ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.53 by dl, Wed Mar 13 12:38:56 2013 UTC vs.
Revision 1.113 by jsr166, Sun Nov 13 02:10:09 2016 UTC

# Line 4 | Line 4
4   */
5  
6   package java.util;
7 +
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 < import java.util.stream.Stream;
11 < import java.util.stream.Streams;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 53 | Line 54 | import java.util.stream.Streams;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
57 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75       * The array in which the elements of the deque are stored.
76 <     * The capacity of the deque is the length of this array, which is
77 <     * always a power of two. The array is never allowed to become
66 <     * full, except transiently within an addX method where it is
67 <     * resized (see doubleCapacity) immediately upon becoming full,
68 <     * thus avoiding head and tail wrapping around to equal each
69 <     * other.  We also guarantee that all array cells not holding
70 <     * deque elements are always null.
76 >     * We guarantee that all array cells not holding deque elements
77 >     * are always null.
78       */
79 <    transient Object[] elements; // non-private to simplify nested class access
79 >    transient Object[] elements;
80  
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number equal to tail if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87      transient int head;
88  
# Line 85 | Line 93 | public class ArrayDeque<E> extends Abstr
93      transient int tail;
94  
95      /**
96 <     * The minimum capacity that we'll use for a newly created deque.
97 <     * Must be a power of 2.
96 >     * The maximum size of array to allocate.
97 >     * Some VMs reserve some header words in an array.
98 >     * Attempts to allocate larger arrays may result in
99 >     * OutOfMemoryError: Requested array size exceeds VM limit
100       */
101 <    private static final int MIN_INITIAL_CAPACITY = 8;
101 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102  
103 <    // ******  Array allocation and resizing utilities ******
103 >    /**
104 >     * Increases the capacity of this deque by at least the given amount.
105 >     *
106 >     * @param needed the required minimum extra capacity; must be positive
107 >     */
108 >    private void grow(int needed) {
109 >        // overflow-conscious code
110 >        final int oldCapacity = elements.length;
111 >        int newCapacity;
112 >        // Double capacity if small; else grow by 50%
113 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 >        if (jump < needed
115 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 >            newCapacity = newCapacity(needed, jump);
117 >        elements = Arrays.copyOf(elements, newCapacity);
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120 >            // wrap around; slide first leg forward to end of array
121 >            int newSpace = newCapacity - oldCapacity;
122 >            System.arraycopy(elements, head,
123 >                             elements, head + newSpace,
124 >                             oldCapacity - head);
125 >            Arrays.fill(elements, head, head + newSpace, null);
126 >            head += newSpace;
127 >        }
128 >        // checkInvariants();
129 >    }
130 >
131 >    /** Capacity calculation for edge conditions, especially overflow. */
132 >    private int newCapacity(int needed, int jump) {
133 >        final int oldCapacity = elements.length, minCapacity;
134 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 >            if (minCapacity < 0)
136 >                throw new IllegalStateException("Sorry, deque too big");
137 >            return Integer.MAX_VALUE;
138 >        }
139 >        if (needed > jump)
140 >            return minCapacity;
141 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 >            ? oldCapacity + jump
143 >            : MAX_ARRAY_SIZE;
144 >    }
145  
146      /**
147 <     * Allocates empty array to hold the given number of elements.
148 <     *
149 <     * @param numElements  the number of elements to hold
150 <     */
151 <    private void allocateElements(int numElements) {
152 <        int initialCapacity = MIN_INITIAL_CAPACITY;
153 <        // Find the best power of two to hold elements.
154 <        // Tests "<=" because arrays aren't kept full.
155 <        if (numElements >= initialCapacity) {
156 <            initialCapacity = numElements;
157 <            initialCapacity |= (initialCapacity >>>  1);
107 <            initialCapacity |= (initialCapacity >>>  2);
108 <            initialCapacity |= (initialCapacity >>>  4);
109 <            initialCapacity |= (initialCapacity >>>  8);
110 <            initialCapacity |= (initialCapacity >>> 16);
111 <            initialCapacity++;
112 <
113 <            if (initialCapacity < 0)   // Too many elements, must back off
114 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
115 <        }
116 <        elements = new Object[initialCapacity];
147 >     * Increases the internal storage of this collection, if necessary,
148 >     * to ensure that it can hold at least the given number of elements.
149 >     *
150 >     * @param minCapacity the desired minimum capacity
151 >     * @since TBD
152 >     */
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157 >        // checkInvariants();
158      }
159  
160      /**
161 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
162 <     * when head and tail have wrapped around to become equal.
163 <     */
164 <    private void doubleCapacity() {
165 <        assert head == tail;
166 <        int p = head;
167 <        int n = elements.length;
168 <        int r = n - p; // number of elements to the right of p
169 <        int newCapacity = n << 1;
170 <        if (newCapacity < 0)
171 <            throw new IllegalStateException("Sorry, deque too big");
172 <        Object[] a = new Object[newCapacity];
132 <        System.arraycopy(elements, p, a, 0, r);
133 <        System.arraycopy(elements, 0, a, r, p);
134 <        elements = a;
135 <        head = 0;
136 <        tail = n;
161 >     * Minimizes the internal storage of this collection.
162 >     *
163 >     * @since TBD
164 >     */
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169 >            head = 0;
170 >            tail = size;
171 >        }
172 >        // checkInvariants();
173      }
174  
175      /**
# Line 148 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * Constructs an empty array deque with an initial capacity
185       * sufficient to hold the specified number of elements.
186       *
187 <     * @param numElements  lower bound on initial capacity of the deque
187 >     * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        allocateElements(numElements);
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 165 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        allocateElements(c.size());
204 >        elements = new Object[c.size() + 1];
205          addAll(c);
206      }
207  
208 +    /**
209 +     * Increments i, mod modulus.
210 +     * Precondition and postcondition: 0 <= i < modulus.
211 +     */
212 +    static final int inc(int i, int modulus) {
213 +        if (++i >= modulus) i = 0;
214 +        return i;
215 +    }
216 +
217 +    /**
218 +     * Decrements i, mod modulus.
219 +     * Precondition and postcondition: 0 <= i < modulus.
220 +     */
221 +    static final int dec(int i, int modulus) {
222 +        if (--i < 0) i = modulus - 1;
223 +        return i;
224 +    }
225 +
226 +    /**
227 +     * Adds i and j, mod modulus.
228 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 +     */
230 +    static final int add(int i, int j, int modulus) {
231 +        if ((i += j) - modulus >= 0) i -= modulus;
232 +        return i;
233 +    }
234 +
235 +    /**
236 +     * Subtracts j from i, mod modulus.
237 +     * Index i must be logically ahead of j.
238 +     * Returns the "circular distance" from j to i.
239 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 +     */
241 +    static final int sub(int i, int j, int modulus) {
242 +        if ((i -= j) < 0) i += modulus;
243 +        return i;
244 +    }
245 +
246 +    /**
247 +     * Returns element at array index i.
248 +     * This is a slight abuse of generics, accepted by javac.
249 +     */
250 +    @SuppressWarnings("unchecked")
251 +    static final <E> E elementAt(Object[] es, int i) {
252 +        return (E) es[i];
253 +    }
254 +
255 +    /**
256 +     * A version of elementAt that checks for null elements.
257 +     * This check doesn't catch all possible comodifications,
258 +     * but does catch ones that corrupt traversal.
259 +     */
260 +    static final <E> E nonNullElementAt(Object[] es, int i) {
261 +        @SuppressWarnings("unchecked") E e = (E) es[i];
262 +        if (e == null)
263 +            throw new ConcurrentModificationException();
264 +        return e;
265 +    }
266 +
267      // The main insertion and extraction methods are addFirst,
268      // addLast, pollFirst, pollLast. The other methods are defined in
269      // terms of these.
# Line 182 | Line 277 | public class ArrayDeque<E> extends Abstr
277      public void addFirst(E e) {
278          if (e == null)
279              throw new NullPointerException();
280 <        elements[head = (head - 1) & (elements.length - 1)] = e;
280 >        final Object[] es = elements;
281 >        es[head = dec(head, es.length)] = e;
282          if (head == tail)
283 <            doubleCapacity();
283 >            grow(1);
284 >        // checkInvariants();
285      }
286  
287      /**
# Line 198 | Line 295 | public class ArrayDeque<E> extends Abstr
295      public void addLast(E e) {
296          if (e == null)
297              throw new NullPointerException();
298 <        elements[tail] = e;
299 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
300 <            doubleCapacity();
298 >        final Object[] es = elements;
299 >        es[tail] = e;
300 >        if (head == (tail = inc(tail, es.length)))
301 >            grow(1);
302 >        // checkInvariants();
303 >    }
304 >
305 >    /**
306 >     * Adds all of the elements in the specified collection at the end
307 >     * of this deque, as if by calling {@link #addLast} on each one,
308 >     * in the order that they are returned by the collection's
309 >     * iterator.
310 >     *
311 >     * @param c the elements to be inserted into this deque
312 >     * @return {@code true} if this deque changed as a result of the call
313 >     * @throws NullPointerException if the specified collection or any
314 >     *         of its elements are null
315 >     */
316 >    public boolean addAll(Collection<? extends E> c) {
317 >        final int s = size(), needed;
318 >        if ((needed = s + c.size() - elements.length + 1) > 0)
319 >            grow(needed);
320 >        c.forEach(e -> addLast(e));
321 >        // checkInvariants();
322 >        return size() > s;
323      }
324  
325      /**
# Line 231 | Line 350 | public class ArrayDeque<E> extends Abstr
350       * @throws NoSuchElementException {@inheritDoc}
351       */
352      public E removeFirst() {
353 <        E x = pollFirst();
354 <        if (x == null)
353 >        E e = pollFirst();
354 >        if (e == null)
355              throw new NoSuchElementException();
356 <        return x;
356 >        // checkInvariants();
357 >        return e;
358      }
359  
360      /**
361       * @throws NoSuchElementException {@inheritDoc}
362       */
363      public E removeLast() {
364 <        E x = pollLast();
365 <        if (x == null)
364 >        E e = pollLast();
365 >        if (e == null)
366              throw new NoSuchElementException();
367 <        return x;
367 >        // checkInvariants();
368 >        return e;
369      }
370  
371      public E pollFirst() {
372 <        int h = head;
373 <        @SuppressWarnings("unchecked")
374 <        E result = (E) elements[h];
375 <        // Element is null if deque empty
376 <        if (result == null)
377 <            return null;
378 <        elements[h] = null;     // Must null out slot
379 <        head = (h + 1) & (elements.length - 1);
380 <        return result;
372 >        final Object[] es;
373 >        final int h;
374 >        E e = elementAt(es = elements, h = head);
375 >        if (e != null) {
376 >            es[h] = null;
377 >            head = inc(h, es.length);
378 >        }
379 >        // checkInvariants();
380 >        return e;
381      }
382  
383      public E pollLast() {
384 <        int t = (tail - 1) & (elements.length - 1);
385 <        @SuppressWarnings("unchecked")
386 <        E result = (E) elements[t];
387 <        if (result == null)
388 <            return null;
389 <        elements[t] = null;
390 <        tail = t;
270 <        return result;
384 >        final Object[] es;
385 >        final int t;
386 >        E e = elementAt(es = elements, t = dec(tail, es.length));
387 >        if (e != null)
388 >            es[tail = t] = null;
389 >        // checkInvariants();
390 >        return e;
391      }
392  
393      /**
394       * @throws NoSuchElementException {@inheritDoc}
395       */
396      public E getFirst() {
397 <        @SuppressWarnings("unchecked")
398 <        E result = (E) elements[head];
279 <        if (result == null)
397 >        E e = elementAt(elements, head);
398 >        if (e == null)
399              throw new NoSuchElementException();
400 <        return result;
400 >        // checkInvariants();
401 >        return e;
402      }
403  
404      /**
405       * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getLast() {
408 <        @SuppressWarnings("unchecked")
409 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
410 <        if (result == null)
408 >        final Object[] es = elements;
409 >        E e = elementAt(es, dec(tail, es.length));
410 >        if (e == null)
411              throw new NoSuchElementException();
412 <        return result;
412 >        // checkInvariants();
413 >        return e;
414      }
415  
295    @SuppressWarnings("unchecked")
416      public E peekFirst() {
417 <        // elements[head] is null if deque empty
418 <        return (E) elements[head];
417 >        // checkInvariants();
418 >        return elementAt(elements, head);
419      }
420  
301    @SuppressWarnings("unchecked")
421      public E peekLast() {
422 <        return (E) elements[(tail - 1) & (elements.length - 1)];
422 >        // checkInvariants();
423 >        final Object[] es;
424 >        return elementAt(es = elements, dec(tail, es.length));
425      }
426  
427      /**
# Line 316 | Line 437 | public class ArrayDeque<E> extends Abstr
437       * @return {@code true} if the deque contained the specified element
438       */
439      public boolean removeFirstOccurrence(Object o) {
440 <        if (o == null)
441 <            return false;
442 <        int mask = elements.length - 1;
443 <        int i = head;
444 <        Object x;
445 <        while ( (x = elements[i]) != null) {
446 <            if (o.equals(x)) {
447 <                delete(i);
448 <                return true;
440 >        if (o != null) {
441 >            final Object[] es = elements;
442 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
443 >                 ; i = 0, to = end) {
444 >                for (; i < to; i++)
445 >                    if (o.equals(es[i])) {
446 >                        delete(i);
447 >                        return true;
448 >                    }
449 >                if (to == end) break;
450              }
329            i = (i + 1) & mask;
451          }
452          return false;
453      }
# Line 344 | Line 465 | public class ArrayDeque<E> extends Abstr
465       * @return {@code true} if the deque contained the specified element
466       */
467      public boolean removeLastOccurrence(Object o) {
468 <        if (o == null)
469 <            return false;
470 <        int mask = elements.length - 1;
471 <        int i = (tail - 1) & mask;
472 <        Object x;
473 <        while ( (x = elements[i]) != null) {
474 <            if (o.equals(x)) {
475 <                delete(i);
476 <                return true;
468 >        if (o != null) {
469 >            final Object[] es = elements;
470 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
471 >                 ; i = es.length, to = end) {
472 >                for (i--; i > to - 1; i--)
473 >                    if (o.equals(es[i])) {
474 >                        delete(i);
475 >                        return true;
476 >                    }
477 >                if (to == end) break;
478              }
357            i = (i - 1) & mask;
479          }
480          return false;
481      }
# Line 473 | Line 594 | public class ArrayDeque<E> extends Abstr
594          return removeFirst();
595      }
596  
476    private void checkInvariants() {
477        assert elements[tail] == null;
478        assert head == tail ? elements[head] == null :
479            (elements[head] != null &&
480             elements[(tail - 1) & (elements.length - 1)] != null);
481        assert elements[(head - 1) & (elements.length - 1)] == null;
482    }
483
597      /**
598 <     * Removes the element at the specified position in the elements array,
599 <     * adjusting head and tail as necessary.  This can result in motion of
600 <     * elements backwards or forwards in the array.
598 >     * Removes the element at the specified position in the elements array.
599 >     * This can result in forward or backwards motion of array elements.
600 >     * We optimize for least element motion.
601       *
602       * <p>This method is called delete rather than remove to emphasize
603       * that its semantics differ from those of {@link List#remove(int)}.
604       *
605 <     * @return true if elements moved backwards
605 >     * @return true if elements near tail moved backwards
606       */
607 <    private boolean delete(int i) {
608 <        checkInvariants();
609 <        final Object[] elements = this.elements;
610 <        final int mask = elements.length - 1;
607 >    boolean delete(int i) {
608 >        // checkInvariants();
609 >        final Object[] es = elements;
610 >        final int capacity = es.length;
611          final int h = head;
612 <        final int t = tail;
613 <        final int front = (i - h) & mask;
614 <        final int back  = (t - i) & mask;
502 <
503 <        // Invariant: head <= i < tail mod circularity
504 <        if (front >= ((t - h) & mask))
505 <            throw new ConcurrentModificationException();
506 <
507 <        // Optimize for least element motion
612 >        // number of elements before to-be-deleted elt
613 >        final int front = sub(i, h, capacity);
614 >        final int back = size() - front - 1; // number of elements after
615          if (front < back) {
616 +            // move front elements forwards
617              if (h <= i) {
618 <                System.arraycopy(elements, h, elements, h + 1, front);
618 >                System.arraycopy(es, h, es, h + 1, front);
619              } else { // Wrap around
620 <                System.arraycopy(elements, 0, elements, 1, i);
621 <                elements[0] = elements[mask];
622 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
620 >                System.arraycopy(es, 0, es, 1, i);
621 >                es[0] = es[capacity - 1];
622 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
623              }
624 <            elements[h] = null;
625 <            head = (h + 1) & mask;
624 >            es[h] = null;
625 >            head = inc(h, capacity);
626 >            // checkInvariants();
627              return false;
628          } else {
629 <            if (i < t) { // Copy the null tail as well
630 <                System.arraycopy(elements, i + 1, elements, i, back);
631 <                tail = t - 1;
629 >            // move back elements backwards
630 >            tail = dec(tail, capacity);
631 >            if (i <= tail) {
632 >                System.arraycopy(es, i + 1, es, i, back);
633              } else { // Wrap around
634 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
635 <                elements[mask] = elements[0];
636 <                System.arraycopy(elements, 1, elements, 0, t);
637 <                tail = (t - 1) & mask;
634 >                int firstLeg = capacity - (i + 1);
635 >                System.arraycopy(es, i + 1, es, i, firstLeg);
636 >                es[capacity - 1] = es[0];
637 >                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
638              }
639 +            es[tail] = null;
640 +            // checkInvariants();
641              return true;
642          }
643      }
# Line 538 | Line 650 | public class ArrayDeque<E> extends Abstr
650       * @return the number of elements in this deque
651       */
652      public int size() {
653 <        return (tail - head) & (elements.length - 1);
653 >        return sub(tail, head, elements.length);
654      }
655  
656      /**
# Line 567 | Line 679 | public class ArrayDeque<E> extends Abstr
679      }
680  
681      private class DeqIterator implements Iterator<E> {
682 <        /**
683 <         * Index of element to be returned by subsequent call to next.
572 <         */
573 <        private int cursor = head;
682 >        /** Index of element to be returned by subsequent call to next. */
683 >        int cursor;
684  
685 <        /**
686 <         * Tail recorded at construction (also in remove), to stop
577 <         * iterator and also to check for comodification.
578 <         */
579 <        private int fence = tail;
685 >        /** Number of elements yet to be returned. */
686 >        int remaining = size();
687  
688          /**
689           * Index of element returned by most recent call to next.
690           * Reset to -1 if element is deleted by a call to remove.
691           */
692 <        private int lastRet = -1;
692 >        int lastRet = -1;
693  
694 <        public boolean hasNext() {
695 <            return cursor != fence;
694 >        DeqIterator() { cursor = head; }
695 >
696 >        public final boolean hasNext() {
697 >            return remaining > 0;
698          }
699  
700          public E next() {
701 <            if (cursor == fence)
701 >            if (remaining <= 0)
702                  throw new NoSuchElementException();
703 <            @SuppressWarnings("unchecked")
704 <            E result = (E) elements[cursor];
596 <            // This check doesn't catch all possible comodifications,
597 <            // but does catch the ones that corrupt traversal
598 <            if (tail != fence || result == null)
599 <                throw new ConcurrentModificationException();
703 >            final Object[] es = elements;
704 >            E e = nonNullElementAt(es, cursor);
705              lastRet = cursor;
706 <            cursor = (cursor + 1) & (elements.length - 1);
707 <            return result;
706 >            cursor = inc(cursor, es.length);
707 >            remaining--;
708 >            return e;
709 >        }
710 >
711 >        void postDelete(boolean leftShifted) {
712 >            if (leftShifted)
713 >                cursor = dec(cursor, elements.length);
714          }
715  
716 <        public void remove() {
716 >        public final void remove() {
717              if (lastRet < 0)
718                  throw new IllegalStateException();
719 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
609 <                cursor = (cursor - 1) & (elements.length - 1);
610 <                fence = tail;
611 <            }
719 >            postDelete(delete(lastRet));
720              lastRet = -1;
721          }
722 +
723 +        public void forEachRemaining(Consumer<? super E> action) {
724 +            Objects.requireNonNull(action);
725 +            int r;
726 +            if ((r = remaining) <= 0)
727 +                return;
728 +            remaining = 0;
729 +            final Object[] es = elements;
730 +            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
731 +                throw new ConcurrentModificationException();
732 +            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
733 +                 ; i = 0, to = end) {
734 +                for (; i < to; i++)
735 +                    action.accept(elementAt(es, i));
736 +                if (to == end) {
737 +                    if (end != tail)
738 +                        throw new ConcurrentModificationException();
739 +                    lastRet = dec(end, es.length);
740 +                    break;
741 +                }
742 +            }
743 +        }
744 +    }
745 +
746 +    private class DescendingIterator extends DeqIterator {
747 +        DescendingIterator() { cursor = dec(tail, elements.length); }
748 +
749 +        public final E next() {
750 +            if (remaining <= 0)
751 +                throw new NoSuchElementException();
752 +            final Object[] es = elements;
753 +            E e = nonNullElementAt(es, cursor);
754 +            lastRet = cursor;
755 +            cursor = dec(cursor, es.length);
756 +            remaining--;
757 +            return e;
758 +        }
759 +
760 +        void postDelete(boolean leftShifted) {
761 +            if (!leftShifted)
762 +                cursor = inc(cursor, elements.length);
763 +        }
764 +
765 +        public final void forEachRemaining(Consumer<? super E> action) {
766 +            Objects.requireNonNull(action);
767 +            int r;
768 +            if ((r = remaining) <= 0)
769 +                return;
770 +            remaining = 0;
771 +            final Object[] es = elements;
772 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
773 +                throw new ConcurrentModificationException();
774 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
775 +                 ; i = es.length - 1, to = end) {
776 +                // hotspot generates faster code than for: i >= to !
777 +                for (; i > to - 1; i--)
778 +                    action.accept(elementAt(es, i));
779 +                if (to == end) {
780 +                    if (end != head)
781 +                        throw new ConcurrentModificationException();
782 +                    lastRet = end;
783 +                    break;
784 +                }
785 +            }
786 +        }
787      }
788  
789      /**
790 <     * This class is nearly a mirror-image of DeqIterator, using tail
791 <     * instead of head for initial cursor, and head instead of tail
792 <     * for fence.
793 <     */
794 <    private class DescendingIterator implements Iterator<E> {
795 <        private int cursor = tail;
796 <        private int fence = head;
797 <        private int lastRet = -1;
790 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
791 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
792 >     * deque.
793 >     *
794 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
795 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
796 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
797 >     * the reporting of additional characteristic values.
798 >     *
799 >     * @return a {@code Spliterator} over the elements in this deque
800 >     * @since 1.8
801 >     */
802 >    public Spliterator<E> spliterator() {
803 >        return new DeqSpliterator();
804 >    }
805 >
806 >    final class DeqSpliterator implements Spliterator<E> {
807 >        private int fence;      // -1 until first use
808 >        private int cursor;     // current index, modified on traverse/split
809  
810 <        public boolean hasNext() {
811 <            return cursor != fence;
810 >        /** Constructs late-binding spliterator over all elements. */
811 >        DeqSpliterator() {
812 >            this.fence = -1;
813          }
814  
815 <        public E next() {
816 <            if (cursor == fence)
817 <                throw new NoSuchElementException();
818 <            cursor = (cursor - 1) & (elements.length - 1);
634 <            @SuppressWarnings("unchecked")
635 <            E result = (E) elements[cursor];
636 <            if (head != fence || result == null)
637 <                throw new ConcurrentModificationException();
638 <            lastRet = cursor;
639 <            return result;
815 >        /** Constructs spliterator over the given range. */
816 >        DeqSpliterator(int origin, int fence) {
817 >            this.cursor = origin;
818 >            this.fence = fence;
819          }
820  
821 <        public void remove() {
822 <            if (lastRet < 0)
823 <                throw new IllegalStateException();
824 <            if (!delete(lastRet)) {
825 <                cursor = (cursor + 1) & (elements.length - 1);
826 <                fence = head;
821 >        /** Ensures late-binding initialization; then returns fence. */
822 >        private int getFence() { // force initialization
823 >            int t;
824 >            if ((t = fence) < 0) {
825 >                t = fence = tail;
826 >                cursor = head;
827 >            }
828 >            return t;
829 >        }
830 >
831 >        public DeqSpliterator trySplit() {
832 >            final Object[] es = elements;
833 >            final int i, n;
834 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
835 >                ? null
836 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
837 >        }
838 >
839 >        public void forEachRemaining(Consumer<? super E> action) {
840 >            if (action == null)
841 >                throw new NullPointerException();
842 >            final int end = getFence(), cursor = this.cursor;
843 >            final Object[] es = elements;
844 >            if (cursor != end) {
845 >                this.cursor = end;
846 >                // null check at both ends of range is sufficient
847 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
848 >                    throw new ConcurrentModificationException();
849 >                for (int i = cursor, to = (i <= end) ? end : es.length;
850 >                     ; i = 0, to = end) {
851 >                    for (; i < to; i++)
852 >                        action.accept(elementAt(es, i));
853 >                    if (to == end) break;
854 >                }
855 >            }
856 >        }
857 >
858 >        public boolean tryAdvance(Consumer<? super E> action) {
859 >            if (action == null)
860 >                throw new NullPointerException();
861 >            int t, i;
862 >            if ((t = fence) < 0) t = getFence();
863 >            if (t == (i = cursor))
864 >                return false;
865 >            final Object[] es;
866 >            action.accept(nonNullElementAt(es = elements, i));
867 >            cursor = inc(i, es.length);
868 >            return true;
869 >        }
870 >
871 >        public long estimateSize() {
872 >            return sub(getFence(), cursor, elements.length);
873 >        }
874 >
875 >        public int characteristics() {
876 >            return Spliterator.NONNULL
877 >                | Spliterator.ORDERED
878 >                | Spliterator.SIZED
879 >                | Spliterator.SUBSIZED;
880 >        }
881 >    }
882 >
883 >    public void forEach(Consumer<? super E> action) {
884 >        Objects.requireNonNull(action);
885 >        final Object[] es = elements;
886 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
887 >             ; i = 0, to = end) {
888 >            for (; i < to; i++)
889 >                action.accept(elementAt(es, i));
890 >            if (to == end) {
891 >                if (end != tail) throw new ConcurrentModificationException();
892 >                break;
893 >            }
894 >        }
895 >        // checkInvariants();
896 >    }
897 >
898 >    /**
899 >     * Replaces each element of this deque with the result of applying the
900 >     * operator to that element, as specified by {@link List#replaceAll}.
901 >     *
902 >     * @param operator the operator to apply to each element
903 >     * @since TBD
904 >     */
905 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
906 >        Objects.requireNonNull(operator);
907 >        final Object[] es = elements;
908 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
909 >             ; i = 0, to = end) {
910 >            for (; i < to; i++)
911 >                es[i] = operator.apply(elementAt(es, i));
912 >            if (to == end) {
913 >                if (end != tail) throw new ConcurrentModificationException();
914 >                break;
915 >            }
916 >        }
917 >        // checkInvariants();
918 >    }
919 >
920 >    /**
921 >     * @throws NullPointerException {@inheritDoc}
922 >     */
923 >    public boolean removeIf(Predicate<? super E> filter) {
924 >        Objects.requireNonNull(filter);
925 >        return bulkRemove(filter);
926 >    }
927 >
928 >    /**
929 >     * @throws NullPointerException {@inheritDoc}
930 >     */
931 >    public boolean removeAll(Collection<?> c) {
932 >        Objects.requireNonNull(c);
933 >        return bulkRemove(e -> c.contains(e));
934 >    }
935 >
936 >    /**
937 >     * @throws NullPointerException {@inheritDoc}
938 >     */
939 >    public boolean retainAll(Collection<?> c) {
940 >        Objects.requireNonNull(c);
941 >        return bulkRemove(e -> !c.contains(e));
942 >    }
943 >
944 >    /** Implementation of bulk remove methods. */
945 >    private boolean bulkRemove(Predicate<? super E> filter) {
946 >        // checkInvariants();
947 >        final Object[] es = elements;
948 >        // Optimize for initial run of survivors
949 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
950 >             ; i = 0, to = end) {
951 >            for (; i < to; i++)
952 >                if (filter.test(elementAt(es, i)))
953 >                    return bulkRemoveModified(filter, i);
954 >            if (to == end) {
955 >                if (end != tail) throw new ConcurrentModificationException();
956 >                break;
957 >            }
958 >        }
959 >        return false;
960 >    }
961 >
962 >    // A tiny bit set implementation
963 >
964 >    private static long[] nBits(int n) {
965 >        return new long[((n - 1) >> 6) + 1];
966 >    }
967 >    private static void setBit(long[] bits, int i) {
968 >        bits[i >> 6] |= 1L << i;
969 >    }
970 >    private static boolean isClear(long[] bits, int i) {
971 >        return (bits[i >> 6] & (1L << i)) == 0;
972 >    }
973 >
974 >    /**
975 >     * Helper for bulkRemove, in case of at least one deletion.
976 >     * Tolerate predicates that reentrantly access the collection for
977 >     * read (but writers still get CME), so traverse once to find
978 >     * elements to delete, a second pass to physically expunge.
979 >     *
980 >     * @param beg valid index of first element to be deleted
981 >     */
982 >    private boolean bulkRemoveModified(
983 >        Predicate<? super E> filter, final int beg) {
984 >        final Object[] es = elements;
985 >        final int capacity = es.length;
986 >        final int end = tail;
987 >        final long[] deathRow = nBits(sub(end, beg, capacity));
988 >        deathRow[0] = 1L;   // set bit 0
989 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
990 >             ; i = 0, to = end, k -= capacity) {
991 >            for (; i < to; i++)
992 >                if (filter.test(elementAt(es, i)))
993 >                    setBit(deathRow, i - k);
994 >            if (to == end) break;
995 >        }
996 >        // a two-finger traversal, with hare i reading, tortoise w writing
997 >        int w = beg;
998 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
999 >             ; w = 0) { // w rejoins i on second leg
1000 >            // In this loop, i and w are on the same leg, with i > w
1001 >            for (; i < to; i++)
1002 >                if (isClear(deathRow, i - k))
1003 >                    es[w++] = es[i];
1004 >            if (to == end) break;
1005 >            // In this loop, w is on the first leg, i on the second
1006 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1007 >                if (isClear(deathRow, i - k))
1008 >                    es[w++] = es[i];
1009 >            if (i >= to) {
1010 >                if (w == capacity) w = 0; // "corner" case
1011 >                break;
1012              }
649            lastRet = -1;
1013          }
1014 +        if (end != tail) throw new ConcurrentModificationException();
1015 +        circularClear(es, tail = w, end);
1016 +        // checkInvariants();
1017 +        return true;
1018      }
1019  
1020      /**
# Line 659 | Line 1026 | public class ArrayDeque<E> extends Abstr
1026       * @return {@code true} if this deque contains the specified element
1027       */
1028      public boolean contains(Object o) {
1029 <        if (o == null)
1030 <            return false;
1031 <        int mask = elements.length - 1;
1032 <        int i = head;
1033 <        Object x;
1034 <        while ( (x = elements[i]) != null) {
1035 <            if (o.equals(x))
1036 <                return true;
1037 <            i = (i + 1) & mask;
1029 >        if (o != null) {
1030 >            final Object[] es = elements;
1031 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1032 >                 ; i = 0, to = end) {
1033 >                for (; i < to; i++)
1034 >                    if (o.equals(es[i]))
1035 >                        return true;
1036 >                if (to == end) break;
1037 >            }
1038          }
1039          return false;
1040      }
# Line 694 | Line 1061 | public class ArrayDeque<E> extends Abstr
1061       * The deque will be empty after this call returns.
1062       */
1063      public void clear() {
1064 <        int h = head;
1065 <        int t = tail;
1066 <        if (h != t) { // clear all cells
1067 <            head = tail = 0;
1068 <            int i = h;
1069 <            int mask = elements.length - 1;
1070 <            do {
1071 <                elements[i] = null;
1072 <                i = (i + 1) & mask;
1073 <            } while (i != t);
1064 >        circularClear(elements, head, tail);
1065 >        head = tail = 0;
1066 >        // checkInvariants();
1067 >    }
1068 >
1069 >    /**
1070 >     * Nulls out slots starting at array index i, upto index end.
1071 >     */
1072 >    private static void circularClear(Object[] es, int i, int end) {
1073 >        for (int to = (i <= end) ? end : es.length;
1074 >             ; i = 0, to = end) {
1075 >            Arrays.fill(es, i, to, null);
1076 >            if (to == end) break;
1077          }
1078      }
1079  
# Line 721 | Line 1091 | public class ArrayDeque<E> extends Abstr
1091       * @return an array containing all of the elements in this deque
1092       */
1093      public Object[] toArray() {
1094 <        final int head = this.head;
1095 <        final int tail = this.tail;
1096 <        boolean wrap = (tail < head);
1097 <        int end = wrap ? tail + elements.length : tail;
1098 <        Object[] a = Arrays.copyOfRange(elements, head, end);
1099 <        if (wrap)
1100 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1094 >        return toArray(Object[].class);
1095 >    }
1096 >
1097 >    private <T> T[] toArray(Class<T[]> klazz) {
1098 >        final Object[] es = elements;
1099 >        final T[] a;
1100 >        final int size = size(), head = this.head, end;
1101 >        final int len = Math.min(size, es.length - head);
1102 >        if ((end = head + size) >= 0) {
1103 >            a = Arrays.copyOfRange(es, head, end, klazz);
1104 >        } else {
1105 >            // integer overflow!
1106 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1107 >            System.arraycopy(es, head, a, 0, len);
1108 >        }
1109 >        if (tail < head)
1110 >            System.arraycopy(es, 0, a, len, tail);
1111          return a;
1112      }
1113  
# Line 753 | Line 1133 | public class ArrayDeque<E> extends Abstr
1133       * The following code can be used to dump the deque into a newly
1134       * allocated array of {@code String}:
1135       *
1136 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1136 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1137       *
1138       * Note that {@code toArray(new Object[0])} is identical in function to
1139       * {@code toArray()}.
# Line 769 | Line 1149 | public class ArrayDeque<E> extends Abstr
1149       */
1150      @SuppressWarnings("unchecked")
1151      public <T> T[] toArray(T[] a) {
1152 <        final int head = this.head;
1153 <        final int tail = this.tail;
1154 <        boolean wrap = (tail < head);
1155 <        int size = (tail - head) + (wrap ? elements.length : 0);
1156 <        int firstLeg = size - (wrap ? tail : 0);
1157 <        int len = a.length;
1158 <        if (size > len) {
1159 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
780 <                                         a.getClass());
781 <        } else {
782 <            System.arraycopy(elements, head, a, 0, firstLeg);
783 <            if (size < len)
784 <                a[size] = null;
1152 >        final int size;
1153 >        if ((size = size()) > a.length)
1154 >            return toArray((Class<T[]>) a.getClass());
1155 >        final Object[] es = elements;
1156 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1157 >             ; i = 0, len = tail) {
1158 >            System.arraycopy(es, i, a, j, len);
1159 >            if ((j += len) == size) break;
1160          }
1161 <        if (wrap)
1162 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1161 >        if (size < a.length)
1162 >            a[size] = null;
1163          return a;
1164      }
1165  
# Line 811 | Line 1186 | public class ArrayDeque<E> extends Abstr
1186      /**
1187       * Saves this deque to a stream (that is, serializes it).
1188       *
1189 +     * @param s the stream
1190 +     * @throws java.io.IOException if an I/O error occurs
1191       * @serialData The current size ({@code int}) of the deque,
1192       * followed by all of its elements (each an object reference) in
1193       * first-to-last order.
# Line 823 | Line 1200 | public class ArrayDeque<E> extends Abstr
1200          s.writeInt(size());
1201  
1202          // Write out elements in order.
1203 <        int mask = elements.length - 1;
1204 <        for (int i = head; i != tail; i = (i + 1) & mask)
1205 <            s.writeObject(elements[i]);
1203 >        final Object[] es = elements;
1204 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1205 >             ; i = 0, to = end) {
1206 >            for (; i < to; i++)
1207 >                s.writeObject(es[i]);
1208 >            if (to == end) break;
1209 >        }
1210      }
1211  
1212      /**
1213       * Reconstitutes this deque from a stream (that is, deserializes it).
1214 +     * @param s the stream
1215 +     * @throws ClassNotFoundException if the class of a serialized object
1216 +     *         could not be found
1217 +     * @throws java.io.IOException if an I/O error occurs
1218       */
1219      private void readObject(java.io.ObjectInputStream s)
1220              throws java.io.IOException, ClassNotFoundException {
# Line 837 | Line 1222 | public class ArrayDeque<E> extends Abstr
1222  
1223          // Read in size and allocate array
1224          int size = s.readInt();
1225 <        allocateElements(size);
1226 <        head = 0;
842 <        tail = size;
1225 >        elements = new Object[size + 1];
1226 >        this.tail = size;
1227  
1228          // Read in all elements in the proper order.
1229          for (int i = 0; i < size; i++)
1230              elements[i] = s.readObject();
1231      }
1232  
1233 <    public Spliterator<E> spliterator() {
1234 <        return new DeqSpliterator<E>(this, -1, -1);
1235 <    }
1236 <
1237 <    static final class DeqSpliterator<E> implements Spliterator<E> {
1238 <        private final ArrayDeque<E> deq;
1239 <        private int fence;  // -1 until first use
1240 <        private int index;  // current index, modified on traverse/split
1241 <
1242 <        /** Creates new spliterator covering the given array and range */
1243 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
1244 <            this.deq = deq;
1245 <            this.index = origin;
1246 <            this.fence = fence;
1247 <        }
1248 <
1249 <        private int getFence() { // force initialization
866 <            int t;
867 <            if ((t = fence) < 0) {
868 <                t = fence = deq.tail;
869 <                index = deq.head;
870 <            }
871 <            return t;
872 <        }
873 <
874 <        public Spliterator<E> trySplit() {
875 <            int t = getFence(), h = index, n = deq.elements.length;
876 <            if (h != t && ((h + 1) & (n - 1)) != t) {
877 <                if (h > t)
878 <                    t += n;
879 <                int m = ((h + t) >>> 1) & (n - 1);
880 <                return new DeqSpliterator<>(deq, h, index = m);
881 <            }
882 <            return null;
883 <        }
884 <
885 <        public void forEach(Consumer<? super E> consumer) {
886 <            if (consumer == null)
887 <                throw new NullPointerException();
888 <            Object[] a = deq.elements;
889 <            int m = a.length - 1, f = getFence(), i = index;
890 <            index = f;
891 <            while (i != f) {
892 <                @SuppressWarnings("unchecked") E e = (E)a[i];
893 <                i = (i + 1) & m;
894 <                if (e == null)
895 <                    throw new ConcurrentModificationException();
896 <                consumer.accept(e);
897 <            }
898 <        }
899 <
900 <        public boolean tryAdvance(Consumer<? super E> consumer) {
901 <            if (consumer == null)
902 <                throw new NullPointerException();
903 <            Object[] a = deq.elements;
904 <            int m = a.length - 1, f = getFence(), i = index;
905 <            if (i != fence) {
906 <                @SuppressWarnings("unchecked") E e = (E)a[i];
907 <                index = (i + 1) & m;
908 <                if (e == null)
909 <                    throw new ConcurrentModificationException();
910 <                consumer.accept(e);
911 <                return true;
912 <            }
913 <            return false;
914 <        }
915 <
916 <        public long estimateSize() {
917 <            int n = getFence() - index;
918 <            if (n < 0)
919 <                n += deq.elements.length;
920 <            return (long) n;
921 <        }
922 <
923 <        @Override
924 <        public int characteristics() {
925 <            return Spliterator.ORDERED | Spliterator.SIZED |
926 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1233 >    /** debugging */
1234 >    void checkInvariants() {
1235 >        try {
1236 >            int capacity = elements.length;
1237 >            // assert head >= 0 && head < capacity;
1238 >            // assert tail >= 0 && tail < capacity;
1239 >            // assert capacity > 0;
1240 >            // assert size() < capacity;
1241 >            // assert head == tail || elements[head] != null;
1242 >            // assert elements[tail] == null;
1243 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1244 >        } catch (Throwable t) {
1245 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1246 >                              head, tail, elements.length);
1247 >            System.err.printf("elements=%s%n",
1248 >                              Arrays.toString(elements));
1249 >            throw t;
1250          }
1251      }
1252  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines