ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.6 by dl, Tue Mar 22 16:48:32 2005 UTC vs.
Revision 1.91 by jsr166, Tue Oct 25 16:51:17 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
70 <     */
71 <    private transient int head;
72 <
73 <    /**
74 <     * The index at which the next element would be added to the tail
75 <     * of the deque (via addLast(E), add(E), or push(E)).
76 <     */
77 <    private transient int tail;
78 <
79 <    /**
80 <     * The minimum capacity that we'll use for a newly created deque.
81 <     * Must be a power of 2.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private static final int MIN_INITIAL_CAPACITY = 8;
75 >    transient int head;
76  
77 <    // ******  Array allocation and resizing utilities ******
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * Allocate empty array to hold the given number of elements.
82 <     *
83 <     * @param numElements  the number of elements to hold.
84 <     */
85 <    private void allocateElements(int numElements) {
86 <        int initialCapacity = MIN_INITIAL_CAPACITY;
87 <        // Find the best power of two to hold elements.
88 <        // Tests "<=" because arrays aren't kept full.
89 <        if (numElements >= initialCapacity) {
90 <            initialCapacity = numElements;
91 <            initialCapacity |= (initialCapacity >>>  1);
92 <            initialCapacity |= (initialCapacity >>>  2);
93 <            initialCapacity |= (initialCapacity >>>  4);
94 <            initialCapacity |= (initialCapacity >>>  8);
95 <            initialCapacity |= (initialCapacity >>> 16);
96 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        final int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        final int oldCapacity = elements.length, minCapacity;
119 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
120 >            if (minCapacity < 0)
121 >                throw new IllegalStateException("Sorry, deque too big");
122 >            return Integer.MAX_VALUE;
123          }
124 <        elements = (E[]) new Object[initialCapacity];
124 >        if (needed > jump)
125 >            return minCapacity;
126 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
127 >            ? oldCapacity + jump
128 >            : MAX_ARRAY_SIZE;
129      }
130  
131      /**
132 <     * Double the capacity of this deque.  Call only when full, i.e.,
133 <     * when head and tail have wrapped around to become equal.
132 >     * Increases the internal storage of this collection, if necessary,
133 >     * to ensure that it can hold at least the given number of elements.
134 >     *
135 >     * @param minCapacity the desired minimum capacity
136 >     * @since TBD
137       */
138 <    private void doubleCapacity() {
139 <        assert head == tail;
140 <        int p = head;
141 <        int n = elements.length;
119 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
138 >    /* public */ void ensureCapacity(int minCapacity) {
139 >        if (minCapacity > elements.length)
140 >            grow(minCapacity - elements.length);
141 >        // checkInvariants();
142      }
143  
144      /**
145 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
145 >     * Minimizes the internal storage of this collection.
146       *
147 <     * @return its argument
147 >     * @since TBD
148       */
149 <    private <T> T[] copyElements(T[] a) {
150 <        if (head < tail) {
151 <            System.arraycopy(elements, head, a, 0, size());
152 <        } else if (head > tail) {
142 <            int headPortionLen = elements.length - head;
143 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
149 >    /* public */ void trimToSize() {
150 >        if (size < elements.length) {
151 >            elements = toArray();
152 >            head = 0;
153          }
154 <        return a;
154 >        // checkInvariants();
155      }
156  
157      /**
# Line 151 | Line 159 | public class ArrayDeque<E> extends Abstr
159       * sufficient to hold 16 elements.
160       */
161      public ArrayDeque() {
162 <        elements = (E[]) new Object[16];
162 >        elements = new Object[16];
163      }
164  
165      /**
166       * Constructs an empty array deque with an initial capacity
167       * sufficient to hold the specified number of elements.
168       *
169 <     * @param numElements  lower bound on initial capacity of the deque
169 >     * @param numElements lower bound on initial capacity of the deque
170       */
171      public ArrayDeque(int numElements) {
172 <        allocateElements(numElements);
172 >        elements = new Object[numElements];
173      }
174  
175      /**
# Line 175 | Line 183 | public class ArrayDeque<E> extends Abstr
183       * @throws NullPointerException if the specified collection is null
184       */
185      public ArrayDeque(Collection<? extends E> c) {
186 <        allocateElements(c.size());
187 <        addAll(c);
186 >        Object[] elements = c.toArray();
187 >        // defend against c.toArray (incorrectly) not returning Object[]
188 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 >        size = elements.length;
190 >        if (elements.getClass() != Object[].class)
191 >            elements = Arrays.copyOf(elements, size, Object[].class);
192 >        for (Object obj : elements)
193 >            Objects.requireNonNull(obj);
194 >        this.elements = elements;
195 >    }
196 >
197 >    /**
198 >     * Increments i, mod modulus.
199 >     * Precondition and postcondition: 0 <= i < modulus.
200 >     */
201 >    static final int inc(int i, int modulus) {
202 >        if (++i >= modulus) i = 0;
203 >        return i;
204 >    }
205 >
206 >    /**
207 >     * Decrements i, mod modulus.
208 >     * Precondition and postcondition: 0 <= i < modulus.
209 >     */
210 >    static final int dec(int i, int modulus) {
211 >        if (--i < 0) i = modulus - 1;
212 >        return i;
213 >    }
214 >
215 >    /**
216 >     * Adds i and j, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 >     */
219 >    static final int add(int i, int j, int modulus) {
220 >        if ((i += j) - modulus >= 0) i -= modulus;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Returns the array index of the last element.
226 >     * May return invalid index -1 if there are no elements.
227 >     */
228 >    final int tail() {
229 >        return add(head, size - 1, elements.length);
230 >    }
231 >
232 >    /**
233 >     * Returns element at array index i.
234 >     */
235 >    @SuppressWarnings("unchecked")
236 >    private E elementAt(int i) {
237 >        return (E) elements[i];
238 >    }
239 >
240 >    /**
241 >     * A version of elementAt that checks for null elements.
242 >     * This check doesn't catch all possible comodifications,
243 >     * but does catch ones that corrupt traversal.
244 >     */
245 >    E checkedElementAt(Object[] elements, int i) {
246 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
247 >        if (e == null)
248 >            throw new ConcurrentModificationException();
249 >        return e;
250      }
251  
252      // The main insertion and extraction methods are addFirst,
# Line 186 | Line 256 | public class ArrayDeque<E> extends Abstr
256      /**
257       * Inserts the specified element at the front of this deque.
258       *
259 <     * @param e the element to insert
260 <     * @throws NullPointerException if <tt>e</tt> is null
259 >     * @param e the element to add
260 >     * @throws NullPointerException if the specified element is null
261       */
262      public void addFirst(E e) {
263 <        if (e == null)
264 <            throw new NullPointerException();
265 <        elements[head = (head - 1) & (elements.length - 1)] = e;
266 <        if (head == tail)
267 <            doubleCapacity();
263 >        // checkInvariants();
264 >        Objects.requireNonNull(e);
265 >        Object[] elements;
266 >        int capacity, h;
267 >        final int s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
269 >            grow(1);
270 >            capacity = (elements = this.elements).length;
271 >        }
272 >        if ((h = head - 1) < 0) h = capacity - 1;
273 >        elements[head = h] = e;
274 >        size = s + 1;
275 >        // checkInvariants();
276      }
277  
278      /**
279       * Inserts the specified element at the end of this deque.
202     * This method is equivalent to {@link Collection#add} and
203     * {@link #push}.
280       *
281 <     * @param e the element to insert
206 <     * @throws NullPointerException if <tt>e</tt> is null
207 <     */
208 <    public void addLast(E e) {
209 <        if (e == null)
210 <            throw new NullPointerException();
211 <        elements[tail] = e;
212 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
213 <            doubleCapacity();
214 <    }
215 <
216 <    /**
217 <     * Retrieves and removes the first element of this deque, or
218 <     * <tt>null</tt> if this deque is empty.
281 >     * <p>This method is equivalent to {@link #add}.
282       *
283 <     * @return the first element of this deque, or <tt>null</tt> if
284 <     *     this deque is empty
283 >     * @param e the element to add
284 >     * @throws NullPointerException if the specified element is null
285       */
286 <    public E pollFirst() {
287 <        int h = head;
288 <        E result = elements[h]; // Element is null if deque empty
289 <        if (result == null)
290 <            return null;
291 <        elements[h] = null;     // Must null out slot
292 <        head = (h + 1) & (elements.length - 1);
293 <        return result;
286 >    public void addLast(E e) {
287 >        // checkInvariants();
288 >        Objects.requireNonNull(e);
289 >        Object[] elements;
290 >        int capacity;
291 >        final int s;
292 >        if ((s = size) == (capacity = (elements = this.elements).length)) {
293 >            grow(1);
294 >            capacity = (elements = this.elements).length;
295 >        }
296 >        elements[add(head, s, capacity)] = e;
297 >        size = s + 1;
298 >        // checkInvariants();
299      }
300  
301      /**
302 <     * Retrieves and removes the last element of this deque, or
303 <     * <tt>null</tt> if this deque is empty.
304 <     *
305 <     * @return the last element of this deque, or <tt>null</tt> if
306 <     *     this deque is empty
307 <     */
308 <    public E pollLast() {
309 <        int t = (tail - 1) & (elements.length - 1);
310 <        E result = elements[t];
311 <        if (result == null)
312 <            return null;
313 <        elements[t] = null;
314 <        tail = t;
315 <        return result;
302 >     * Adds all of the elements in the specified collection at the end
303 >     * of this deque, as if by calling {@link #addLast} on each one,
304 >     * in the order that they are returned by the collection's
305 >     * iterator.
306 >     *
307 >     * @param c the elements to be inserted into this deque
308 >     * @return {@code true} if this deque changed as a result of the call
309 >     * @throws NullPointerException if the specified collection or any
310 >     *         of its elements are null
311 >     */
312 >    public boolean addAll(Collection<? extends E> c) {
313 >        final int s = size, needed = c.size() - (elements.length - s);
314 >        if (needed > 0)
315 >            grow(needed);
316 >        c.forEach((e) -> addLast(e));
317 >        // checkInvariants();
318 >        return size > s;
319      }
320  
321      /**
322       * Inserts the specified element at the front of this deque.
323       *
324 <     * @param e the element to insert
325 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
326 <     * @throws NullPointerException if <tt>e</tt> is null
324 >     * @param e the element to add
325 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
326 >     * @throws NullPointerException if the specified element is null
327       */
328      public boolean offerFirst(E e) {
329          addFirst(e);
# Line 262 | Line 333 | public class ArrayDeque<E> extends Abstr
333      /**
334       * Inserts the specified element at the end of this deque.
335       *
336 <     * @param e the element to insert
337 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
338 <     * @throws NullPointerException if <tt>e</tt> is null
336 >     * @param e the element to add
337 >     * @return {@code true} (as specified by {@link Deque#offerLast})
338 >     * @throws NullPointerException if the specified element is null
339       */
340      public boolean offerLast(E e) {
341          addLast(e);
# Line 272 | Line 343 | public class ArrayDeque<E> extends Abstr
343      }
344  
345      /**
346 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
346 >     * @throws NoSuchElementException {@inheritDoc}
347       */
348      public E removeFirst() {
349 <        E x = pollFirst();
350 <        if (x == null)
349 >        // checkInvariants();
350 >        E e = pollFirst();
351 >        if (e == null)
352              throw new NoSuchElementException();
353 <        return x;
353 >        return e;
354      }
355  
356      /**
357 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
357 >     * @throws NoSuchElementException {@inheritDoc}
358       */
359      public E removeLast() {
360 <        E x = pollLast();
361 <        if (x == null)
360 >        // checkInvariants();
361 >        E e = pollLast();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        return e;
365      }
366  
367 <    /**
368 <     * Retrieves, but does not remove, the first element of this deque,
369 <     * returning <tt>null</tt> if this deque is empty.
370 <     *
371 <     * @return the first element of this deque, or <tt>null</tt> if
372 <     *     this deque is empty
373 <     */
374 <    public E peekFirst() {
375 <        return elements[head]; // elements[head] is null if deque empty
367 >    public E pollFirst() {
368 >        // checkInvariants();
369 >        int s, h;
370 >        if ((s = size) <= 0)
371 >            return null;
372 >        final Object[] elements = this.elements;
373 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
374 >        elements[h] = null;
375 >        if (++h >= elements.length) h = 0;
376 >        head = h;
377 >        size = s - 1;
378 >        return e;
379      }
380  
381 <    /**
382 <     * Retrieves, but does not remove, the last element of this deque,
383 <     * returning <tt>null</tt> if this deque is empty.
384 <     *
385 <     * @return the last element of this deque, or <tt>null</tt> if this deque
386 <     *     is empty
387 <     */
388 <    public E peekLast() {
389 <        return elements[(tail - 1) & (elements.length - 1)];
381 >    public E pollLast() {
382 >        // checkInvariants();
383 >        final int s, tail;
384 >        if ((s = size) <= 0)
385 >            return null;
386 >        final Object[] elements = this.elements;
387 >        @SuppressWarnings("unchecked")
388 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
389 >        elements[tail] = null;
390 >        size = s - 1;
391 >        return e;
392      }
393  
394      /**
395 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peekFirst</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
395 >     * @throws NoSuchElementException {@inheritDoc}
396       */
397      public E getFirst() {
398 <        E x = elements[head];
399 <        if (x == null)
400 <            throw new NoSuchElementException();
338 <        return x;
398 >        // checkInvariants();
399 >        if (size <= 0) throw new NoSuchElementException();
400 >        return elementAt(head);
401      }
402  
403      /**
404 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peekLast</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
404 >     * @throws NoSuchElementException {@inheritDoc}
405       */
406 +    @SuppressWarnings("unchecked")
407      public E getLast() {
408 <        E x = elements[(tail - 1) & (elements.length - 1)];
409 <        if (x == null)
410 <            throw new NoSuchElementException();
411 <        return x;
408 >        // checkInvariants();
409 >        final int s;
410 >        if ((s = size) <= 0) throw new NoSuchElementException();
411 >        final Object[] elements = this.elements;
412 >        return (E) elements[add(head, s - 1, elements.length)];
413 >    }
414 >
415 >    public E peekFirst() {
416 >        // checkInvariants();
417 >        return (size <= 0) ? null : elementAt(head);
418 >    }
419 >
420 >    @SuppressWarnings("unchecked")
421 >    public E peekLast() {
422 >        // checkInvariants();
423 >        final int s;
424 >        if ((s = size) <= 0) return null;
425 >        final Object[] elements = this.elements;
426 >        return (E) elements[add(head, s - 1, elements.length)];
427      }
428  
429      /**
430       * Removes the first occurrence of the specified element in this
431 <     * deque (when traversing the deque from head to tail).  More
432 <     * formally, removes the first element e such that (o==null ?
433 <     * e==null : o.equals(e)). If the deque does not contain the
434 <     * element, it is unchanged.
431 >     * deque (when traversing the deque from head to tail).
432 >     * If the deque does not contain the element, it is unchanged.
433 >     * More formally, removes the first element {@code e} such that
434 >     * {@code o.equals(e)} (if such an element exists).
435 >     * Returns {@code true} if this deque contained the specified element
436 >     * (or equivalently, if this deque changed as a result of the call).
437       *
438       * @param o element to be removed from this deque, if present
439 <     * @return <tt>true</tt> if the deque contained the specified element
439 >     * @return {@code true} if the deque contained the specified element
440       */
441      public boolean removeFirstOccurrence(Object o) {
442 <        if (o == null)
443 <            return false;
444 <        int mask = elements.length - 1;
445 <        int i = head;
446 <        E x;
447 <        while ( (x = elements[i]) != null) {
448 <            if (o.equals(x)) {
449 <                delete(i);
450 <                return true;
442 >        if (o != null) {
443 >            final Object[] elements = this.elements;
444 >            final int capacity = elements.length;
445 >            int from, end, to, todo;
446 >            todo = (end = (from = head) + size)
447 >                - (to = (capacity - end >= 0) ? end : capacity);
448 >            for (;; from = 0, to = todo, todo = 0) {
449 >                for (int i = from; i < to; i++)
450 >                    if (o.equals(elements[i])) {
451 >                        delete(i);
452 >                        return true;
453 >                    }
454 >                if (todo == 0) break;
455              }
377            i = (i + 1) & mask;
456          }
457          return false;
458      }
459  
460      /**
461       * Removes the last occurrence of the specified element in this
462 <     * deque (when traversing the deque from head to tail). More
463 <     * formally, removes the last element e such that (o==null ?
464 <     * e==null : o.equals(e)). If the deque
465 <     * does not contain the element, it is unchanged.
462 >     * deque (when traversing the deque from head to tail).
463 >     * If the deque does not contain the element, it is unchanged.
464 >     * More formally, removes the last element {@code e} such that
465 >     * {@code o.equals(e)} (if such an element exists).
466 >     * Returns {@code true} if this deque contained the specified element
467 >     * (or equivalently, if this deque changed as a result of the call).
468       *
469       * @param o element to be removed from this deque, if present
470 <     * @return <tt>true</tt> if the deque contained the specified element
470 >     * @return {@code true} if the deque contained the specified element
471       */
472      public boolean removeLastOccurrence(Object o) {
473 <        if (o == null)
474 <            return false;
475 <        int mask = elements.length - 1;
476 <        int i = (tail - 1) & mask;
477 <        E x;
478 <        while ( (x = elements[i]) != null) {
479 <            if (o.equals(x)) {
480 <                delete(i);
481 <                return true;
473 >        if (o != null) {
474 >            final Object[] elements = this.elements;
475 >            final int capacity = elements.length;
476 >            int from, to, end, todo;
477 >            todo = (to = ((end = (from = tail()) - size) >= -1) ? end : -1) - end;
478 >            for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
479 >                for (int i = from; i > to; i--)
480 >                    if (o.equals(elements[i])) {
481 >                        delete(i);
482 >                        return true;
483 >                    }
484 >                if (todo == 0) break;
485              }
403            i = (i - 1) & mask;
486          }
487          return false;
488      }
# Line 410 | Line 492 | public class ArrayDeque<E> extends Abstr
492      /**
493       * Inserts the specified element at the end of this deque.
494       *
413     * <p>This method is equivalent to {@link #offerLast}.
414     *
415     * @param e the element to insert
416     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
417     * @throws NullPointerException if <tt>e</tt> is null
418     */
419    public boolean offer(E e) {
420        return offerLast(e);
421    }
422
423    /**
424     * Inserts the specified element at the end of this deque.
425     *
495       * <p>This method is equivalent to {@link #addLast}.
496       *
497 <     * @param e the element to insert
498 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
499 <     * @throws NullPointerException if <tt>e</tt> is null
497 >     * @param e the element to add
498 >     * @return {@code true} (as specified by {@link Collection#add})
499 >     * @throws NullPointerException if the specified element is null
500       */
501      public boolean add(E e) {
502          addLast(e);
# Line 435 | Line 504 | public class ArrayDeque<E> extends Abstr
504      }
505  
506      /**
507 <     * Retrieves and removes the head of the queue represented by
439 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
440 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
441 <     * if this deque is empty.
507 >     * Inserts the specified element at the end of this deque.
508       *
509 <     * <p>This method is equivalent to {@link #pollFirst}.
509 >     * <p>This method is equivalent to {@link #offerLast}.
510       *
511 <     * @return the first element of this deque, or <tt>null</tt> if
512 <     *     this deque is empty
511 >     * @param e the element to add
512 >     * @return {@code true} (as specified by {@link Queue#offer})
513 >     * @throws NullPointerException if the specified element is null
514       */
515 <    public E poll() {
516 <        return pollFirst();
515 >    public boolean offer(E e) {
516 >        return offerLast(e);
517      }
518  
519      /**
520       * Retrieves and removes the head of the queue represented by this deque.
521 <     * This method differs from the <tt>poll</tt> method in that it throws an
521 >     *
522 >     * This method differs from {@link #poll poll} only in that it throws an
523       * exception if this deque is empty.
524       *
525       * <p>This method is equivalent to {@link #removeFirst}.
526       *
527       * @return the head of the queue represented by this deque
528 <     * @throws NoSuchElementException if this deque is empty
528 >     * @throws NoSuchElementException {@inheritDoc}
529       */
530      public E remove() {
531          return removeFirst();
532      }
533  
534      /**
535 <     * Retrieves, but does not remove, the head of the queue represented by
536 <     * this deque, returning <tt>null</tt> if this deque is empty.
535 >     * Retrieves and removes the head of the queue represented by this deque
536 >     * (in other words, the first element of this deque), or returns
537 >     * {@code null} if this deque is empty.
538       *
539 <     * <p>This method is equivalent to {@link #peekFirst}
539 >     * <p>This method is equivalent to {@link #pollFirst}.
540       *
541       * @return the head of the queue represented by this deque, or
542 <     *     <tt>null</tt> if this deque is empty
542 >     *         {@code null} if this deque is empty
543       */
544 <    public E peek() {
545 <        return peekFirst();
544 >    public E poll() {
545 >        return pollFirst();
546      }
547  
548      /**
549       * Retrieves, but does not remove, the head of the queue represented by
550 <     * this deque.  This method differs from the <tt>peek</tt> method only in
550 >     * this deque.  This method differs from {@link #peek peek} only in
551       * that it throws an exception if this deque is empty.
552       *
553 <     * <p>This method is equivalent to {@link #getFirst}
553 >     * <p>This method is equivalent to {@link #getFirst}.
554       *
555       * @return the head of the queue represented by this deque
556 <     * @throws NoSuchElementException if this deque is empty
556 >     * @throws NoSuchElementException {@inheritDoc}
557       */
558      public E element() {
559          return getFirst();
560      }
561  
562 +    /**
563 +     * Retrieves, but does not remove, the head of the queue represented by
564 +     * this deque, or returns {@code null} if this deque is empty.
565 +     *
566 +     * <p>This method is equivalent to {@link #peekFirst}.
567 +     *
568 +     * @return the head of the queue represented by this deque, or
569 +     *         {@code null} if this deque is empty
570 +     */
571 +    public E peek() {
572 +        return peekFirst();
573 +    }
574 +
575      // *** Stack methods ***
576  
577      /**
# Line 499 | Line 581 | public class ArrayDeque<E> extends Abstr
581       * <p>This method is equivalent to {@link #addFirst}.
582       *
583       * @param e the element to push
584 <     * @throws NullPointerException if <tt>e</tt> is null
584 >     * @throws NullPointerException if the specified element is null
585       */
586      public void push(E e) {
587          addFirst(e);
# Line 512 | Line 594 | public class ArrayDeque<E> extends Abstr
594       * <p>This method is equivalent to {@link #removeFirst()}.
595       *
596       * @return the element at the front of this deque (which is the top
597 <     *     of the stack represented by this deque)
598 <     * @throws NoSuchElementException if this deque is empty
597 >     *         of the stack represented by this deque)
598 >     * @throws NoSuchElementException {@inheritDoc}
599       */
600      public E pop() {
601          return removeFirst();
602      }
603  
604      /**
605 <     * Remove the element at the specified position in the elements array,
606 <     * adjusting head, tail, and size as necessary.  This can result in
607 <     * motion of elements backwards or forwards in the array.
605 >     * Removes the element at the specified position in the elements array.
606 >     * This can result in forward or backwards motion of array elements.
607 >     * We optimize for least element motion.
608       *
609       * <p>This method is called delete rather than remove to emphasize
610 <     * that its semantics differ from those of List.remove(int).
610 >     * that its semantics differ from those of {@link List#remove(int)}.
611       *
612       * @return true if elements moved backwards
613       */
614 <    private boolean delete(int i) {
615 <        // Case 1: Deque doesn't wrap
616 <        // Case 2: Deque does wrap and removed element is in the head portion
617 <        if ((head < tail || tail == 0) || i >= head) {
618 <            System.arraycopy(elements, head, elements, head + 1, i - head);
619 <            elements[head] = null;
620 <            head = (head + 1) & (elements.length - 1);
614 >    boolean delete(int i) {
615 >        // checkInvariants();
616 >        final Object[] elements = this.elements;
617 >        final int capacity = elements.length;
618 >        final int h = head;
619 >        int front;              // number of elements before to-be-deleted elt
620 >        if ((front = i - h) < 0) front += capacity;
621 >        final int back = size - front - 1; // number of elements after
622 >        if (front < back) {
623 >            // move front elements forwards
624 >            if (h <= i) {
625 >                System.arraycopy(elements, h, elements, h + 1, front);
626 >            } else { // Wrap around
627 >                System.arraycopy(elements, 0, elements, 1, i);
628 >                elements[0] = elements[capacity - 1];
629 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
630 >            }
631 >            elements[h] = null;
632 >            if ((head = (h + 1)) >= capacity) head = 0;
633 >            size--;
634 >            // checkInvariants();
635              return false;
636 +        } else {
637 +            // move back elements backwards
638 +            int tail = tail();
639 +            if (i <= tail) {
640 +                System.arraycopy(elements, i + 1, elements, i, back);
641 +            } else { // Wrap around
642 +                int firstLeg = capacity - (i + 1);
643 +                System.arraycopy(elements, i + 1, elements, i, firstLeg);
644 +                elements[capacity - 1] = elements[0];
645 +                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
646 +            }
647 +            elements[tail] = null;
648 +            size--;
649 +            // checkInvariants();
650 +            return true;
651          }
541
542        // Case 3: Deque wraps and removed element is in the tail portion
543        tail--;
544        System.arraycopy(elements, i + 1, elements, i, tail - i);
545        elements[tail] = null;
546        return true;
652      }
653  
654      // *** Collection Methods ***
# Line 554 | Line 659 | public class ArrayDeque<E> extends Abstr
659       * @return the number of elements in this deque
660       */
661      public int size() {
662 <        return (tail - head) & (elements.length - 1);
662 >        return size;
663      }
664  
665      /**
666 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
666 >     * Returns {@code true} if this deque contains no elements.
667       *
668 <     * @return <tt>true</tt> if this collection contains no elements.
668 >     * @return {@code true} if this deque contains no elements
669       */
670      public boolean isEmpty() {
671 <        return head == tail;
671 >        return size == 0;
672      }
673  
674      /**
# Line 572 | Line 677 | public class ArrayDeque<E> extends Abstr
677       * order that elements would be dequeued (via successive calls to
678       * {@link #remove} or popped (via successive calls to {@link #pop}).
679       *
680 <     * @return an <tt>Iterator</tt> over the elements in this deque
680 >     * @return an iterator over the elements in this deque
681       */
682      public Iterator<E> iterator() {
683          return new DeqIterator();
684      }
685  
686 +    public Iterator<E> descendingIterator() {
687 +        return new DescendingIterator();
688 +    }
689 +
690      private class DeqIterator implements Iterator<E> {
691 <        /**
692 <         * Index of element to be returned by subsequent call to next.
584 <         */
585 <        private int cursor = head;
691 >        /** Index of element to be returned by subsequent call to next. */
692 >        int cursor;
693  
694 <        /**
695 <         * Tail recorded at construction (also in remove), to stop
589 <         * iterator and also to check for comodification.
590 <         */
591 <        private int fence = tail;
694 >        /** Number of elements yet to be returned. */
695 >        int remaining = size;
696  
697          /**
698           * Index of element returned by most recent call to next.
699           * Reset to -1 if element is deleted by a call to remove.
700           */
701 <        private int lastRet = -1;
701 >        int lastRet = -1;
702 >
703 >        DeqIterator() { cursor = head; }
704  
705 <        public boolean hasNext() {
706 <            return cursor != fence;
705 >        public final boolean hasNext() {
706 >            return remaining > 0;
707          }
708  
709          public E next() {
710 <            E result;
605 <            if (cursor == fence)
710 >            if (remaining <= 0)
711                  throw new NoSuchElementException();
712 <            // This check doesn't catch all possible comodifications,
713 <            // but does catch the ones that corrupt traversal
609 <            if (tail != fence || (result = elements[cursor]) == null)
610 <                throw new ConcurrentModificationException();
712 >            final Object[] elements = ArrayDeque.this.elements;
713 >            E e = checkedElementAt(elements, cursor);
714              lastRet = cursor;
715 <            cursor = (cursor + 1) & (elements.length - 1);
716 <            return result;
715 >            if (++cursor >= elements.length) cursor = 0;
716 >            remaining--;
717 >            return e;
718          }
719  
720 <        public void remove() {
720 >        void postDelete(boolean leftShifted) {
721 >            if (leftShifted)
722 >                if (--cursor < 0) cursor = elements.length - 1;
723 >        }
724 >
725 >        public final void remove() {
726              if (lastRet < 0)
727                  throw new IllegalStateException();
728 <            if (delete(lastRet))
620 <                cursor--;
728 >            postDelete(delete(lastRet));
729              lastRet = -1;
622            fence = tail;
730          }
731 +
732 +        public void forEachRemaining(Consumer<? super E> action) {
733 +            final int k;
734 +            if ((k = remaining) > 0) {
735 +                remaining = 0;
736 +                ArrayDeque.forEachRemaining(action, elements, cursor, k);
737 +                if ((lastRet = cursor + k - 1) >= elements.length)
738 +                    lastRet -= elements.length;
739 +            }
740 +        }
741 +    }
742 +
743 +    private class DescendingIterator extends DeqIterator {
744 +        DescendingIterator() { cursor = tail(); }
745 +
746 +        public final E next() {
747 +            if (remaining <= 0)
748 +                throw new NoSuchElementException();
749 +            final Object[] elements = ArrayDeque.this.elements;
750 +            E e = checkedElementAt(elements, cursor);
751 +            lastRet = cursor;
752 +            if (--cursor < 0) cursor = elements.length - 1;
753 +            remaining--;
754 +            return e;
755 +        }
756 +
757 +        void postDelete(boolean leftShifted) {
758 +            if (!leftShifted)
759 +                if (++cursor >= elements.length) cursor = 0;
760 +        }
761 +
762 +        public final void forEachRemaining(Consumer<? super E> action) {
763 +            final int k;
764 +            if ((k = remaining) > 0) {
765 +                remaining = 0;
766 +                forEachRemainingDescending(action, elements, cursor, k);
767 +                if ((lastRet = cursor - (k - 1)) < 0)
768 +                    lastRet += elements.length;
769 +            }
770 +        }
771 +    }
772 +
773 +    /**
774 +     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
775 +     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
776 +     * deque.
777 +     *
778 +     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
779 +     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
780 +     * {@link Spliterator#NONNULL}.  Overriding implementations should document
781 +     * the reporting of additional characteristic values.
782 +     *
783 +     * @return a {@code Spliterator} over the elements in this deque
784 +     * @since 1.8
785 +     */
786 +    public Spliterator<E> spliterator() {
787 +        return new ArrayDequeSpliterator();
788 +    }
789 +
790 +    final class ArrayDequeSpliterator implements Spliterator<E> {
791 +        private int cursor;
792 +        private int remaining; // -1 until late-binding first use
793 +
794 +        /** Constructs late-binding spliterator over all elements. */
795 +        ArrayDequeSpliterator() {
796 +            this.remaining = -1;
797 +        }
798 +
799 +        /** Constructs spliterator over the given slice. */
800 +        ArrayDequeSpliterator(int cursor, int count) {
801 +            this.cursor = cursor;
802 +            this.remaining = count;
803 +        }
804 +
805 +        /** Ensures late-binding initialization; then returns remaining. */
806 +        private int remaining() {
807 +            if (remaining < 0) {
808 +                cursor = head;
809 +                remaining = size;
810 +            }
811 +            return remaining;
812 +        }
813 +
814 +        public ArrayDequeSpliterator trySplit() {
815 +            final int mid;
816 +            if ((mid = remaining() >> 1) > 0) {
817 +                int oldCursor = cursor;
818 +                cursor = add(cursor, mid, elements.length);
819 +                remaining -= mid;
820 +                return new ArrayDequeSpliterator(oldCursor, mid);
821 +            }
822 +            return null;
823 +        }
824 +
825 +        public void forEachRemaining(Consumer<? super E> action) {
826 +            final int k = remaining(); // side effect!
827 +            remaining = 0;
828 +            ArrayDeque.forEachRemaining(action, elements, cursor, k);
829 +        }
830 +
831 +        public boolean tryAdvance(Consumer<? super E> action) {
832 +            Objects.requireNonNull(action);
833 +            final int k;
834 +            if ((k = remaining()) <= 0)
835 +                return false;
836 +            action.accept(checkedElementAt(elements, cursor));
837 +            if (++cursor >= elements.length) cursor = 0;
838 +            remaining = k - 1;
839 +            return true;
840 +        }
841 +
842 +        public long estimateSize() {
843 +            return remaining();
844 +        }
845 +
846 +        public int characteristics() {
847 +            return Spliterator.NONNULL
848 +                | Spliterator.ORDERED
849 +                | Spliterator.SIZED
850 +                | Spliterator.SUBSIZED;
851 +        }
852 +    }
853 +
854 +    @SuppressWarnings("unchecked")
855 +    public void forEach(Consumer<? super E> action) {
856 +        Objects.requireNonNull(action);
857 +        final Object[] elements = this.elements;
858 +        final int capacity = elements.length;
859 +        int from, end, to, todo;
860 +        todo = (end = (from = head) + size)
861 +            - (to = (capacity - end >= 0) ? end : capacity);
862 +        for (;; from = 0, to = todo, todo = 0) {
863 +            for (int i = from; i < to; i++)
864 +                action.accept((E) elements[i]);
865 +            if (todo == 0) break;
866 +        }
867 +        // checkInvariants();
868      }
869  
870      /**
871 <     * Returns <tt>true</tt> if this deque contains the specified
872 <     * element.  More formally, returns <tt>true</tt> if and only if this
873 <     * deque contains at least one element <tt>e</tt> such that
874 <     * <tt>e.equals(o)</tt>.
871 >     * A variant of forEach that also checks for concurrent
872 >     * modification, for use in iterators.
873 >     */
874 >    static <E> void forEachRemaining(
875 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
876 >        Objects.requireNonNull(action);
877 >        final int capacity = elements.length;
878 >        int end, to, todo;
879 >        todo = (end = from + remaining)
880 >            - (to = (capacity - end >= 0) ? end : capacity);
881 >        for (;; from = 0, to = todo, todo = 0) {
882 >            for (int i = from; i < to; i++) {
883 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
884 >                if (e == null)
885 >                    throw new ConcurrentModificationException();
886 >                action.accept(e);
887 >            }
888 >            if (todo == 0) break;
889 >        }
890 >    }
891 >
892 >    static <E> void forEachRemainingDescending(
893 >        Consumer<? super E> action, Object[] elements, int from, int remaining) {
894 >        Objects.requireNonNull(action);
895 >        final int capacity = elements.length;
896 >        int end, to, todo;
897 >        todo = (to = ((end = from - remaining) >= -1) ? end : -1) - end;
898 >        for (;; from = capacity - 1, to = capacity - 1 - todo, todo = 0) {
899 >            for (int i = from; i > to; i--) {
900 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
901 >                if (e == null)
902 >                    throw new ConcurrentModificationException();
903 >                action.accept(e);
904 >            }
905 >            if (todo == 0) break;
906 >        }
907 >    }
908 >
909 >    /**
910 >     * Replaces each element of this deque with the result of applying the
911 >     * operator to that element, as specified by {@link List#replaceAll}.
912 >     *
913 >     * @param operator the operator to apply to each element
914 >     * @since TBD
915 >     */
916 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
917 >        Objects.requireNonNull(operator);
918 >        final Object[] elements = this.elements;
919 >        final int capacity = elements.length;
920 >        int from, end, to, todo;
921 >        todo = (end = (from = head) + size)
922 >            - (to = (capacity - end >= 0) ? end : capacity);
923 >        for (;; from = 0, to = todo, todo = 0) {
924 >            for (int i = from; i < to; i++)
925 >                elements[i] = operator.apply(elementAt(i));
926 >            if (todo == 0) break;
927 >        }
928 >        // checkInvariants();
929 >    }
930 >
931 >    /**
932 >     * @throws NullPointerException {@inheritDoc}
933 >     */
934 >    public boolean removeIf(Predicate<? super E> filter) {
935 >        Objects.requireNonNull(filter);
936 >        return bulkRemove(filter);
937 >    }
938 >
939 >    /**
940 >     * @throws NullPointerException {@inheritDoc}
941 >     */
942 >    public boolean removeAll(Collection<?> c) {
943 >        Objects.requireNonNull(c);
944 >        return bulkRemove(e -> c.contains(e));
945 >    }
946 >
947 >    /**
948 >     * @throws NullPointerException {@inheritDoc}
949 >     */
950 >    public boolean retainAll(Collection<?> c) {
951 >        Objects.requireNonNull(c);
952 >        return bulkRemove(e -> !c.contains(e));
953 >    }
954 >
955 >    /** Implementation of bulk remove methods. */
956 >    private boolean bulkRemove(Predicate<? super E> filter) {
957 >        // checkInvariants();
958 >        final Object[] elements = this.elements;
959 >        final int capacity = elements.length;
960 >        int i = head, j = i, remaining = size, deleted = 0;
961 >        try {
962 >            for (; remaining > 0; remaining--) {
963 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
964 >                if (filter.test(e))
965 >                    deleted++;
966 >                else {
967 >                    if (j != i)
968 >                        elements[j] = e;
969 >                    if (++j >= capacity) j = 0;
970 >                }
971 >                if (++i >= capacity) i = 0;
972 >            }
973 >            return deleted > 0;
974 >        } catch (Throwable ex) {
975 >            if (deleted > 0)
976 >                for (; remaining > 0; remaining--) {
977 >                    elements[j] = elements[i];
978 >                    if (++i >= capacity) i = 0;
979 >                    if (++j >= capacity) j = 0;
980 >                }
981 >            throw ex;
982 >        } finally {
983 >            size -= deleted;
984 >            clearSlice(elements, j, deleted);
985 >            // checkInvariants();
986 >        }
987 >    }
988 >
989 >    /**
990 >     * Returns {@code true} if this deque contains the specified element.
991 >     * More formally, returns {@code true} if and only if this deque contains
992 >     * at least one element {@code e} such that {@code o.equals(e)}.
993       *
994       * @param o object to be checked for containment in this deque
995 <     * @return <tt>true</tt> if this deque contains the specified element
995 >     * @return {@code true} if this deque contains the specified element
996       */
997      public boolean contains(Object o) {
998 <        if (o == null)
999 <            return false;
1000 <        int mask = elements.length - 1;
1001 <        int i = head;
1002 <        E x;
1003 <        while ( (x = elements[i]) != null) {
1004 <            if (o.equals(x))
1005 <                return true;
1006 <            i = (i + 1) & mask;
998 >        if (o != null) {
999 >            final Object[] elements = this.elements;
1000 >            final int capacity = elements.length;
1001 >            int from, end, to, todo;
1002 >            todo = (end = (from = head) + size)
1003 >                - (to = (capacity - end >= 0) ? end : capacity);
1004 >            for (;; from = 0, to = todo, todo = 0) {
1005 >                for (int i = from; i < to; i++)
1006 >                    if (o.equals(elements[i]))
1007 >                        return true;
1008 >                if (todo == 0) break;
1009 >            }
1010          }
1011          return false;
1012      }
1013  
1014      /**
1015       * Removes a single instance of the specified element from this deque.
1016 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1016 >     * If the deque does not contain the element, it is unchanged.
1017 >     * More formally, removes the first element {@code e} such that
1018 >     * {@code o.equals(e)} (if such an element exists).
1019 >     * Returns {@code true} if this deque contained the specified element
1020 >     * (or equivalently, if this deque changed as a result of the call).
1021 >     *
1022 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1023       *
1024 <     * @param e element to be removed from this deque, if present
1025 <     * @return <tt>true</tt> if this deque contained the specified element
1024 >     * @param o element to be removed from this deque, if present
1025 >     * @return {@code true} if this deque contained the specified element
1026       */
1027 <    public boolean remove(Object e) {
1028 <        return removeFirstOccurrence(e);
1027 >    public boolean remove(Object o) {
1028 >        return removeFirstOccurrence(o);
1029      }
1030  
1031      /**
1032       * Removes all of the elements from this deque.
1033 +     * The deque will be empty after this call returns.
1034       */
1035      public void clear() {
1036 <        int h = head;
1037 <        int t = tail;
1038 <        if (h != t) { // clear all cells
1039 <            head = tail = 0;
1040 <            int i = h;
1041 <            int mask = elements.length - 1;
1042 <            do {
1043 <                elements[i] = null;
1044 <                i = (i + 1) & mask;
1045 <            } while(i != t);
1046 <        }
1036 >        clearSlice(elements, head, size);
1037 >        size = head = 0;
1038 >        // checkInvariants();
1039 >    }
1040 >
1041 >    /**
1042 >     * Nulls out count elements, starting at array index from.
1043 >     */
1044 >    private static void clearSlice(Object[] elements, int from, int count) {
1045 >        final int capacity = elements.length, end = from + count;
1046 >        final int leg = (capacity - end >= 0) ? end : capacity;
1047 >        Arrays.fill(elements, from, leg, null);
1048 >        if (leg != end)
1049 >            Arrays.fill(elements, 0, end - capacity, null);
1050      }
1051  
1052      /**
1053       * Returns an array containing all of the elements in this deque
1054 <     * in the correct order.
1054 >     * in proper sequence (from first to last element).
1055 >     *
1056 >     * <p>The returned array will be "safe" in that no references to it are
1057 >     * maintained by this deque.  (In other words, this method must allocate
1058 >     * a new array).  The caller is thus free to modify the returned array.
1059 >     *
1060 >     * <p>This method acts as bridge between array-based and collection-based
1061 >     * APIs.
1062       *
1063       * @return an array containing all of the elements in this deque
682     *         in the correct order
1064       */
1065      public Object[] toArray() {
1066 <        return copyElements(new Object[size()]);
1066 >        return toArray(Object[].class);
1067 >    }
1068 >
1069 >    private <T> T[] toArray(Class<T[]> klazz) {
1070 >        final Object[] elements = this.elements;
1071 >        final int capacity = elements.length;
1072 >        final int head = this.head, end = head + size;
1073 >        final T[] a;
1074 >        if (end >= 0) {
1075 >            a = Arrays.copyOfRange(elements, head, end, klazz);
1076 >        } else {
1077 >            // integer overflow!
1078 >            a = Arrays.copyOfRange(elements, 0, size, klazz);
1079 >            System.arraycopy(elements, head, a, 0, capacity - head);
1080 >        }
1081 >        if (end - capacity > 0)
1082 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1083 >        return a;
1084      }
1085  
1086      /**
1087 <     * Returns an array containing all of the elements in this deque in the
1088 <     * correct order; the runtime type of the returned array is that of the
1089 <     * specified array.  If the deque fits in the specified array, it is
1090 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1091 <     * type of the specified array and the size of this deque.
1087 >     * Returns an array containing all of the elements in this deque in
1088 >     * proper sequence (from first to last element); the runtime type of the
1089 >     * returned array is that of the specified array.  If the deque fits in
1090 >     * the specified array, it is returned therein.  Otherwise, a new array
1091 >     * is allocated with the runtime type of the specified array and the
1092 >     * size of this deque.
1093 >     *
1094 >     * <p>If this deque fits in the specified array with room to spare
1095 >     * (i.e., the array has more elements than this deque), the element in
1096 >     * the array immediately following the end of the deque is set to
1097 >     * {@code null}.
1098 >     *
1099 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1100 >     * array-based and collection-based APIs.  Further, this method allows
1101 >     * precise control over the runtime type of the output array, and may,
1102 >     * under certain circumstances, be used to save allocation costs.
1103 >     *
1104 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1105 >     * The following code can be used to dump the deque into a newly
1106 >     * allocated array of {@code String}:
1107 >     *
1108 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1109       *
1110 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1111 <     * the array has more elements than the deque), the element in the array
697 <     * immediately following the end of the collection is set to <tt>null</tt>.
1110 >     * Note that {@code toArray(new Object[0])} is identical in function to
1111 >     * {@code toArray()}.
1112       *
1113       * @param a the array into which the elements of the deque are to
1114 <     *          be stored, if it is big enough; otherwise, a new array of the
1115 <     *          same runtime type is allocated for this purpose
1116 <     * @return an array containing the elements of the deque
1117 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1118 <     *         of the runtime type of every element in this deque
1114 >     *          be stored, if it is big enough; otherwise, a new array of the
1115 >     *          same runtime type is allocated for this purpose
1116 >     * @return an array containing all of the elements in this deque
1117 >     * @throws ArrayStoreException if the runtime type of the specified array
1118 >     *         is not a supertype of the runtime type of every element in
1119 >     *         this deque
1120 >     * @throws NullPointerException if the specified array is null
1121       */
1122 +    @SuppressWarnings("unchecked")
1123      public <T> T[] toArray(T[] a) {
1124 <        int size = size();
1125 <        if (a.length < size)
1126 <            a = (T[])java.lang.reflect.Array.newInstance(
1127 <                    a.getClass().getComponentType(), size);
1128 <        copyElements(a);
1129 <        if (a.length > size)
1124 >        final int size = this.size;
1125 >        if (size > a.length)
1126 >            return toArray((Class<T[]>) a.getClass());
1127 >        final Object[] elements = this.elements;
1128 >        final int capacity = elements.length;
1129 >        final int head = this.head, end = head + size;
1130 >        final int front = (capacity - end >= 0) ? size : capacity - head;
1131 >        System.arraycopy(elements, head, a, 0, front);
1132 >        if (front != size)
1133 >            System.arraycopy(elements, 0, a, capacity - head, end - capacity);
1134 >        if (size < a.length)
1135              a[size] = null;
1136          return a;
1137      }
# Line 723 | Line 1145 | public class ArrayDeque<E> extends Abstr
1145       */
1146      public ArrayDeque<E> clone() {
1147          try {
1148 +            @SuppressWarnings("unchecked")
1149              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1150 <            // These two lines are currently faster than cloning the array:
728 <            result.elements = (E[]) new Object[elements.length];
729 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1150 >            result.elements = Arrays.copyOf(elements, elements.length);
1151              return result;
731
1152          } catch (CloneNotSupportedException e) {
1153              throw new AssertionError();
1154          }
1155      }
1156  
737    /**
738     * Appease the serialization gods.
739     */
1157      private static final long serialVersionUID = 2340985798034038923L;
1158  
1159      /**
1160 <     * Serialize this deque.
1160 >     * Saves this deque to a stream (that is, serializes it).
1161       *
1162 <     * @serialData The current size (<tt>int</tt>) of the deque,
1162 >     * @param s the stream
1163 >     * @throws java.io.IOException if an I/O error occurs
1164 >     * @serialData The current size ({@code int}) of the deque,
1165       * followed by all of its elements (each an object reference) in
1166       * first-to-last order.
1167       */
1168 <    private void writeObject(ObjectOutputStream s) throws IOException {
1168 >    private void writeObject(java.io.ObjectOutputStream s)
1169 >            throws java.io.IOException {
1170          s.defaultWriteObject();
1171  
1172          // Write out size
753        int size = size();
1173          s.writeInt(size);
1174  
1175          // Write out elements in order.
1176 <        int i = head;
1177 <        int mask = elements.length - 1;
1178 <        for (int j = 0; j < size; j++) {
1179 <            s.writeObject(elements[i]);
1180 <            i = (i + 1) & mask;
1176 >        final Object[] elements = this.elements;
1177 >        final int capacity = elements.length;
1178 >        int from, end, to, todo;
1179 >        todo = (end = (from = head) + size)
1180 >            - (to = (capacity - end >= 0) ? end : capacity);
1181 >        for (;; from = 0, to = todo, todo = 0) {
1182 >            for (int i = from; i < to; i++)
1183 >                s.writeObject(elements[i]);
1184 >            if (todo == 0) break;
1185          }
1186      }
1187  
1188      /**
1189 <     * Deserialize this deque.
1189 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1190 >     * @param s the stream
1191 >     * @throws ClassNotFoundException if the class of a serialized object
1192 >     *         could not be found
1193 >     * @throws java.io.IOException if an I/O error occurs
1194       */
1195 <    private void readObject(ObjectInputStream s)
1196 <            throws IOException, ClassNotFoundException {
1195 >    private void readObject(java.io.ObjectInputStream s)
1196 >            throws java.io.IOException, ClassNotFoundException {
1197          s.defaultReadObject();
1198  
1199          // Read in size and allocate array
1200 <        int size = s.readInt();
774 <        allocateElements(size);
775 <        head = 0;
776 <        tail = size;
1200 >        elements = new Object[size = s.readInt()];
1201  
1202          // Read in all elements in the proper order.
1203          for (int i = 0; i < size; i++)
1204 <            elements[i] = (E)s.readObject();
1204 >            elements[i] = s.readObject();
1205 >    }
1206  
1207 +    /** debugging */
1208 +    void checkInvariants() {
1209 +        try {
1210 +            int capacity = elements.length;
1211 +            // assert size >= 0 && size <= capacity;
1212 +            // assert head >= 0;
1213 +            // assert capacity == 0 || head < capacity;
1214 +            // assert size == 0 || elements[head] != null;
1215 +            // assert size == 0 || elements[tail()] != null;
1216 +            // assert size == capacity || elements[dec(head, capacity)] == null;
1217 +            // assert size == capacity || elements[inc(tail(), capacity)] == null;
1218 +        } catch (Throwable t) {
1219 +            System.err.printf("head=%d size=%d capacity=%d%n",
1220 +                              head, size, elements.length);
1221 +            System.err.printf("elements=%s%n",
1222 +                              Arrays.toString(elements));
1223 +            throw t;
1224 +        }
1225      }
1226 +
1227   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines