025 +                if (w == capacity) w = 0; // "corner" case
1026 +                break;
1027 +            }
1028 +        }
1029 +        if (end != tail) throw new ConcurrentModificationException();
1030 +        circularClear(es, tail = w, end);
1031 +        // checkInvariants();
1032 +        return true;
1033      }
1034  
1035      /**
# Line 704 | Line 1041 | public class ArrayDeque<E> extends Abstr
1041       * @return {@code true} if this deque contains the specified element
1042       */
1043      public boolean contains(Object o) {
1044 <        if (o == null)
1045 <            return false;
1046 <        int mask = elements.length - 1;
1047 <        int i = head;
1048 <        Object x;
1049 <        while ( (x = elements[i]) != null) {
1050 <            if (o.equals(x))
1051 <                return true;
1052 <            i = (i + 1) & mask;
1044 >        if (o != null) {
1045 >            final Object[] es = elements;
1046 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1047 >                 ; i = 0, to = end) {
1048 >                for (; i < to; i++)
1049 >                    if (o.equals(es[i]))
1050 >                        return true;
1051 >                if (to == end) break;
1052 >            }
1053          }
1054          return false;
1055      }
# Line 725 | Line 1062 | public class ArrayDeque<E> extends Abstr
1062       * Returns {@code true} if this deque contained the specified element
1063       * (or equivalently, if this deque changed as a result of the call).
1064       *
1065 <     * <p>This method is equivalent to {@link #removeFirstOccurrence}.
1065 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1066       *
1067       * @param o element to be removed from this deque, if present
1068       * @return {@code true} if this deque contained the specified element
# Line 739 | Line 1076 | public class ArrayDeque<E> extends Abstr
1076       * The deque will be empty after this call returns.
1077       */
1078      public void clear() {
1079 <        int h = head;
1080 <        int t = tail;
1081 <        if (h != t) { // clear all cells
1082 <            head = tail = 0;
1083 <            int i = h;
1084 <            int mask = elements.length - 1;
1085 <            do {
1086 <                elements[i] = null;
1087 <                i = (i + 1) & mask;
1088 <            } while (i != t);
1079 >        circularClear(elements, head, tail);
1080 >        head = tail = 0;
1081 >        // checkInvariants();
1082 >    }
1083 >
1084 >    /**
1085 >     * Nulls out slots starting at array index i, upto index end.
1086 >     * Condition i == end means "empty" - nothing to do.
1087 >     */
1088 >    private static void circularClear(Object[] es, int i, int end) {
1089 >        // assert 0 <= i && i < es.length;
1090 >        // assert 0 <= end && end < es.length;
1091 >        for (int to = (i <= end) ? end : es.length;
1092 >             ; i = 0, to = end) {
1093 >            for (; i < to; i++) es[i] = null;
1094 >            if (to == end) break;
1095          }
1096      }
1097  
# Line 766 | Line 1109 | public class ArrayDeque<E> extends Abstr
1109       * @return an array containing all of the elements in this deque
1110       */
1111      public Object[] toArray() {
1112 <        return copyElements(new Object[size()]);
1112 >        return toArray(Object[].class);
1113 >    }
1114 >
1115 >    private <T> T[] toArray(Class<T[]> klazz) {
1116 >        final Object[] es = elements;
1117 >        final T[] a;
1118 >        final int head = this.head, tail = this.tail, end;
1119 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1120 >            // Uses null extension feature of copyOfRange
1121 >            a = Arrays.copyOfRange(es, head, end, klazz);
1122 >        } else {
1123 >            // integer overflow!
1124 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1125 >            System.arraycopy(es, head, a, 0, es.length - head);
1126 >        }
1127 >        if (end != tail)
1128 >            System.arraycopy(es, 0, a, es.length - head, tail);
1129 >        return a;
1130      }
1131  
1132      /**
# Line 791 | Line 1151 | public class ArrayDeque<E> extends Abstr
1151       * The following code can be used to dump the deque into a newly
1152       * allocated array of {@code String}:
1153       *
1154 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1154 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1155       *
1156       * Note that {@code toArray(new Object[0])} is identical in function to
1157       * {@code toArray()}.
# Line 807 | Line 1167 | public class ArrayDeque<E> extends Abstr
1167       */
1168      @SuppressWarnings("unchecked")
1169      public <T> T[] toArray(T[] a) {
1170 <        int size = size();
1171 <        if (a.length < size)
1172 <            a = (T[])java.lang.reflect.Array.newInstance(
1173 <                    a.getClass().getComponentType(), size);
1174 <        copyElements(a);
1175 <        if (a.length > size)
1170 >        final int size;
1171 >        if ((size = size()) > a.length)
1172 >            return toArray((Class<T[]>) a.getClass());
1173 >        final Object[] es = elements;
1174 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1175 >             ; i = 0, len = tail) {
1176 >            System.arraycopy(es, i, a, j, len);
1177 >            if ((j += len) == size) break;
1178 >        }
1179 >        if (size < a.length)
1180              a[size] = null;
1181          return a;
1182      }
# Line 840 | Line 1204 | public class ArrayDeque<E> extends Abstr
1204      /**
1205       * Saves this deque to a stream (that is, serializes it).
1206       *
1207 +     * @param s the stream
1208 +     * @throws java.io.IOException if an I/O error occurs
1209       * @serialData The current size ({@code int}) of the deque,
1210       * followed by all of its elements (each an object reference) in
1211       * first-to-last order.
# Line 852 | Line 1218 | public class ArrayDeque<E> extends Abstr
1218          s.writeInt(size());
1219  
1220          // Write out elements in order.
1221 <        int mask = elements.length - 1;
1222 <        for (int i = head; i != tail; i = (i + 1) & mask)
1223 <            s.writeObject(elements[i]);
1221 >        final Object[] es = elements;
1222 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1223 >             ; i = 0, to = end) {
1224 >            for (; i < to; i++)
1225 >                s.writeObject(es[i]);
1226 >            if (to == end) break;
1227 >        }
1228      }
1229  
1230      /**
1231       * Reconstitutes this deque from a stream (that is, deserializes it).
1232 +     * @param s the stream
1233 +     * @throws ClassNotFoundException if the class of a serialized object
1234 +     *         could not be found
1235 +     * @throws java.io.IOException if an I/O error occurs
1236       */
1237      private void readObject(java.io.ObjectInputStream s)
1238              throws java.io.IOException, ClassNotFoundException {
# Line 866 | Line 1240 | public class ArrayDeque<E> extends Abstr
1240  
1241          // Read in size and allocate array
1242          int size = s.readInt();
1243 <        allocateElements(size);
1244 <        head = 0;
1245 <        tail = size;
1243 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
1244 >        elements = new Object[size + 1];
1245 >        this.tail = size;
1246  
1247          // Read in all elements in the proper order.
1248          for (int i = 0; i < size; i++)
1249              elements[i] = s.readObject();
1250      }
1251  
1252 <    public Stream<E> stream() {
1253 <        int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
1254 <        return Streams.stream
1255 <            (() -> new DeqSpliterator<E>(this, head, tail), flags);
1256 <    }
1257 <    public Stream<E> parallelStream() {
1258 <        int flags = Streams.STREAM_IS_ORDERED | Streams.STREAM_IS_SIZED;
1259 <        return Streams.parallelStream
1260 <            (() -> new DeqSpliterator<E>(this, head, tail), flags);
1261 <    }
1262 <
1263 <
1264 <    static final class DeqSpliterator<E> implements Spliterator<E>, Iterator<E> {
1265 <        private final ArrayDeque<E> deq;
1266 <        private final Object[] array;
1267 <        private final int fence;  // initially tail
1268 <        private int index;        // current index, modified on traverse/split
1269 <
1270 <        /** Create new spliterator covering the given array and range */
897 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
898 <            this.deq = deq; this.array = deq.elements;
899 <            this.index = origin; this.fence = fence;
900 <        }
901 <
902 <        public DeqSpliterator<E> trySplit() {
903 <            int n = array.length;
904 <            int h = index, t = fence;
905 <            if (h != t && ((h + 1) & (n - 1)) != t) {
906 <                if (h > t)
907 <                    t += n;
908 <                int m = ((h + t) >>> 1) & (n - 1);
909 <                return new DeqSpliterator<E>(deq, h, index = m);
910 <            }
911 <            return null;
912 <        }
913 <
914 <        @SuppressWarnings("unchecked")
915 <        public void forEach(Block<? super E> block) {
916 <            if (block == null)
917 <                throw new NullPointerException();
918 <            Object[] a = array;
919 <            if (a != deq.elements)
920 <                throw new ConcurrentModificationException();
921 <            int m = a.length - 1, f = fence, i = index;
922 <            index = f;
923 <            while (i != f) {
924 <                Object e = a[i];
925 <                if (e == null)
926 <                    throw new ConcurrentModificationException();
927 <                block.accept((E)e);
928 <                i = (i + 1) & m;
929 <            }
930 <        }
931 <
932 <        @SuppressWarnings("unchecked")
933 <        public boolean tryAdvance(Block<? super E> block) {
934 <            if (block == null)
935 <                throw new NullPointerException();
936 <            Object[] a = array;
937 <            if (a != deq.elements)
938 <                throw new ConcurrentModificationException();
939 <            int m = a.length - 1, i = index;
940 <            if (i != fence) {
941 <                Object e = a[i];
942 <                if (e == null)
943 <                    throw new ConcurrentModificationException();
944 <                block.accept((E)e);
945 <                index = (i + 1) & m;
946 <                return true;
947 <            }
948 <            return false;
949 <        }
950 <
951 <        // Iterator support
952 <        public Iterator<E> iterator() {
953 <            return this;
954 <        }
955 <
956 <        public boolean hasNext() {
957 <            return index >= 0 && index != fence;
958 <        }
959 <
960 <        @SuppressWarnings("unchecked")
961 <            public E next() {
962 <            if (index < 0 || index == fence)
963 <                throw new NoSuchElementException();
964 <            Object[] a = array;
965 <            if (a != deq.elements)
966 <                throw new ConcurrentModificationException();
967 <            Object e = a[index];
968 <            if (e == null)
969 <                throw new ConcurrentModificationException();
970 <            index = (index + 1) & (a.length - 1);
971 <            return (E) e;
972 <        }
973 <
974 <        public void remove() { throw new UnsupportedOperationException(); }
975 <
976 <        // Other spliterator methods
977 <        public long estimateSize() {
978 <            int n = fence - index;
979 <            if (n < 0)
980 <                n += array.length;
981 <            return (long)n;
1252 >    /** debugging */
1253 >    void checkInvariants() {
1254 >        // Use head and tail fields with empty slot at tail strategy.
1255 >        // head == tail disambiguates to "empty".
1256 >        try {
1257 >            int capacity = elements.length;
1258 >            // assert 0 <= head && head < capacity;
1259 >            // assert 0 <= tail && tail < capacity;
1260 >            // assert capacity > 0;
1261 >            // assert size() < capacity;
1262 >            // assert head == tail || elements[head] != null;
1263 >            // assert elements[tail] == null;
1264 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1265 >        } catch (Throwable t) {
1266 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1267 >                              head, tail, elements.length);
1268 >            System.err.printf("elements=%s%n",
1269 >                              Arrays.toString(elements));
1270 >            throw t;
1271          }
983        public boolean hasExactSize() { return true; }
984        public boolean hasExactSplits() { return true; }
1272      }
1273  
1274   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines