ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.65 by jsr166, Sat Feb 28 20:35:47 2015 UTC vs.
Revision 1.85 by jsr166, Sun Oct 23 19:30:54 2016 UTC

# Line 7 | Line 7 | package java.util;
7  
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 + import java.util.function.Predicate;
11 + import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 52 | Line 54 | import java.util.function.Consumer;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
55 * @since   1.6
57   * @param <E> the type of elements held in this deque
58 + * @since   1.6
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
65 <     * full, except transiently within an addX method where it is
66 <     * resized (see doubleCapacity) immediately upon becoming full,
67 <     * thus avoiding head and tail wrapping around to equal each
68 <     * other.  We also guarantee that all array cells not holding
69 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    transient Object[] elements; // non-private to simplify nested class access
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75      transient int head;
76  
77 +    /** Number of elements in this collection. */
78 +    transient int size;
79 +
80      /**
81 <     * The index at which the next element would be added to the tail
82 <     * of the deque (via addLast(E), add(E), or push(E)).
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85       */
86 <    transient int tail;
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87  
88      /**
89 <     * The minimum capacity that we'll use for a newly created deque.
90 <     * Must be a power of 2.
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92       */
93 <    private static final int MIN_INITIAL_CAPACITY = 8;
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <    // ******  Array allocation and resizing utilities ******
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        int oldCapacity = elements.length;
119 >        int minCapacity;
120 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
121 >            if (minCapacity < 0)
122 >                throw new IllegalStateException("Sorry, deque too big");
123 >            return Integer.MAX_VALUE;
124 >        }
125 >        if (needed > jump)
126 >            return minCapacity;
127 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
128 >            ? oldCapacity + jump
129 >            : MAX_ARRAY_SIZE;
130 >    }
131  
132      /**
133 <     * Allocates empty array to hold the given number of elements.
133 >     * Increases the internal storage of this collection, if necessary,
134 >     * to ensure that it can hold at least the given number of elements.
135       *
136 <     * @param numElements  the number of elements to hold
136 >     * @param minCapacity the desired minimum capacity
137 >     * @since TBD
138       */
139 <    private void allocateElements(int numElements) {
140 <        int initialCapacity = MIN_INITIAL_CAPACITY;
141 <        // Find the best power of two to hold elements.
142 <        // Tests "<=" because arrays aren't kept full.
103 <        if (numElements >= initialCapacity) {
104 <            initialCapacity = numElements;
105 <            initialCapacity |= (initialCapacity >>>  1);
106 <            initialCapacity |= (initialCapacity >>>  2);
107 <            initialCapacity |= (initialCapacity >>>  4);
108 <            initialCapacity |= (initialCapacity >>>  8);
109 <            initialCapacity |= (initialCapacity >>> 16);
110 <            initialCapacity++;
111 <
112 <            if (initialCapacity < 0)   // Too many elements, must back off
113 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
114 <        }
115 <        elements = new Object[initialCapacity];
139 >    /* public */ void ensureCapacity(int minCapacity) {
140 >        if (minCapacity > elements.length)
141 >            grow(minCapacity - elements.length);
142 >        // checkInvariants();
143      }
144  
145      /**
146 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
147 <     * when head and tail have wrapped around to become equal.
146 >     * Minimizes the internal storage of this collection.
147 >     *
148 >     * @since TBD
149       */
150 <    private void doubleCapacity() {
151 <        assert head == tail;
152 <        int p = head;
153 <        int n = elements.length;
154 <        int r = n - p; // number of elements to the right of p
155 <        int newCapacity = n << 1;
128 <        if (newCapacity < 0)
129 <            throw new IllegalStateException("Sorry, deque too big");
130 <        Object[] a = new Object[newCapacity];
131 <        System.arraycopy(elements, p, a, 0, r);
132 <        System.arraycopy(elements, 0, a, r, p);
133 <        elements = a;
134 <        head = 0;
135 <        tail = n;
150 >    /* public */ void trimToSize() {
151 >        if (size < elements.length) {
152 >            elements = toArray();
153 >            head = 0;
154 >        }
155 >        // checkInvariants();
156      }
157  
158      /**
# Line 147 | Line 167 | public class ArrayDeque<E> extends Abstr
167       * Constructs an empty array deque with an initial capacity
168       * sufficient to hold the specified number of elements.
169       *
170 <     * @param numElements  lower bound on initial capacity of the deque
170 >     * @param numElements lower bound on initial capacity of the deque
171       */
172      public ArrayDeque(int numElements) {
173 <        allocateElements(numElements);
173 >        elements = new Object[numElements];
174      }
175  
176      /**
# Line 164 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * @throws NullPointerException if the specified collection is null
185       */
186      public ArrayDeque(Collection<? extends E> c) {
187 <        allocateElements(c.size());
188 <        addAll(c);
187 >        Object[] elements = c.toArray();
188 >        // defend against c.toArray (incorrectly) not returning Object[]
189 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 >        size = elements.length;
191 >        if (elements.getClass() != Object[].class)
192 >            elements = Arrays.copyOf(elements, size, Object[].class);
193 >        for (Object obj : elements)
194 >            Objects.requireNonNull(obj);
195 >        this.elements = elements;
196 >    }
197 >
198 >    /**
199 >     * Increments i, mod modulus.
200 >     * Precondition and postcondition: 0 <= i < modulus.
201 >     */
202 >    static final int inc(int i, int modulus) {
203 >        if (++i == modulus) i = 0;
204 >        return i;
205 >    }
206 >
207 >    /**
208 >     * Decrements i, mod modulus.
209 >     * Precondition and postcondition: 0 <= i < modulus.
210 >     */
211 >    static final int dec(int i, int modulus) {
212 >        if (--i < 0) i += modulus;
213 >        return i;
214 >    }
215 >
216 >    /**
217 >     * Adds i and j, mod modulus.
218 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
219 >     */
220 >    static final int add(int i, int j, int modulus) {
221 >        if ((i += j) - modulus >= 0) i -= modulus;
222 >        return i;
223 >    }
224 >
225 >    /**
226 >     * Returns the array index of the last element.
227 >     * May return invalid index -1 if there are no elements.
228 >     */
229 >    final int tail() {
230 >        return add(head, size - 1, elements.length);
231 >    }
232 >
233 >    /**
234 >     * Returns element at array index i.
235 >     */
236 >    @SuppressWarnings("unchecked")
237 >    final E elementAt(int i) {
238 >        return (E) elements[i];
239 >    }
240 >
241 >    /**
242 >     * A version of elementAt that checks for null elements.
243 >     * This check doesn't catch all possible comodifications,
244 >     * but does catch ones that corrupt traversal.
245 >     */
246 >    E checkedElementAt(Object[] elements, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
248 >        if (e == null)
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253      // The main insertion and extraction methods are addFirst,
# Line 179 | Line 261 | public class ArrayDeque<E> extends Abstr
261       * @throws NullPointerException if the specified element is null
262       */
263      public void addFirst(E e) {
264 <        if (e == null)
265 <            throw new NullPointerException();
266 <        elements[head = (head - 1) & (elements.length - 1)] = e;
267 <        if (head == tail)
268 <            doubleCapacity();
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        final Object[] elements;
267 >        final int capacity, s;
268 >        if ((s = size) == (capacity = (elements = this.elements).length))
269 >            addFirstSlowPath(e);
270 >        else
271 >            elements[head = dec(head, capacity)] = e;
272 >        size = s + 1;
273 >        // checkInvariants();
274 >    }
275 >
276 >    private void addFirstSlowPath(E e) {
277 >        grow(1);
278 >        final Object[] elements = this.elements;
279 >        elements[head = dec(head, elements.length)] = e;
280      }
281  
282      /**
# Line 195 | Line 288 | public class ArrayDeque<E> extends Abstr
288       * @throws NullPointerException if the specified element is null
289       */
290      public void addLast(E e) {
291 <        if (e == null)
292 <            throw new NullPointerException();
293 <        elements[tail] = e;
294 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
295 <            doubleCapacity();
291 >        // checkInvariants();
292 >        Objects.requireNonNull(e);
293 >        final Object[] elements;
294 >        final int capacity, s;
295 >        if ((s = size) == (capacity = (elements = this.elements).length))
296 >            addLastSlowPath(e);
297 >        else
298 >            elements[add(head, s, capacity)] = e;
299 >        size = s + 1;
300 >        // checkInvariants();
301 >    }
302 >
303 >    private void addLastSlowPath(E e) {
304 >        grow(1);
305 >        final Object[] elements = this.elements;
306 >        elements[add(head, size, elements.length)] = e;
307 >    }
308 >
309 >    /**
310 >     * Adds all of the elements in the specified collection at the end
311 >     * of this deque, as if by calling {@link #addLast} on each one,
312 >     * in the order that they are returned by the collection's
313 >     * iterator.
314 >     *
315 >     * @param c the elements to be inserted into this deque
316 >     * @return {@code true} if this deque changed as a result of the call
317 >     * @throws NullPointerException if the specified collection or any
318 >     *         of its elements are null
319 >     */
320 >    @Override
321 >    public boolean addAll(Collection<? extends E> c) {
322 >        // checkInvariants();
323 >        Object[] a, elements;
324 >        int newcomers, capacity, s = size;
325 >        if ((newcomers = (a = c.toArray()).length) == 0)
326 >            return false;
327 >        while ((capacity = (elements = this.elements).length) - s < newcomers)
328 >            grow(newcomers - (capacity - s));
329 >        int i = add(head, s, capacity);
330 >        for (Object x : a) {
331 >            Objects.requireNonNull(x);
332 >            elements[i] = x;
333 >            i = inc(i, capacity);
334 >            size++;
335 >        }
336 >        return true;
337      }
338  
339      /**
# Line 230 | Line 364 | public class ArrayDeque<E> extends Abstr
364       * @throws NoSuchElementException {@inheritDoc}
365       */
366      public E removeFirst() {
367 <        E x = pollFirst();
368 <        if (x == null)
367 >        // checkInvariants();
368 >        E e = pollFirst();
369 >        if (e == null)
370              throw new NoSuchElementException();
371 <        return x;
371 >        return e;
372      }
373  
374      /**
375       * @throws NoSuchElementException {@inheritDoc}
376       */
377      public E removeLast() {
378 <        E x = pollLast();
379 <        if (x == null)
378 >        // checkInvariants();
379 >        E e = pollLast();
380 >        if (e == null)
381              throw new NoSuchElementException();
382 <        return x;
382 >        return e;
383      }
384  
385      public E pollFirst() {
386 <        int h = head;
387 <        @SuppressWarnings("unchecked")
388 <        E result = (E) elements[h];
389 <        // Element is null if deque empty
390 <        if (result != null) {
391 <            elements[h] = null; // Must null out slot
392 <            head = (h + 1) & (elements.length - 1);
393 <        }
394 <        return result;
386 >        // checkInvariants();
387 >        final int s, h;
388 >        if ((s = size) == 0)
389 >            return null;
390 >        final Object[] elements = this.elements;
391 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
392 >        elements[h] = null;
393 >        head = inc(h, elements.length);
394 >        size = s - 1;
395 >        return e;
396      }
397  
398      public E pollLast() {
399 <        int t = (tail - 1) & (elements.length - 1);
399 >        // checkInvariants();
400 >        final int s, tail;
401 >        if ((s = size) == 0)
402 >            return null;
403 >        final Object[] elements = this.elements;
404          @SuppressWarnings("unchecked")
405 <        E result = (E) elements[t];
406 <        if (result != null) {
407 <            elements[t] = null;
408 <            tail = t;
268 <        }
269 <        return result;
405 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
406 >        elements[tail] = null;
407 >        size = s - 1;
408 >        return e;
409      }
410  
411      /**
412       * @throws NoSuchElementException {@inheritDoc}
413       */
414      public E getFirst() {
415 <        @SuppressWarnings("unchecked")
416 <        E result = (E) elements[head];
417 <        if (result == null)
279 <            throw new NoSuchElementException();
280 <        return result;
415 >        // checkInvariants();
416 >        if (size == 0) throw new NoSuchElementException();
417 >        return elementAt(head);
418      }
419  
420      /**
421       * @throws NoSuchElementException {@inheritDoc}
422       */
423      public E getLast() {
424 <        @SuppressWarnings("unchecked")
425 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
426 <        if (result == null)
290 <            throw new NoSuchElementException();
291 <        return result;
424 >        // checkInvariants();
425 >        if (size == 0) throw new NoSuchElementException();
426 >        return elementAt(tail());
427      }
428  
294    @SuppressWarnings("unchecked")
429      public E peekFirst() {
430 <        // elements[head] is null if deque empty
431 <        return (E) elements[head];
430 >        // checkInvariants();
431 >        return (size == 0) ? null : elementAt(head);
432      }
433  
300    @SuppressWarnings("unchecked")
434      public E peekLast() {
435 <        return (E) elements[(tail - 1) & (elements.length - 1)];
435 >        // checkInvariants();
436 >        return (size == 0) ? null : elementAt(tail());
437      }
438  
439      /**
# Line 315 | Line 449 | public class ArrayDeque<E> extends Abstr
449       * @return {@code true} if the deque contained the specified element
450       */
451      public boolean removeFirstOccurrence(Object o) {
452 +        // checkInvariants();
453          if (o != null) {
454 <            int mask = elements.length - 1;
455 <            int i = head;
456 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
457 <                if (o.equals(x)) {
454 >            final Object[] elements = this.elements;
455 >            final int capacity = elements.length;
456 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
457 >                if (o.equals(elements[i])) {
458                      delete(i);
459                      return true;
460                  }
# Line 342 | Line 477 | public class ArrayDeque<E> extends Abstr
477       */
478      public boolean removeLastOccurrence(Object o) {
479          if (o != null) {
480 <            int mask = elements.length - 1;
481 <            int i = (tail - 1) & mask;
482 <            for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
483 <                if (o.equals(x)) {
480 >            final Object[] elements = this.elements;
481 >            final int capacity = elements.length;
482 >            for (int k = size, i = add(head, k - 1, capacity);
483 >                 --k >= 0; i = dec(i, capacity)) {
484 >                if (o.equals(elements[i])) {
485                      delete(i);
486                      return true;
487                  }
# Line 468 | Line 604 | public class ArrayDeque<E> extends Abstr
604          return removeFirst();
605      }
606  
471    private void checkInvariants() {
472        assert elements[tail] == null;
473        assert head == tail ? elements[head] == null :
474            (elements[head] != null &&
475             elements[(tail - 1) & (elements.length - 1)] != null);
476        assert elements[(head - 1) & (elements.length - 1)] == null;
477    }
478
607      /**
608 <     * Removes the element at the specified position in the elements array,
609 <     * adjusting head and tail as necessary.  This can result in motion of
610 <     * elements backwards or forwards in the array.
608 >     * Removes the element at the specified position in the elements array.
609 >     * This can result in forward or backwards motion of array elements.
610 >     * We optimize for least element motion.
611       *
612       * <p>This method is called delete rather than remove to emphasize
613       * that its semantics differ from those of {@link List#remove(int)}.
614       *
615       * @return true if elements moved backwards
616       */
617 <    private boolean delete(int i) {
618 <        checkInvariants();
617 >    boolean delete(int i) {
618 >        // checkInvariants();
619          final Object[] elements = this.elements;
620 <        final int mask = elements.length - 1;
620 >        final int capacity = elements.length;
621          final int h = head;
622 <        final int t = tail;
623 <        final int front = (i - h) & mask;
624 <        final int back  = (t - i) & mask;
497 <
498 <        // Invariant: head <= i < tail mod circularity
499 <        if (front >= ((t - h) & mask))
500 <            throw new ConcurrentModificationException();
501 <
502 <        // Optimize for least element motion
622 >        int front;              // number of elements before to-be-deleted elt
623 >        if ((front = i - h) < 0) front += capacity;
624 >        final int back = size - front - 1; // number of elements after
625          if (front < back) {
626 +            // move front elements forwards
627              if (h <= i) {
628                  System.arraycopy(elements, h, elements, h + 1, front);
629              } else { // Wrap around
630                  System.arraycopy(elements, 0, elements, 1, i);
631 <                elements[0] = elements[mask];
632 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
631 >                elements[0] = elements[capacity - 1];
632 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
633              }
634              elements[h] = null;
635 <            head = (h + 1) & mask;
635 >            head = inc(h, capacity);
636 >            size--;
637 >            // checkInvariants();
638              return false;
639          } else {
640 <            if (i < t) { // Copy the null tail as well
640 >            // move back elements backwards
641 >            int tail = tail();
642 >            if (i <= tail) {
643                  System.arraycopy(elements, i + 1, elements, i, back);
517                tail = t - 1;
644              } else { // Wrap around
645 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
646 <                elements[mask] = elements[0];
647 <                System.arraycopy(elements, 1, elements, 0, t);
648 <                tail = (t - 1) & mask;
645 >                int firstLeg = capacity - (i + 1);
646 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
647 >                elements[capacity - 1] = elements[0];
648 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
649              }
650 +            elements[tail] = null;
651 +            size--;
652 +            // checkInvariants();
653              return true;
654          }
655      }
# Line 533 | Line 662 | public class ArrayDeque<E> extends Abstr
662       * @return the number of elements in this deque
663       */
664      public int size() {
665 <        return (tail - head) & (elements.length - 1);
665 >        return size;
666      }
667  
668      /**
# Line 542 | Line 671 | public class ArrayDeque<E> extends Abstr
671       * @return {@code true} if this deque contains no elements
672       */
673      public boolean isEmpty() {
674 <        return head == tail;
674 >        return size == 0;
675      }
676  
677      /**
# Line 562 | Line 691 | public class ArrayDeque<E> extends Abstr
691      }
692  
693      private class DeqIterator implements Iterator<E> {
694 <        /**
695 <         * Index of element to be returned by subsequent call to next.
567 <         */
568 <        private int cursor = head;
694 >        /** Index of element to be returned by subsequent call to next. */
695 >        int cursor;
696  
697 <        /**
698 <         * Tail recorded at construction (also in remove), to stop
572 <         * iterator and also to check for comodification.
573 <         */
574 <        private int fence = tail;
697 >        /** Number of elements yet to be returned. */
698 >        int remaining = size;
699  
700          /**
701           * Index of element returned by most recent call to next.
702           * Reset to -1 if element is deleted by a call to remove.
703           */
704 <        private int lastRet = -1;
704 >        int lastRet = -1;
705 >
706 >        DeqIterator() { cursor = head; }
707  
708 <        public boolean hasNext() {
709 <            return cursor != fence;
708 >        public final boolean hasNext() {
709 >            return remaining > 0;
710          }
711  
712          public E next() {
713 <            if (cursor == fence)
713 >            if (remaining == 0)
714                  throw new NoSuchElementException();
715 <            @SuppressWarnings("unchecked")
590 <            E result = (E) elements[cursor];
591 <            // This check doesn't catch all possible comodifications,
592 <            // but does catch the ones that corrupt traversal
593 <            if (tail != fence || result == null)
594 <                throw new ConcurrentModificationException();
715 >            E e = checkedElementAt(elements, cursor);
716              lastRet = cursor;
717 <            cursor = (cursor + 1) & (elements.length - 1);
718 <            return result;
717 >            cursor = inc(cursor, elements.length);
718 >            remaining--;
719 >            return e;
720 >        }
721 >
722 >        void postDelete(boolean leftShifted) {
723 >            if (leftShifted)
724 >                cursor = dec(cursor, elements.length); // undo inc in next
725          }
726  
727 <        public void remove() {
727 >        public final void remove() {
728              if (lastRet < 0)
729                  throw new IllegalStateException();
730 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
604 <                cursor = (cursor - 1) & (elements.length - 1);
605 <                fence = tail;
606 <            }
730 >            postDelete(delete(lastRet));
731              lastRet = -1;
732          }
733 +
734 +        public void forEachRemaining(Consumer<? super E> action) {
735 +            Objects.requireNonNull(action);
736 +            final Object[] elements = ArrayDeque.this.elements;
737 +            final int capacity = elements.length;
738 +            int k = remaining;
739 +            remaining = 0;
740 +            for (int i = cursor; --k >= 0; i = inc(i, capacity))
741 +                action.accept(checkedElementAt(elements, i));
742 +        }
743 +    }
744 +
745 +    private class DescendingIterator extends DeqIterator {
746 +        DescendingIterator() { cursor = tail(); }
747 +
748 +        public final E next() {
749 +            if (remaining == 0)
750 +                throw new NoSuchElementException();
751 +            E e = checkedElementAt(elements, cursor);
752 +            lastRet = cursor;
753 +            cursor = dec(cursor, elements.length);
754 +            remaining--;
755 +            return e;
756 +        }
757 +
758 +        void postDelete(boolean leftShifted) {
759 +            if (!leftShifted)
760 +                cursor = inc(cursor, elements.length); // undo dec in next
761 +        }
762 +
763 +        public final void forEachRemaining(Consumer<? super E> action) {
764 +            Objects.requireNonNull(action);
765 +            final Object[] elements = ArrayDeque.this.elements;
766 +            final int capacity = elements.length;
767 +            int k = remaining;
768 +            remaining = 0;
769 +            for (int i = cursor; --k >= 0; i = dec(i, capacity))
770 +                action.accept(checkedElementAt(elements, i));
771 +        }
772      }
773  
774      /**
775 <     * This class is nearly a mirror-image of DeqIterator, using tail
776 <     * instead of head for initial cursor, and head instead of tail
777 <     * for fence.
778 <     */
779 <    private class DescendingIterator implements Iterator<E> {
780 <        private int cursor = tail;
781 <        private int fence = head;
782 <        private int lastRet = -1;
775 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
776 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
777 >     * deque.
778 >     *
779 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
780 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
781 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
782 >     * the reporting of additional characteristic values.
783 >     *
784 >     * @return a {@code Spliterator} over the elements in this deque
785 >     * @since 1.8
786 >     */
787 >    public Spliterator<E> spliterator() {
788 >        return new ArrayDequeSpliterator();
789 >    }
790 >
791 >    final class ArrayDequeSpliterator implements Spliterator<E> {
792 >        private int cursor;
793 >        private int remaining; // -1 until late-binding first use
794  
795 <        public boolean hasNext() {
796 <            return cursor != fence;
795 >        /** Constructs late-binding spliterator over all elements. */
796 >        ArrayDequeSpliterator() {
797 >            this.remaining = -1;
798          }
799  
800 <        public E next() {
801 <            if (cursor == fence)
802 <                throw new NoSuchElementException();
803 <            cursor = (cursor - 1) & (elements.length - 1);
629 <            @SuppressWarnings("unchecked")
630 <            E result = (E) elements[cursor];
631 <            if (head != fence || result == null)
632 <                throw new ConcurrentModificationException();
633 <            lastRet = cursor;
634 <            return result;
800 >        /** Constructs spliterator over the given slice. */
801 >        ArrayDequeSpliterator(int cursor, int count) {
802 >            this.cursor = cursor;
803 >            this.remaining = count;
804          }
805  
806 <        public void remove() {
807 <            if (lastRet < 0)
808 <                throw new IllegalStateException();
809 <            if (!delete(lastRet)) {
810 <                cursor = (cursor + 1) & (elements.length - 1);
642 <                fence = head;
806 >        /** Ensures late-binding initialization; then returns remaining. */
807 >        private int remaining() {
808 >            if (remaining < 0) {
809 >                cursor = head;
810 >                remaining = size;
811              }
812 <            lastRet = -1;
812 >            return remaining;
813 >        }
814 >
815 >        public ArrayDequeSpliterator trySplit() {
816 >            final int mid;
817 >            if ((mid = remaining() >> 1) > 0) {
818 >                int oldCursor = cursor;
819 >                cursor = add(cursor, mid, elements.length);
820 >                remaining -= mid;
821 >                return new ArrayDequeSpliterator(oldCursor, mid);
822 >            }
823 >            return null;
824 >        }
825 >
826 >        public void forEachRemaining(Consumer<? super E> action) {
827 >            Objects.requireNonNull(action);
828 >            final Object[] elements = ArrayDeque.this.elements;
829 >            final int capacity = elements.length;
830 >            int k = remaining();
831 >            remaining = 0;
832 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
833 >                action.accept(checkedElementAt(elements, i));
834 >        }
835 >
836 >        public boolean tryAdvance(Consumer<? super E> action) {
837 >            Objects.requireNonNull(action);
838 >            if (remaining() == 0)
839 >                return false;
840 >            action.accept(checkedElementAt(elements, cursor));
841 >            cursor = inc(cursor, elements.length);
842 >            remaining--;
843 >            return true;
844 >        }
845 >
846 >        public long estimateSize() {
847 >            return remaining();
848 >        }
849 >
850 >        public int characteristics() {
851 >            return Spliterator.NONNULL
852 >                | Spliterator.ORDERED
853 >                | Spliterator.SIZED
854 >                | Spliterator.SUBSIZED;
855 >        }
856 >    }
857 >
858 >    @Override
859 >    public void forEach(Consumer<? super E> action) {
860 >        // checkInvariants();
861 >        Objects.requireNonNull(action);
862 >        final Object[] elements = this.elements;
863 >        final int capacity = elements.length;
864 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
865 >            action.accept(elementAt(i));
866 >        // checkInvariants();
867 >    }
868 >
869 >    /**
870 >     * Replaces each element of this deque with the result of applying the
871 >     * operator to that element, as specified by {@link List#replaceAll}.
872 >     *
873 >     * @param operator the operator to apply to each element
874 >     * @since TBD
875 >     */
876 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
877 >        Objects.requireNonNull(operator);
878 >        final Object[] elements = this.elements;
879 >        final int capacity = elements.length;
880 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
881 >            elements[i] = operator.apply(elementAt(i));
882 >        // checkInvariants();
883 >    }
884 >
885 >    /**
886 >     * @throws NullPointerException {@inheritDoc}
887 >     */
888 >    @Override
889 >    public boolean removeIf(Predicate<? super E> filter) {
890 >        Objects.requireNonNull(filter);
891 >        return bulkRemove(filter);
892 >    }
893 >
894 >    /**
895 >     * @throws NullPointerException {@inheritDoc}
896 >     */
897 >    @Override
898 >    public boolean removeAll(Collection<?> c) {
899 >        Objects.requireNonNull(c);
900 >        return bulkRemove(e -> c.contains(e));
901 >    }
902 >
903 >    /**
904 >     * @throws NullPointerException {@inheritDoc}
905 >     */
906 >    @Override
907 >    public boolean retainAll(Collection<?> c) {
908 >        Objects.requireNonNull(c);
909 >        return bulkRemove(e -> !c.contains(e));
910 >    }
911 >
912 >    /** Implementation of bulk remove methods. */
913 >    private boolean bulkRemove(Predicate<? super E> filter) {
914 >        // checkInvariants();
915 >        final Object[] elements = this.elements;
916 >        final int capacity = elements.length;
917 >        int i = head, j = i, remaining = size, deleted = 0;
918 >        try {
919 >            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
920 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
921 >                if (filter.test(e))
922 >                    deleted++;
923 >                else {
924 >                    if (j != i)
925 >                        elements[j] = e;
926 >                    j = inc(j, capacity);
927 >                }
928 >            }
929 >            return deleted > 0;
930 >        } catch (Throwable ex) {
931 >            if (deleted > 0)
932 >                for (; remaining > 0;
933 >                     remaining--, i = inc(i, capacity), j = inc(j, capacity))
934 >                    elements[j] = elements[i];
935 >            throw ex;
936 >        } finally {
937 >            size -= deleted;
938 >            for (; --deleted >= 0; j = inc(j, capacity))
939 >                elements[j] = null;
940 >            // checkInvariants();
941          }
942      }
943  
# Line 655 | Line 951 | public class ArrayDeque<E> extends Abstr
951       */
952      public boolean contains(Object o) {
953          if (o != null) {
954 <            int mask = elements.length - 1;
955 <            int i = head;
956 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
957 <                if (o.equals(x))
954 >            final Object[] elements = this.elements;
955 >            final int capacity = elements.length;
956 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
957 >                if (o.equals(elements[i]))
958                      return true;
663            }
959          }
960          return false;
961      }
# Line 687 | Line 982 | public class ArrayDeque<E> extends Abstr
982       * The deque will be empty after this call returns.
983       */
984      public void clear() {
985 <        int h = head;
986 <        int t = tail;
987 <        if (h != t) { // clear all cells
988 <            head = tail = 0;
989 <            int i = h;
990 <            int mask = elements.length - 1;
991 <            do {
992 <                elements[i] = null;
993 <                i = (i + 1) & mask;
699 <            } while (i != t);
985 >        final Object[] elements = this.elements;
986 >        final int capacity = elements.length;
987 >        final int h = this.head;
988 >        final int s = size;
989 >        if (capacity - h >= s)
990 >            Arrays.fill(elements, h, h + s, null);
991 >        else {
992 >            Arrays.fill(elements, h, capacity, null);
993 >            Arrays.fill(elements, 0, s - capacity + h, null);
994          }
995 +        size = head = 0;
996 +        // checkInvariants();
997      }
998  
999      /**
# Line 715 | Line 1011 | public class ArrayDeque<E> extends Abstr
1011       */
1012      public Object[] toArray() {
1013          final int head = this.head;
1014 <        final int tail = this.tail;
1015 <        boolean wrap = (tail < head);
1016 <        int end = wrap ? tail + elements.length : tail;
1017 <        Object[] a = Arrays.copyOfRange(elements, head, end);
722 <        if (wrap)
723 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1014 >        final int firstLeg;
1015 >        Object[] a = Arrays.copyOfRange(elements, head, head + size);
1016 >        if ((firstLeg = elements.length - head) < size)
1017 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1018          return a;
1019      }
1020  
# Line 762 | Line 1056 | public class ArrayDeque<E> extends Abstr
1056       */
1057      @SuppressWarnings("unchecked")
1058      public <T> T[] toArray(T[] a) {
1059 +        final Object[] elements = this.elements;
1060          final int head = this.head;
1061 <        final int tail = this.tail;
1062 <        boolean wrap = (tail < head);
1063 <        int size = (tail - head) + (wrap ? elements.length : 0);
769 <        int firstLeg = size - (wrap ? tail : 0);
770 <        int len = a.length;
771 <        if (size > len) {
1061 >        final int firstLeg;
1062 >        boolean wrap = (firstLeg = elements.length - head) < size;
1063 >        if (size > a.length) {
1064              a = (T[]) Arrays.copyOfRange(elements, head, head + size,
1065                                           a.getClass());
1066          } else {
1067 <            System.arraycopy(elements, head, a, 0, firstLeg);
1068 <            if (size < len)
1067 >            System.arraycopy(elements, head, a, 0, wrap ? firstLeg : size);
1068 >            if (size < a.length)
1069                  a[size] = null;
1070          }
1071          if (wrap)
1072 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1072 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1073          return a;
1074      }
1075  
# Line 815 | Line 1107 | public class ArrayDeque<E> extends Abstr
1107          s.defaultWriteObject();
1108  
1109          // Write out size
1110 <        s.writeInt(size());
1110 >        s.writeInt(size);
1111  
1112          // Write out elements in order.
1113 <        int mask = elements.length - 1;
1114 <        for (int i = head; i != tail; i = (i + 1) & mask)
1113 >        final Object[] elements = this.elements;
1114 >        final int capacity = elements.length;
1115 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1116              s.writeObject(elements[i]);
1117      }
1118  
# Line 835 | Line 1128 | public class ArrayDeque<E> extends Abstr
1128          s.defaultReadObject();
1129  
1130          // Read in size and allocate array
1131 <        int size = s.readInt();
839 <        allocateElements(size);
840 <        head = 0;
841 <        tail = size;
1131 >        elements = new Object[size = s.readInt()];
1132  
1133          // Read in all elements in the proper order.
1134          for (int i = 0; i < size; i++)
1135              elements[i] = s.readObject();
1136      }
1137  
1138 <    public Spliterator<E> spliterator() {
1139 <        return new DeqSpliterator<E>(this, -1, -1);
1140 <    }
1141 <
1142 <    static final class DeqSpliterator<E> implements Spliterator<E> {
1143 <        private final ArrayDeque<E> deq;
1144 <        private int fence;  // -1 until first use
1145 <        private int index;  // current index, modified on traverse/split
1146 <
1147 <        /** Creates new spliterator covering the given array and range */
1148 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
1149 <            this.deq = deq;
1150 <            this.index = origin;
1151 <            this.fence = fence;
1152 <        }
1153 <
1154 <        private int getFence() { // force initialization
1155 <            int t;
866 <            if ((t = fence) < 0) {
867 <                t = fence = deq.tail;
868 <                index = deq.head;
869 <            }
870 <            return t;
871 <        }
872 <
873 <        public Spliterator<E> trySplit() {
874 <            int t = getFence(), h = index, n = deq.elements.length;
875 <            if (h != t && ((h + 1) & (n - 1)) != t) {
876 <                if (h > t)
877 <                    t += n;
878 <                int m = ((h + t) >>> 1) & (n - 1);
879 <                return new DeqSpliterator<>(deq, h, index = m);
880 <            }
881 <            return null;
882 <        }
883 <
884 <        public void forEachRemaining(Consumer<? super E> consumer) {
885 <            if (consumer == null)
886 <                throw new NullPointerException();
887 <            Object[] a = deq.elements;
888 <            int m = a.length - 1, f = getFence(), i = index;
889 <            index = f;
890 <            while (i != f) {
891 <                @SuppressWarnings("unchecked") E e = (E)a[i];
892 <                i = (i + 1) & m;
893 <                if (e == null)
894 <                    throw new ConcurrentModificationException();
895 <                consumer.accept(e);
896 <            }
897 <        }
898 <
899 <        public boolean tryAdvance(Consumer<? super E> consumer) {
900 <            if (consumer == null)
901 <                throw new NullPointerException();
902 <            Object[] a = deq.elements;
903 <            int m = a.length - 1, f = getFence(), i = index;
904 <            if (i != f) {
905 <                @SuppressWarnings("unchecked") E e = (E)a[i];
906 <                index = (i + 1) & m;
907 <                if (e == null)
908 <                    throw new ConcurrentModificationException();
909 <                consumer.accept(e);
910 <                return true;
911 <            }
912 <            return false;
913 <        }
914 <
915 <        public long estimateSize() {
916 <            int n = getFence() - index;
917 <            if (n < 0)
918 <                n += deq.elements.length;
919 <            return (long) n;
920 <        }
921 <
922 <        @Override
923 <        public int characteristics() {
924 <            return Spliterator.ORDERED | Spliterator.SIZED |
925 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1138 >    /** debugging */
1139 >    private void checkInvariants() {
1140 >        try {
1141 >            int capacity = elements.length;
1142 >            assert size >= 0 && size <= capacity;
1143 >            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1144 >                                 || head < capacity);
1145 >            assert size == 0
1146 >                || (elements[head] != null && elements[tail()] != null);
1147 >            assert size == capacity
1148 >                || (elements[dec(head, capacity)] == null
1149 >                    && elements[inc(tail(), capacity)] == null);
1150 >        } catch (Throwable t) {
1151 >            System.err.printf("head=%d size=%d capacity=%d%n",
1152 >                              head, size, elements.length);
1153 >            System.err.printf("elements=%s%n",
1154 >                              Arrays.toString(elements));
1155 >            throw t;
1156          }
1157      }
1158  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines