ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.54 by dl, Wed Mar 27 23:09:34 2013 UTC vs.
Revision 1.91 by jsr166, Tue Oct 25 16:51:17 2016 UTC

# Line 4 | Line 4
4   */
5  
6   package java.util;
7 +
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 < import java.util.stream.Stream;
11 < import java.util.stream.Streams;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 53 | Line 54 | import java.util.stream.Streams;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
57 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
66 <     * full, except transiently within an addX method where it is
67 <     * resized (see doubleCapacity) immediately upon becoming full,
68 <     * thus avoiding head and tail wrapping around to equal each
69 <     * other.  We also guarantee that all array cells not holding
70 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    transient Object[] elements; // non-private to simplify nested class access
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75      transient int head;
76  
77 +    /** Number of elements in this collection. */
78 +    transient int size;
79 +
80      /**
81 <     * The index at which the next element would be added to the tail
82 <     * of the deque (via addLast(E), add(E), or push(E)).
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85       */
86 <    transient int tail;
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87  
88      /**
89 <     * The minimum capacity that we'll use for a newly created deque.
90 <     * Must be a power of 2.
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92       */
93 <    private static final int MIN_INITIAL_CAPACITY = 8;
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        final int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <    // ******  Array allocation and resizing utilities ******
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        final int oldCapacity = elements.length, minCapacity;
119 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
120 >            if (minCapacity < 0)
121 >                throw new IllegalStateException("Sorry, deque too big");
122 >            return Integer.MAX_VALUE;
123 >        }
124 >        if (needed > jump)
125 >            return minCapacity;
126 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
127 >            ? oldCapacity + jump
128 >            : MAX_ARRAY_SIZE;
129 >    }
130  
131      /**
132 <     * Allocates empty array to hold the given number of elements.
132 >     * Increases the internal storage of this collection, if necessary,
133 >     * to ensure that it can hold at least the given number of elements.
134       *
135 <     * @param numElements  the number of elements to hold
135 >     * @param minCapacity the desired minimum capacity
136 >     * @since TBD
137       */
138 <    private void allocateElements(int numElements) {
139 <        int initialCapacity = MIN_INITIAL_CAPACITY;
140 <        // Find the best power of two to hold elements.
141 <        // Tests "<=" because arrays aren't kept full.
104 <        if (numElements >= initialCapacity) {
105 <            initialCapacity = numElements;
106 <            initialCapacity |= (initialCapacity >>>  1);
107 <            initialCapacity |= (initialCapacity >>>  2);
108 <            initialCapacity |= (initialCapacity >>>  4);
109 <            initialCapacity |= (initialCapacity >>>  8);
110 <            initialCapacity |= (initialCapacity >>> 16);
111 <            initialCapacity++;
112 <
113 <            if (initialCapacity < 0)   // Too many elements, must back off
114 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
115 <        }
116 <        elements = new Object[initialCapacity];
138 >    /* public */ void ensureCapacity(int minCapacity) {
139 >        if (minCapacity > elements.length)
140 >            grow(minCapacity - elements.length);
141 >        // checkInvariants();
142      }
143  
144      /**
145 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
146 <     * when head and tail have wrapped around to become equal.
145 >     * Minimizes the internal storage of this collection.
146 >     *
147 >     * @since TBD
148       */
149 <    private void doubleCapacity() {
150 <        assert head == tail;
151 <        int p = head;
152 <        int n = elements.length;
153 <        int r = n - p; // number of elements to the right of p
154 <        int newCapacity = n << 1;
129 <        if (newCapacity < 0)
130 <            throw new IllegalStateException("Sorry, deque too big");
131 <        Object[] a = new Object[newCapacity];
132 <        System.arraycopy(elements, p, a, 0, r);
133 <        System.arraycopy(elements, 0, a, r, p);
134 <        elements = a;
135 <        head = 0;
136 <        tail = n;
149 >    /* public */ void trimToSize() {
150 >        if (size < elements.length) {
151 >            elements = toArray();
152 >            head = 0;
153 >        }
154 >        // checkInvariants();
155      }
156  
157      /**
# Line 148 | Line 166 | public class ArrayDeque<E> extends Abstr
166       * Constructs an empty array deque with an initial capacity
167       * sufficient to hold the specified number of elements.
168       *
169 <     * @param numElements  lower bound on initial capacity of the deque
169 >     * @param numElements lower bound on initial capacity of the deque
170       */
171      public ArrayDeque(int numElements) {
172 <        allocateElements(numElements);
172 >        elements = new Object[numElements];
173      }
174  
175      /**
# Line 165 | Line 183 | public class ArrayDeque<E> extends Abstr
183       * @throws NullPointerException if the specified collection is null
184       */
185      public ArrayDeque(Collection<? extends E> c) {
186 <        allocateElements(c.size());
187 <        addAll(c);
186 >        Object[] elements = c.toArray();
187 >        // defend against c.toArray (incorrectly) not returning Object[]
188 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 >        size = elements.length;
190 >        if (elements.getClass() != Object[].class)
191 >            elements = Arrays.copyOf(elements, size, Object[].class);
192 >        for (Object obj : elements)
193 >            Objects.requireNonNull(obj);
194 >        this.elements = elements;
195 >    }
196 >
197 >    /**
198 >     * Increments i, mod modulus.
199 >     * Precondition and postcondition: 0 <= i < modulus.
200 >     */
201 >    static final int inc(int i, int modulus) {
202 >        if (++i >= modulus) i = 0;
203 >        return i;
204 >    }
205 >
206 >    /**
207 >     * Decrements i, mod modulus.
208 >     * Precondition and postcondition: 0 <= i < modulus.
209 >     */
210 >    static final int dec(int i, int modulus) {
211 >        if (--i < 0) i = modulus - 1;
212 >        return i;
213 >    }
214 >
215 >    /**
216 >     * Adds i and j, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 >     */
219 >    static final int add(int i, int j, int modulus) {
220 >        if ((i += j) - modulus >= 0) i -= modulus;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Returns the array index of the last element.
226 >     * May return invalid index -1 if there are no elements.
227 >     */
228 >    final int tail() {
229 >        return add(head, size - 1, elements.length);
230 >    }
231 >
232 >    /**
233 >     * Returns element at array index i.
234 >     */
235 >    @SuppressWarnings("unchecked")
236 >    private E elementAt(int i) {
237 >        return (E) elements[i];
238 >    }
239 >
240 >    /**
241 >     * A version of elementAt that checks for null elements.
242 >     * This check doesn't catch all possible comodifications,
243 >     * but does catch ones that corrupt traversal.
244 >     */
245 >    E checkedElementAt(Object[] elements, int i) {
246 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
247 >        if (e == null)
248 >            throw new ConcurrentModificationException();
249 >        return e;
250      }
251  
252      // The main insertion and extraction methods are addFirst,
# Line 180 | Line 260 | public class ArrayDeque<E> extends Abstr
260       * @throws NullPointerException if the specified element is null
261       */
262      public void addFirst(E e) {
263 <        if (e == null)
264 <            throw new NullPointerException();
265 <        elements[head = (head - 1) & (elements.length - 1)] = e;
266 <        if (head == tail)
267 <            doubleCapacity();
263 >        // checkInvariants();
264 >        Objects.requireNonNull(e);
265 >        Object[] elements;
266 >        int capacity, h;
267 >        final int s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
269 >            grow(1);
270 >            capacity = (elements = this.elements).length;
271 >        }
272 >        if ((h = head - 1) < 0) h = capacity - 1;
273 >        elements[head = h] = e;
274 >        size = s + 1;
275 >        // checkInvariants();
276      }
277  
278      /**
# Line 196 | Line 284 | public class ArrayDeque<E> extends Abstr
284       * @throws NullPointerException if the specified element is null
285       */
286      public void addLast(E e) {
287 <        if (e == null)
288 <            throw new NullPointerException();
289 <        elements[tail] = e;
290 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
291 <            doubleCapacity();
287 >        // checkInvariants();
288 >        Objects.requireNonNull(e);
289 >        Object[] elements;
290 >        int capacity;
291 >        final int s;
292 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
293 >            grow(1);
294 >            capacity = (elements = this.elements).length;
295 >        }
296 >        elements[add(head, s, capacity)] = e;
297 >        size = s + 1;
298 >        // checkInvariants();
299 >    }
300 >
301 >    /**
302 >     * Adds all of the elements in the specified collection at the end
303 >     * of this deque, as if by calling {@link #addLast} on each one,
304 >     * in the order that they are returned by the collection's
305 >     * iterator.
306 >     *
307 >     * @param c the elements to be inserted into this deque
308 >     * @return {@code true} if this deque changed as a result of the call
309 >     * @throws NullPointerException if the specified collection or any
310 >     *         of its elements are null
311 >     */
312 >    public boolean addAll(Collection<? extends E> c) {
313 >        final int s = size, needed = c.size() - (elements.length - s);
314 >        if (needed > 0)
315 >            grow(needed);
316 >        c.forEach((e) -> addLast(e));
317 >        // checkInvariants();
318 >        return size > s;
319      }
320  
321      /**
# Line 231 | Line 346 | public class ArrayDeque<E> extends Abstr
346       * @throws NoSuchElementException {@inheritDoc}
347       */
348      public E removeFirst() {
349 <        E x = pollFirst();
350 <        if (x == null)
349 >        // checkInvariants();
350 >        E e = pollFirst();
351 >        if (e == null)
352              throw new NoSuchElementException();
353 <        return x;
353 >        return e;
354      }
355  
356      /**
357       * @throws NoSuchElementException {@inheritDoc}
358       */
359      public E removeLast() {
360 <        E x = pollLast();
361 <        if (x == null)
360 >        // checkInvariants();
361 >        E e = pollLast();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        return e;
365      }
366  
367      public E pollFirst() {
368 <        int h = head;
369 <        @SuppressWarnings("unchecked")
370 <        E result = (E) elements[h];
254 <        // Element is null if deque empty
255 <        if (result == null)
368 >        // checkInvariants();
369 >        int s, h;
370 >        if ((s = size) <= 0)
371              return null;
372 <        elements[h] = null;     // Must null out slot
373 <        head = (h + 1) & (elements.length - 1);
374 <        return result;
372 >        final Object[] elements = this.elements;
373 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
374 >        elements[h] = null;
375 >        if (++h >= elements.length) h = 0;
376 >        head = h;
377 >        size = s - 1;
378 >        return e;
379      }
380  
381      public E pollLast() {
382 <        int t = (tail - 1) & (elements.length - 1);
383 <        @SuppressWarnings("unchecked")
384 <        E result = (E) elements[t];
266 <        if (result == null)
382 >        // checkInvariants();
383 >        final int s, tail;
384 >        if ((s = size) <= 0)
385              return null;
386 <        elements[t] = null;
387 <        tail = t;
388 <        return result;
386 >        final Object[] elements = this.elements;
387 >        @SuppressWarnings("unchecked")
388 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
389 >        elements[tail] = null;
390 >        size = s - 1;
391 >        return e;
392      }
393  
394      /**
395       * @throws NoSuchElementException {@inheritDoc}
396       */
397      public E getFirst() {
398 <        @SuppressWarnings("unchecked")
399 <        E result = (E) elements[head];
400 <        if (result == null)
280 <            throw new NoSuchElementException();
281 <        return result;
398 >        // checkInvariants();
399 >        if (size <= 0) throw new NoSuchElementException();
400 >        return elementAt(head);
401      }
402  
403      /**
404       * @throws NoSuchElementException {@inheritDoc}
405       */
406 +    @SuppressWarnings("unchecked")
407      public E getLast() {
408 <        @SuppressWarnings("unchecked")
409 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
410 <        if (result == null)
411 <            throw new NoSuchElementException();
412 <        return result;
408 >        // checkInvariants();
409 >        final int s;
410 >        if ((s = size) <= 0) throw new NoSuchElementException();
411 >        final Object[] elements = this.elements;
412 >        return (E) elements[add(head, s - 1, elements.length)];
413      }
414  
295    @SuppressWarnings("unchecked")
415      public E peekFirst() {
416 <        // elements[head] is null if deque empty
417 <        return (E) elements[head];
416 >        // checkInvariants();
417 >        return (size <= 0) ? null : elementAt(head);
418      }
419  
420      @SuppressWarnings("unchecked")
421      public E peekLast() {
422 <        return (E) elements[(tail - 1) & (elements.length - 1)];
422 >        // checkInvariants();
423 >        final int s;
424 >        if ((s = size) <= 0) return null;
425 >        final Object[] elements = this.elements;
426 >        return (E) elements[add(head, s - 1, elements.length)];
427      }
428  
429      /**
# Line 316 | Line 439 | public class ArrayDeque<E> extends Abstr
439       * @return {@code true} if the deque contained the specified element
440       */
441      public boolean removeFirstOccurrence(Object o) {
442 <        if (o == null)
443 <            return false;
444 <        int mask = elements.length - 1;
445 <        int i = head;
446 <        Object x;
447 <        while ( (x = elements[i]) != null) {
448 <            if (o.equals(x)) {
449 <                delete(i);
450 <                return true;
442 >        if (o != null) {
443 >            final Object[] elements = this.elements;
444 >            final int capacity = elements.length;
445 >            int from, end, to, todo;
446 >            todo = (end = (from = head) + size)
447 >                - (to = (capacity - end >= 0) ? end : capacity);
448 >            for (;; from = 0, to = todo, todo = 0) {
449 >                for (int i = from; i < to; i++)
450 >                    if (o.equals(elements[i])) {
451 >                        delete(i);
452 >                        return true;
453 >                    }
454 >                if (todo == 0) break;
455              }
329            i = (i + 1) & mask;
456          }
457          return false;
458      }
# Line 344 | Line 470 | public class ArrayDeque<E> extends Abstr
470       * @return {@code true} if the deque contained the specified element
471       */
472      public boolean removeLastOccurrence(Object o) {
473 <        if (o == null)
474 <            return false;
475 <        int mask = elements.length - 1;
476 <        int i = (tail - 1) & mask;
477 <        Object x;
478 <        while ( (x = elements[i]) != null) {
479 <            if (o.equals(x)) {
480 <                delete(i);
481 <                return true;
473 >        if (o != null) {
474 >            final Object[] elements = this.elements;
475 >            final int capacity = elements.length;
476 >            int from, to, end, todo;
477 >            todo = (to = ((end = (from = tail()) - size) >= -1) ? end : -1) - end;
478 >            for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
479 >                for (int i = from; i > to; i--)
480 >                    if (o.equals(elements[i])) {
481 >                        delete(i);
482 >                        return true;
483 >                    }
484 >                if (todo == 0) break;
485              }
357            i = (i - 1) & mask;
486          }
487          return false;
488      }
# Line 473 | Line 601 | public class ArrayDeque<E> extends Abstr
601          return removeFirst();
602      }
603  
476    private void checkInvariants() {
477        assert elements[tail] == null;
478        assert head == tail ? elements[head] == null :
479            (elements[head] != null &&
480             elements[(tail - 1) & (elements.length - 1)] != null);
481        assert elements[(head - 1) & (elements.length - 1)] == null;
482    }
483
604      /**
605 <     * Removes the element at the specified position in the elements array,
606 <     * adjusting head and tail as necessary.  This can result in motion of
607 <     * elements backwards or forwards in the array.
605 >     * Removes the element at the specified position in the elements array.
606 >     * This can result in forward or backwards motion of array elements.
607 >     * We optimize for least element motion.
608       *
609       * <p>This method is called delete rather than remove to emphasize
610       * that its semantics differ from those of {@link List#remove(int)}.
611       *
612       * @return true if elements moved backwards
613       */
614 <    private boolean delete(int i) {
615 <        checkInvariants();
614 >    boolean delete(int i) {
615 >        // checkInvariants();
616          final Object[] elements = this.elements;
617 <        final int mask = elements.length - 1;
617 >        final int capacity = elements.length;
618          final int h = head;
619 <        final int t = tail;
620 <        final int front = (i - h) & mask;
621 <        final int back  = (t - i) & mask;
502 <
503 <        // Invariant: head <= i < tail mod circularity
504 <        if (front >= ((t - h) & mask))
505 <            throw new ConcurrentModificationException();
506 <
507 <        // Optimize for least element motion
619 >        int front;              // number of elements before to-be-deleted elt
620 >        if ((front = i - h) < 0) front += capacity;
621 >        final int back = size - front - 1; // number of elements after
622          if (front < back) {
623 +            // move front elements forwards
624              if (h <= i) {
625                  System.arraycopy(elements, h, elements, h + 1, front);
626              } else { // Wrap around
627                  System.arraycopy(elements, 0, elements, 1, i);
628 <                elements[0] = elements[mask];
629 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
628 >                elements[0] = elements[capacity - 1];
629 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
630              }
631              elements[h] = null;
632 <            head = (h + 1) & mask;
632 >            if ((head = (h + 1)) >= capacity) head = 0;
633 >            size--;
634 >            // checkInvariants();
635              return false;
636          } else {
637 <            if (i < t) { // Copy the null tail as well
637 >            // move back elements backwards
638 >            int tail = tail();
639 >            if (i <= tail) {
640                  System.arraycopy(elements, i + 1, elements, i, back);
522                tail = t - 1;
641              } else { // Wrap around
642 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
643 <                elements[mask] = elements[0];
644 <                System.arraycopy(elements, 1, elements, 0, t);
645 <                tail = (t - 1) & mask;
642 >                int firstLeg = capacity - (i + 1);
643 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
644 >                elements[capacity - 1] = elements[0];
645 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
646              }
647 +            elements[tail] = null;
648 +            size--;
649 +            // checkInvariants();
650              return true;
651          }
652      }
# Line 538 | Line 659 | public class ArrayDeque<E> extends Abstr
659       * @return the number of elements in this deque
660       */
661      public int size() {
662 <        return (tail - head) & (elements.length - 1);
662 >        return size;
663      }
664  
665      /**
# Line 547 | Line 668 | public class ArrayDeque<E> extends Abstr
668       * @return {@code true} if this deque contains no elements
669       */
670      public boolean isEmpty() {
671 <        return head == tail;
671 >        return size == 0;
672      }
673  
674      /**
# Line 567 | Line 688 | public class ArrayDeque<E> extends Abstr
688      }
689  
690      private class DeqIterator implements Iterator<E> {
691 <        /**
692 <         * Index of element to be returned by subsequent call to next.
572 <         */
573 <        private int cursor = head;
691 >        /** Index of element to be returned by subsequent call to next. */
692 >        int cursor;
693  
694 <        /**
695 <         * Tail recorded at construction (also in remove), to stop
577 <         * iterator and also to check for comodification.
578 <         */
579 <        private int fence = tail;
694 >        /** Number of elements yet to be returned. */
695 >        int remaining = size;
696  
697          /**
698           * Index of element returned by most recent call to next.
699           * Reset to -1 if element is deleted by a call to remove.
700           */
701 <        private int lastRet = -1;
701 >        int lastRet = -1;
702 >
703 >        DeqIterator() { cursor = head; }
704  
705 <        public boolean hasNext() {
706 <            return cursor != fence;
705 >        public final boolean hasNext() {
706 >            return remaining > 0;
707          }
708  
709          public E next() {
710 <            if (cursor == fence)
710 >            if (remaining <= 0)
711                  throw new NoSuchElementException();
712 <            @SuppressWarnings("unchecked")
713 <            E result = (E) elements[cursor];
596 <            // This check doesn't catch all possible comodifications,
597 <            // but does catch the ones that corrupt traversal
598 <            if (tail != fence || result == null)
599 <                throw new ConcurrentModificationException();
712 >            final Object[] elements = ArrayDeque.this.elements;
713 >            E e = checkedElementAt(elements, cursor);
714              lastRet = cursor;
715 <            cursor = (cursor + 1) & (elements.length - 1);
716 <            return result;
715 >            if (++cursor >= elements.length) cursor = 0;
716 >            remaining--;
717 >            return e;
718 >        }
719 >
720 >        void postDelete(boolean leftShifted) {
721 >            if (leftShifted)
722 >                if (--cursor < 0) cursor = elements.length - 1;
723          }
724  
725 <        public void remove() {
725 >        public final void remove() {
726              if (lastRet < 0)
727                  throw new IllegalStateException();
728 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
609 <                cursor = (cursor - 1) & (elements.length - 1);
610 <                fence = tail;
611 <            }
728 >            postDelete(delete(lastRet));
729              lastRet = -1;
730          }
731 +
732 +        public void forEachRemaining(Consumer<? super E> action) {
733 +            final int k;
734 +            if ((k = remaining) > 0) {
735 +                remaining = 0;
736 +                ArrayDeque.forEachRemaining(action, elements, cursor, k);
737 +                if ((lastRet = cursor + k - 1) >= elements.length)
738 +                    lastRet -= elements.length;
739 +            }
740 +        }
741 +    }
742 +
743 +    private class DescendingIterator extends DeqIterator {
744 +        DescendingIterator() { cursor = tail(); }
745 +
746 +        public final E next() {
747 +            if (remaining <= 0)
748 +                throw new NoSuchElementException();
749 +            final Object[] elements = ArrayDeque.this.elements;
750 +            E e = checkedElementAt(elements, cursor);
751 +            lastRet = cursor;
752 +            if (--cursor < 0) cursor = elements.length - 1;
753 +            remaining--;
754 +            return e;
755 +        }
756 +
757 +        void postDelete(boolean leftShifted) {
758 +            if (!leftShifted)
759 +                if (++cursor >= elements.length) cursor = 0;
760 +        }
761 +
762 +        public final void forEachRemaining(Consumer<? super E> action) {
763 +            final int k;
764 +            if ((k = remaining) > 0) {
765 +                remaining = 0;
766 +                forEachRemainingDescending(action, elements, cursor, k);
767 +                if ((lastRet = cursor - (k - 1)) < 0)
768 +                    lastRet += elements.length;
769 +            }
770 +        }
771      }
772  
773      /**
774 <     * This class is nearly a mirror-image of DeqIterator, using tail
775 <     * instead of head for initial cursor, and head instead of tail
776 <     * for fence.
777 <     */
778 <    private class DescendingIterator implements Iterator<E> {
779 <        private int cursor = tail;
780 <        private int fence = head;
781 <        private int lastRet = -1;
774 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
775 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
776 >     * deque.
777 >     *
778 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
779 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
780 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
781 >     * the reporting of additional characteristic values.
782 >     *
783 >     * @return a {@code Spliterator} over the elements in this deque
784 >     * @since 1.8
785 >     */
786 >    public Spliterator<E> spliterator() {
787 >        return new ArrayDequeSpliterator();
788 >    }
789  
790 <        public boolean hasNext() {
791 <            return cursor != fence;
790 >    final class ArrayDequeSpliterator implements Spliterator<E> {
791 >        private int cursor;
792 >        private int remaining; // -1 until late-binding first use
793 >
794 >        /** Constructs late-binding spliterator over all elements. */
795 >        ArrayDequeSpliterator() {
796 >            this.remaining = -1;
797          }
798  
799 <        public E next() {
800 <            if (cursor == fence)
801 <                throw new NoSuchElementException();
802 <            cursor = (cursor - 1) & (elements.length - 1);
634 <            @SuppressWarnings("unchecked")
635 <            E result = (E) elements[cursor];
636 <            if (head != fence || result == null)
637 <                throw new ConcurrentModificationException();
638 <            lastRet = cursor;
639 <            return result;
799 >        /** Constructs spliterator over the given slice. */
800 >        ArrayDequeSpliterator(int cursor, int count) {
801 >            this.cursor = cursor;
802 >            this.remaining = count;
803          }
804  
805 <        public void remove() {
806 <            if (lastRet < 0)
807 <                throw new IllegalStateException();
808 <            if (!delete(lastRet)) {
809 <                cursor = (cursor + 1) & (elements.length - 1);
647 <                fence = head;
805 >        /** Ensures late-binding initialization; then returns remaining. */
806 >        private int remaining() {
807 >            if (remaining < 0) {
808 >                cursor = head;
809 >                remaining = size;
810              }
811 <            lastRet = -1;
811 >            return remaining;
812 >        }
813 >
814 >        public ArrayDequeSpliterator trySplit() {
815 >            final int mid;
816 >            if ((mid = remaining() >> 1) > 0) {
817 >                int oldCursor = cursor;
818 >                cursor = add(cursor, mid, elements.length);
819 >                remaining -= mid;
820 >                return new ArrayDequeSpliterator(oldCursor, mid);
821 >            }
822 >            return null;
823 >        }
824 >
825 >        public void forEachRemaining(Consumer<? super E> action) {
826 >            final int k = remaining(); // side effect!
827 >            remaining = 0;
828 >            ArrayDeque.forEachRemaining(action, elements, cursor, k);
829 >        }
830 >
831 >        public boolean tryAdvance(Consumer<? super E> action) {
832 >            Objects.requireNonNull(action);
833 >            final int k;
834 >            if ((k = remaining()) <= 0)
835 >                return false;
836 >            action.accept(checkedElementAt(elements, cursor));
837 >            if (++cursor >= elements.length) cursor = 0;
838 >            remaining = k - 1;
839 >            return true;
840 >        }
841 >
842 >        public long estimateSize() {
843 >            return remaining();
844 >        }
845 >
846 >        public int characteristics() {
847 >            return Spliterator.NONNULL
848 >                | Spliterator.ORDERED
849 >                | Spliterator.SIZED
850 >                | Spliterator.SUBSIZED;
851 >        }
852 >    }
853 >
854 >    @SuppressWarnings("unchecked")
855 >    public void forEach(Consumer<? super E> action) {
856 >        Objects.requireNonNull(action);
857 >        final Object[] elements = this.elements;
858 >        final int capacity = elements.length;
859 >        int from, end, to, todo;
860 >        todo = (end = (from = head) + size)
861 >            - (to = (capacity - end >= 0) ? end : capacity);
862 >        for (;; from = 0, to = todo, todo = 0) {
863 >            for (int i = from; i < to; i++)
864 >                action.accept((E) elements[i]);
865 >            if (todo == 0) break;
866 >        }
867 >        // checkInvariants();
868 >    }
869 >
870 >    /**
871 >     * A variant of forEach that also checks for concurrent
872 >     * modification, for use in iterators.
873 >     */
874 >    static <E> void forEachRemaining(
875 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
876 >        Objects.requireNonNull(action);
877 >        final int capacity = elements.length;
878 >        int end, to, todo;
879 >        todo = (end = from + remaining)
880 >            - (to = (capacity - end >= 0) ? end : capacity);
881 >        for (;; from = 0, to = todo, todo = 0) {
882 >            for (int i = from; i < to; i++) {
883 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
884 >                if (e == null)
885 >                    throw new ConcurrentModificationException();
886 >                action.accept(e);
887 >            }
888 >            if (todo == 0) break;
889 >        }
890 >    }
891 >
892 >    static <E> void forEachRemainingDescending(
893 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
894 >        Objects.requireNonNull(action);
895 >        final int capacity = elements.length;
896 >        int end, to, todo;
897 >        todo = (to = ((end = from - remaining) >= -1) ? end : -1) - end;
898 >        for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
899 >            for (int i = from; i > to; i--) {
900 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
901 >                if (e == null)
902 >                    throw new ConcurrentModificationException();
903 >                action.accept(e);
904 >            }
905 >            if (todo == 0) break;
906 >        }
907 >    }
908 >
909 >    /**
910 >     * Replaces each element of this deque with the result of applying the
911 >     * operator to that element, as specified by {@link List#replaceAll}.
912 >     *
913 >     * @param operator the operator to apply to each element
914 >     * @since TBD
915 >     */
916 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
917 >        Objects.requireNonNull(operator);
918 >        final Object[] elements = this.elements;
919 >        final int capacity = elements.length;
920 >        int from, end, to, todo;
921 >        todo = (end = (from = head) + size)
922 >            - (to = (capacity - end >= 0) ? end : capacity);
923 >        for (;; from = 0, to = todo, todo = 0) {
924 >            for (int i = from; i < to; i++)
925 >                elements[i] = operator.apply(elementAt(i));
926 >            if (todo == 0) break;
927 >        }
928 >        // checkInvariants();
929 >    }
930 >
931 >    /**
932 >     * @throws NullPointerException {@inheritDoc}
933 >     */
934 >    public boolean removeIf(Predicate<? super E> filter) {
935 >        Objects.requireNonNull(filter);
936 >        return bulkRemove(filter);
937 >    }
938 >
939 >    /**
940 >     * @throws NullPointerException {@inheritDoc}
941 >     */
942 >    public boolean removeAll(Collection<?> c) {
943 >        Objects.requireNonNull(c);
944 >        return bulkRemove(e -> c.contains(e));
945 >    }
946 >
947 >    /**
948 >     * @throws NullPointerException {@inheritDoc}
949 >     */
950 >    public boolean retainAll(Collection<?> c) {
951 >        Objects.requireNonNull(c);
952 >        return bulkRemove(e -> !c.contains(e));
953 >    }
954 >
955 >    /** Implementation of bulk remove methods. */
956 >    private boolean bulkRemove(Predicate<? super E> filter) {
957 >        // checkInvariants();
958 >        final Object[] elements = this.elements;
959 >        final int capacity = elements.length;
960 >        int i = head, j = i, remaining = size, deleted = 0;
961 >        try {
962 >            for (; remaining > 0; remaining--) {
963 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
964 >                if (filter.test(e))
965 >                    deleted++;
966 >                else {
967 >                    if (j != i)
968 >                        elements[j] = e;
969 >                    if (++j >= capacity) j = 0;
970 >                }
971 >                if (++i >= capacity) i = 0;
972 >            }
973 >            return deleted > 0;
974 >        } catch (Throwable ex) {
975 >            if (deleted > 0)
976 >                for (; remaining > 0; remaining--) {
977 >                    elements[j] = elements[i];
978 >                    if (++i >= capacity) i = 0;
979 >                    if (++j >= capacity) j = 0;
980 >                }
981 >            throw ex;
982 >        } finally {
983 >            size -= deleted;
984 >            clearSlice(elements, j, deleted);
985 >            // checkInvariants();
986          }
987      }
988  
# Line 659 | Line 995 | public class ArrayDeque<E> extends Abstr
995       * @return {@code true} if this deque contains the specified element
996       */
997      public boolean contains(Object o) {
998 <        if (o == null)
999 <            return false;
1000 <        int mask = elements.length - 1;
1001 <        int i = head;
1002 <        Object x;
1003 <        while ( (x = elements[i]) != null) {
1004 <            if (o.equals(x))
1005 <                return true;
1006 <            i = (i + 1) & mask;
998 >        if (o != null) {
999 >            final Object[] elements = this.elements;
1000 >            final int capacity = elements.length;
1001 >            int from, end, to, todo;
1002 >            todo = (end = (from = head) + size)
1003 >                - (to = (capacity - end >= 0) ? end : capacity);
1004 >            for (;; from = 0, to = todo, todo = 0) {
1005 >                for (int i = from; i < to; i++)
1006 >                    if (o.equals(elements[i]))
1007 >                        return true;
1008 >                if (todo == 0) break;
1009 >            }
1010          }
1011          return false;
1012      }
# Line 694 | Line 1033 | public class ArrayDeque<E> extends Abstr
1033       * The deque will be empty after this call returns.
1034       */
1035      public void clear() {
1036 <        int h = head;
1037 <        int t = tail;
1038 <        if (h != t) { // clear all cells
1039 <            head = tail = 0;
1040 <            int i = h;
1041 <            int mask = elements.length - 1;
1042 <            do {
1043 <                elements[i] = null;
1044 <                i = (i + 1) & mask;
1045 <            } while (i != t);
1046 <        }
1036 >        clearSlice(elements, head, size);
1037 >        size = head = 0;
1038 >        // checkInvariants();
1039 >    }
1040 >
1041 >    /**
1042 >     * Nulls out count elements, starting at array index from.
1043 >     */
1044 >    private static void clearSlice(Object[] elements, int from, int count) {
1045 >        final int capacity = elements.length, end = from + count;
1046 >        final int leg = (capacity - end >= 0) ? end : capacity;
1047 >        Arrays.fill(elements, from, leg, null);
1048 >        if (leg != end)
1049 >            Arrays.fill(elements, 0, end - capacity, null);
1050      }
1051  
1052      /**
# Line 721 | Line 1063 | public class ArrayDeque<E> extends Abstr
1063       * @return an array containing all of the elements in this deque
1064       */
1065      public Object[] toArray() {
1066 <        final int head = this.head;
1067 <        final int tail = this.tail;
1068 <        boolean wrap = (tail < head);
1069 <        int end = wrap ? tail + elements.length : tail;
1070 <        Object[] a = Arrays.copyOfRange(elements, head, end);
1071 <        if (wrap)
1072 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1066 >        return toArray(Object[].class);
1067 >    }
1068 >
1069 >    private <T> T[] toArray(Class<T[]> klazz) {
1070 >        final Object[] elements = this.elements;
1071 >        final int capacity = elements.length;
1072 >        final int head = this.head, end = head + size;
1073 >        final T[] a;
1074 >        if (end >= 0) {
1075 >            a = Arrays.copyOfRange(elements, head, end, klazz);
1076 >        } else {
1077 >            // integer overflow!
1078 >            a = Arrays.copyOfRange(elements, 0, size, klazz);
1079 >            System.arraycopy(elements, head, a, 0, capacity - head);
1080 >        }
1081 >        if (end - capacity > 0)
1082 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1083          return a;
1084      }
1085  
# Line 753 | Line 1105 | public class ArrayDeque<E> extends Abstr
1105       * The following code can be used to dump the deque into a newly
1106       * allocated array of {@code String}:
1107       *
1108 <     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1108 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1109       *
1110       * Note that {@code toArray(new Object[0])} is identical in function to
1111       * {@code toArray()}.
# Line 769 | Line 1121 | public class ArrayDeque<E> extends Abstr
1121       */
1122      @SuppressWarnings("unchecked")
1123      public <T> T[] toArray(T[] a) {
1124 <        final int head = this.head;
1125 <        final int tail = this.tail;
1126 <        boolean wrap = (tail < head);
1127 <        int size = (tail - head) + (wrap ? elements.length : 0);
1128 <        int firstLeg = size - (wrap ? tail : 0);
1129 <        int len = a.length;
1130 <        if (size > len) {
1131 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
1132 <                                         a.getClass());
1133 <        } else {
1134 <            System.arraycopy(elements, head, a, 0, firstLeg);
1135 <            if (size < len)
784 <                a[size] = null;
785 <        }
786 <        if (wrap)
787 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1124 >        final int size = this.size;
1125 >        if (size > a.length)
1126 >            return toArray((Class<T[]>) a.getClass());
1127 >        final Object[] elements = this.elements;
1128 >        final int capacity = elements.length;
1129 >        final int head = this.head, end = head + size;
1130 >        final int front = (capacity - end >= 0) ? size : capacity - head;
1131 >        System.arraycopy(elements, head, a, 0, front);
1132 >        if (front != size)
1133 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1134 >        if (size < a.length)
1135 >            a[size] = null;
1136          return a;
1137      }
1138  
# Line 811 | Line 1159 | public class ArrayDeque<E> extends Abstr
1159      /**
1160       * Saves this deque to a stream (that is, serializes it).
1161       *
1162 +     * @param s the stream
1163 +     * @throws java.io.IOException if an I/O error occurs
1164       * @serialData The current size ({@code int}) of the deque,
1165       * followed by all of its elements (each an object reference) in
1166       * first-to-last order.
# Line 820 | Line 1170 | public class ArrayDeque<E> extends Abstr
1170          s.defaultWriteObject();
1171  
1172          // Write out size
1173 <        s.writeInt(size());
1173 >        s.writeInt(size);
1174  
1175          // Write out elements in order.
1176 <        int mask = elements.length - 1;
1177 <        for (int i = head; i != tail; i = (i + 1) & mask)
1178 <            s.writeObject(elements[i]);
1176 >        final Object[] elements = this.elements;
1177 >        final int capacity = elements.length;
1178 >        int from, end, to, todo;
1179 >        todo = (end = (from = head) + size)
1180 >            - (to = (capacity - end >= 0) ? end : capacity);
1181 >        for (;; from = 0, to = todo, todo = 0) {
1182 >            for (int i = from; i < to; i++)
1183 >                s.writeObject(elements[i]);
1184 >            if (todo == 0) break;
1185 >        }
1186      }
1187  
1188      /**
1189       * Reconstitutes this deque from a stream (that is, deserializes it).
1190 +     * @param s the stream
1191 +     * @throws ClassNotFoundException if the class of a serialized object
1192 +     *         could not be found
1193 +     * @throws java.io.IOException if an I/O error occurs
1194       */
1195      private void readObject(java.io.ObjectInputStream s)
1196              throws java.io.IOException, ClassNotFoundException {
1197          s.defaultReadObject();
1198  
1199          // Read in size and allocate array
1200 <        int size = s.readInt();
840 <        allocateElements(size);
841 <        head = 0;
842 <        tail = size;
1200 >        elements = new Object[size = s.readInt()];
1201  
1202          // Read in all elements in the proper order.
1203          for (int i = 0; i < size; i++)
1204              elements[i] = s.readObject();
1205      }
1206  
1207 <    public Spliterator<E> spliterator() {
1208 <        return new DeqSpliterator<E>(this, -1, -1);
1209 <    }
1210 <
1211 <    static final class DeqSpliterator<E> implements Spliterator<E> {
1212 <        private final ArrayDeque<E> deq;
1213 <        private int fence;  // -1 until first use
1214 <        private int index;  // current index, modified on traverse/split
1215 <
1216 <        /** Creates new spliterator covering the given array and range */
1217 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
1218 <            this.deq = deq;
1219 <            this.index = origin;
1220 <            this.fence = fence;
1221 <        }
1222 <
1223 <        private int getFence() { // force initialization
866 <            int t;
867 <            if ((t = fence) < 0) {
868 <                t = fence = deq.tail;
869 <                index = deq.head;
870 <            }
871 <            return t;
872 <        }
873 <
874 <        public Spliterator<E> trySplit() {
875 <            int t = getFence(), h = index, n = deq.elements.length;
876 <            if (h != t && ((h + 1) & (n - 1)) != t) {
877 <                if (h > t)
878 <                    t += n;
879 <                int m = ((h + t) >>> 1) & (n - 1);
880 <                return new DeqSpliterator<>(deq, h, index = m);
881 <            }
882 <            return null;
883 <        }
884 <
885 <        public void forEachRemaining(Consumer<? super E> consumer) {
886 <            if (consumer == null)
887 <                throw new NullPointerException();
888 <            Object[] a = deq.elements;
889 <            int m = a.length - 1, f = getFence(), i = index;
890 <            index = f;
891 <            while (i != f) {
892 <                @SuppressWarnings("unchecked") E e = (E)a[i];
893 <                i = (i + 1) & m;
894 <                if (e == null)
895 <                    throw new ConcurrentModificationException();
896 <                consumer.accept(e);
897 <            }
898 <        }
899 <
900 <        public boolean tryAdvance(Consumer<? super E> consumer) {
901 <            if (consumer == null)
902 <                throw new NullPointerException();
903 <            Object[] a = deq.elements;
904 <            int m = a.length - 1, f = getFence(), i = index;
905 <            if (i != fence) {
906 <                @SuppressWarnings("unchecked") E e = (E)a[i];
907 <                index = (i + 1) & m;
908 <                if (e == null)
909 <                    throw new ConcurrentModificationException();
910 <                consumer.accept(e);
911 <                return true;
912 <            }
913 <            return false;
914 <        }
915 <
916 <        public long estimateSize() {
917 <            int n = getFence() - index;
918 <            if (n < 0)
919 <                n += deq.elements.length;
920 <            return (long) n;
921 <        }
922 <
923 <        @Override
924 <        public int characteristics() {
925 <            return Spliterator.ORDERED | Spliterator.SIZED |
926 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1207 >    /** debugging */
1208 >    void checkInvariants() {
1209 >        try {
1210 >            int capacity = elements.length;
1211 >            // assert size >= 0 && size <= capacity;
1212 >            // assert head >= 0;
1213 >            // assert capacity == 0 || head < capacity;
1214 >            // assert size == 0 || elements[head] != null;
1215 >            // assert size == 0 || elements[tail()] != null;
1216 >            // assert size == capacity || elements[dec(head, capacity)] == null;
1217 >            // assert size == capacity || elements[inc(tail(), capacity)] == null;
1218 >        } catch (Throwable t) {
1219 >            System.err.printf("head=%d size=%d capacity=%d%n",
1220 >                              head, size, elements.length);
1221 >            System.err.printf("elements=%s%n",
1222 >                              Arrays.toString(elements));
1223 >            throw t;
1224          }
1225      }
1226  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines