ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.73 by jsr166, Sun Oct 11 00:50:06 2015 UTC vs.
Revision 1.108 by jsr166, Sat Nov 5 14:41:14 2016 UTC

# Line 7 | Line 7 | package java.util;
7  
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 + import java.util.function.Predicate;
11 + import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 52 | Line 54 | import java.util.function.Consumer;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
55 * @since   1.6
57   * @param <E> the type of elements held in this deque
58 + * @since   1.6
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75       * The array in which the elements of the deque are stored.
76 <     * The capacity of the deque is the length of this array, which is
77 <     * always a power of two. The array is never allowed to become
65 <     * full, except transiently within an addX method where it is
66 <     * resized (see doubleCapacity) immediately upon becoming full,
67 <     * thus avoiding head and tail wrapping around to equal each
68 <     * other.  We also guarantee that all array cells not holding
69 <     * deque elements are always null.
76 >     * We guarantee that all array cells not holding deque elements
77 >     * are always null.
78       */
79 <    transient Object[] elements; // non-private to simplify nested class access
79 >    transient Object[] elements;
80  
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number equal to tail if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87      transient int head;
88  
# Line 84 | Line 93 | public class ArrayDeque<E> extends Abstr
93      transient int tail;
94  
95      /**
96 <     * The minimum capacity that we'll use for a newly created deque.
97 <     * Must be a power of 2.
96 >     * The maximum size of array to allocate.
97 >     * Some VMs reserve some header words in an array.
98 >     * Attempts to allocate larger arrays may result in
99 >     * OutOfMemoryError: Requested array size exceeds VM limit
100       */
101 <    private static final int MIN_INITIAL_CAPACITY = 8;
101 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102  
103 <    // ******  Array allocation and resizing utilities ******
103 >    /**
104 >     * Increases the capacity of this deque by at least the given amount.
105 >     *
106 >     * @param needed the required minimum extra capacity; must be positive
107 >     */
108 >    private void grow(int needed) {
109 >        // overflow-conscious code
110 >        final int oldCapacity = elements.length;
111 >        int newCapacity;
112 >        // Double capacity if small; else grow by 50%
113 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 >        if (jump < needed
115 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 >            newCapacity = newCapacity(needed, jump);
117 >        elements = Arrays.copyOf(elements, newCapacity);
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120 >            // wrap around; slide first leg forward to end of array
121 >            int newSpace = newCapacity - oldCapacity;
122 >            System.arraycopy(elements, head,
123 >                             elements, head + newSpace,
124 >                             oldCapacity - head);
125 >            Arrays.fill(elements, head, head + newSpace, null);
126 >            head += newSpace;
127 >        }
128 >        // checkInvariants();
129 >    }
130 >
131 >    /** Capacity calculation for edge conditions, especially overflow. */
132 >    private int newCapacity(int needed, int jump) {
133 >        final int oldCapacity = elements.length, minCapacity;
134 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 >            if (minCapacity < 0)
136 >                throw new IllegalStateException("Sorry, deque too big");
137 >            return Integer.MAX_VALUE;
138 >        }
139 >        if (needed > jump)
140 >            return minCapacity;
141 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 >            ? oldCapacity + jump
143 >            : MAX_ARRAY_SIZE;
144 >    }
145  
146      /**
147 <     * Allocates empty array to hold the given number of elements.
148 <     *
149 <     * @param numElements  the number of elements to hold
150 <     */
151 <    private void allocateElements(int numElements) {
152 <        int initialCapacity = MIN_INITIAL_CAPACITY;
153 <        // Find the best power of two to hold elements.
154 <        // Tests "<=" because arrays aren't kept full.
155 <        if (numElements >= initialCapacity) {
156 <            initialCapacity = numElements;
157 <            initialCapacity |= (initialCapacity >>>  1);
106 <            initialCapacity |= (initialCapacity >>>  2);
107 <            initialCapacity |= (initialCapacity >>>  4);
108 <            initialCapacity |= (initialCapacity >>>  8);
109 <            initialCapacity |= (initialCapacity >>> 16);
110 <            initialCapacity++;
111 <
112 <            if (initialCapacity < 0)    // Too many elements, must back off
113 <                initialCapacity >>>= 1; // Good luck allocating 2^30 elements
114 <        }
115 <        elements = new Object[initialCapacity];
147 >     * Increases the internal storage of this collection, if necessary,
148 >     * to ensure that it can hold at least the given number of elements.
149 >     *
150 >     * @param minCapacity the desired minimum capacity
151 >     * @since TBD
152 >     */
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157 >        // checkInvariants();
158      }
159  
160      /**
161 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
162 <     * when head and tail have wrapped around to become equal.
163 <     */
164 <    private void doubleCapacity() {
165 <        assert head == tail;
166 <        int p = head;
167 <        int n = elements.length;
168 <        int r = n - p; // number of elements to the right of p
169 <        int newCapacity = n << 1;
170 <        if (newCapacity < 0)
171 <            throw new IllegalStateException("Sorry, deque too big");
172 <        Object[] a = new Object[newCapacity];
131 <        System.arraycopy(elements, p, a, 0, r);
132 <        System.arraycopy(elements, 0, a, r, p);
133 <        elements = a;
134 <        head = 0;
135 <        tail = n;
161 >     * Minimizes the internal storage of this collection.
162 >     *
163 >     * @since TBD
164 >     */
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169 >            head = 0;
170 >            tail = size;
171 >        }
172 >        // checkInvariants();
173      }
174  
175      /**
# Line 147 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * Constructs an empty array deque with an initial capacity
185       * sufficient to hold the specified number of elements.
186       *
187 <     * @param numElements  lower bound on initial capacity of the deque
187 >     * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        allocateElements(numElements);
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 164 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        allocateElements(c.size());
204 >        elements = new Object[c.size() + 1];
205          addAll(c);
206      }
207  
208 +    /**
209 +     * Increments i, mod modulus.
210 +     * Precondition and postcondition: 0 <= i < modulus.
211 +     */
212 +    static final int inc(int i, int modulus) {
213 +        if (++i >= modulus) i = 0;
214 +        return i;
215 +    }
216 +
217 +    /**
218 +     * Decrements i, mod modulus.
219 +     * Precondition and postcondition: 0 <= i < modulus.
220 +     */
221 +    static final int dec(int i, int modulus) {
222 +        if (--i < 0) i = modulus - 1;
223 +        return i;
224 +    }
225 +
226 +    /**
227 +     * Adds i and j, mod modulus.
228 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 +     */
230 +    static final int add(int i, int j, int modulus) {
231 +        if ((i += j) - modulus >= 0) i -= modulus;
232 +        return i;
233 +    }
234 +
235 +    /**
236 +     * Subtracts j from i, mod modulus.
237 +     * Index i must be logically ahead of j.
238 +     * Returns the "circular distance" from j to i.
239 +     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 +     */
241 +    static final int sub(int i, int j, int modulus) {
242 +        if ((i -= j) < 0) i += modulus;
243 +        return i;
244 +    }
245 +
246 +    /**
247 +     * Returns the array index of the last element.
248 +     * May return invalid index -1 if there are no elements.
249 +     */
250 +    final int last() {
251 +        return dec(tail, elements.length);
252 +    }
253 +
254 +    /**
255 +     * Returns element at array index i.
256 +     * This is a slight abuse of generics, accepted by javac.
257 +     */
258 +    @SuppressWarnings("unchecked")
259 +    static final <E> E elementAt(Object[] es, int i) {
260 +        return (E) es[i];
261 +    }
262 +
263 +    /**
264 +     * A version of elementAt that checks for null elements.
265 +     * This check doesn't catch all possible comodifications,
266 +     * but does catch ones that corrupt traversal.
267 +     */
268 +    static final <E> E nonNullElementAt(Object[] es, int i) {
269 +        @SuppressWarnings("unchecked") E e = (E) es[i];
270 +        if (e == null)
271 +            throw new ConcurrentModificationException();
272 +        return e;
273 +    }
274 +
275      // The main insertion and extraction methods are addFirst,
276      // addLast, pollFirst, pollLast. The other methods are defined in
277      // terms of these.
# Line 181 | Line 285 | public class ArrayDeque<E> extends Abstr
285      public void addFirst(E e) {
286          if (e == null)
287              throw new NullPointerException();
288 <        elements[head = (head - 1) & (elements.length - 1)] = e;
288 >        final Object[] es = elements;
289 >        es[head = dec(head, es.length)] = e;
290          if (head == tail)
291 <            doubleCapacity();
291 >            grow(1);
292 >        // checkInvariants();
293      }
294  
295      /**
# Line 197 | Line 303 | public class ArrayDeque<E> extends Abstr
303      public void addLast(E e) {
304          if (e == null)
305              throw new NullPointerException();
306 <        elements[tail] = e;
307 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
308 <            doubleCapacity();
306 >        final Object[] es = elements;
307 >        es[tail] = e;
308 >        if (head == (tail = inc(tail, es.length)))
309 >            grow(1);
310 >        // checkInvariants();
311 >    }
312 >
313 >    /**
314 >     * Adds all of the elements in the specified collection at the end
315 >     * of this deque, as if by calling {@link #addLast} on each one,
316 >     * in the order that they are returned by the collection's
317 >     * iterator.
318 >     *
319 >     * @param c the elements to be inserted into this deque
320 >     * @return {@code true} if this deque changed as a result of the call
321 >     * @throws NullPointerException if the specified collection or any
322 >     *         of its elements are null
323 >     */
324 >    public boolean addAll(Collection<? extends E> c) {
325 >        final int s = size(), needed;
326 >        if ((needed = s + c.size() - elements.length + 1) > 0)
327 >            grow(needed);
328 >        c.forEach((e) -> addLast(e));
329 >        // checkInvariants();
330 >        return size() > s;
331      }
332  
333      /**
# Line 230 | Line 358 | public class ArrayDeque<E> extends Abstr
358       * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
361 <        E x = pollFirst();
362 <        if (x == null)
361 >        E e = pollFirst();
362 >        if (e == null)
363              throw new NoSuchElementException();
364 <        return x;
364 >        // checkInvariants();
365 >        return e;
366      }
367  
368      /**
369       * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
372 <        E x = pollLast();
373 <        if (x == null)
372 >        E e = pollLast();
373 >        if (e == null)
374              throw new NoSuchElementException();
375 <        return x;
375 >        // checkInvariants();
376 >        return e;
377      }
378  
379      public E pollFirst() {
380 <        final Object[] elements = this.elements;
381 <        final int h = head;
382 <        @SuppressWarnings("unchecked")
383 <        E result = (E) elements[h];
384 <        // Element is null if deque empty
385 <        if (result != null) {
256 <            elements[h] = null; // Must null out slot
257 <            head = (h + 1) & (elements.length - 1);
380 >        final Object[] es;
381 >        final int h;
382 >        E e = elementAt(es = elements, h = head);
383 >        if (e != null) {
384 >            es[h] = null;
385 >            head = inc(h, es.length);
386          }
387 <        return result;
387 >        // checkInvariants();
388 >        return e;
389      }
390  
391      public E pollLast() {
392 <        final Object[] elements = this.elements;
393 <        final int t = (tail - 1) & (elements.length - 1);
394 <        @SuppressWarnings("unchecked")
395 <        E result = (E) elements[t];
396 <        if (result != null) {
397 <            elements[t] = null;
398 <            tail = t;
270 <        }
271 <        return result;
392 >        final Object[] es;
393 >        final int t;
394 >        E e = elementAt(es = elements, t = dec(tail, es.length));
395 >        if (e != null)
396 >            es[tail = t] = null;
397 >        // checkInvariants();
398 >        return e;
399      }
400  
401      /**
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 <        @SuppressWarnings("unchecked")
406 <        E result = (E) elements[head];
280 <        if (result == null)
405 >        E e = elementAt(elements, head);
406 >        if (e == null)
407              throw new NoSuchElementException();
408 <        return result;
408 >        // checkInvariants();
409 >        return e;
410      }
411  
412      /**
413       * @throws NoSuchElementException {@inheritDoc}
414       */
415      public E getLast() {
416 <        @SuppressWarnings("unchecked")
417 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
418 <        if (result == null)
416 >        final Object[] es = elements;
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419              throw new NoSuchElementException();
420 <        return result;
420 >        // checkInvariants();
421 >        return e;
422      }
423  
296    @SuppressWarnings("unchecked")
424      public E peekFirst() {
425 <        // elements[head] is null if deque empty
426 <        return (E) elements[head];
425 >        // checkInvariants();
426 >        return elementAt(elements, head);
427      }
428  
302    @SuppressWarnings("unchecked")
429      public E peekLast() {
430 <        return (E) elements[(tail - 1) & (elements.length - 1)];
430 >        // checkInvariants();
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
# Line 318 | Line 446 | public class ArrayDeque<E> extends Abstr
446       */
447      public boolean removeFirstOccurrence(Object o) {
448          if (o != null) {
449 <            int mask = elements.length - 1;
450 <            int i = head;
451 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
452 <                if (o.equals(x)) {
453 <                    delete(i);
454 <                    return true;
455 <                }
449 >            final Object[] es = elements;
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452 >                for (; i < to; i++)
453 >                    if (o.equals(es[i])) {
454 >                        delete(i);
455 >                        return true;
456 >                    }
457 >                if (to == end) break;
458              }
459          }
460          return false;
# Line 344 | Line 474 | public class ArrayDeque<E> extends Abstr
474       */
475      public boolean removeLastOccurrence(Object o) {
476          if (o != null) {
477 <            int mask = elements.length - 1;
478 <            int i = (tail - 1) & mask;
479 <            for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
480 <                if (o.equals(x)) {
481 <                    delete(i);
482 <                    return true;
483 <                }
477 >            final Object[] es = elements;
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                while (--i >= to)
481 >                    if (o.equals(es[i])) {
482 >                        delete(i);
483 >                        return true;
484 >                    }
485 >                if (to == end) break;
486              }
487          }
488          return false;
# Line 470 | Line 602 | public class ArrayDeque<E> extends Abstr
602          return removeFirst();
603      }
604  
473    private void checkInvariants() {
474        assert elements[tail] == null;
475        assert head == tail ? elements[head] == null :
476            (elements[head] != null &&
477             elements[(tail - 1) & (elements.length - 1)] != null);
478        assert elements[(head - 1) & (elements.length - 1)] == null;
479    }
480
605      /**
606 <     * Removes the element at the specified position in the elements array,
607 <     * adjusting head and tail as necessary.  This can result in motion of
608 <     * elements backwards or forwards in the array.
606 >     * Removes the element at the specified position in the elements array.
607 >     * This can result in forward or backwards motion of array elements.
608 >     * We optimize for least element motion.
609       *
610       * <p>This method is called delete rather than remove to emphasize
611       * that its semantics differ from those of {@link List#remove(int)}.
612       *
613 <     * @return true if elements moved backwards
613 >     * @return true if elements near tail moved backwards
614       */
615      boolean delete(int i) {
616 <        checkInvariants();
617 <        final Object[] elements = this.elements;
618 <        final int mask = elements.length - 1;
616 >        // checkInvariants();
617 >        final Object[] es = elements;
618 >        final int capacity = es.length;
619          final int h = head;
620 <        final int t = tail;
621 <        final int front = (i - h) & mask;
622 <        final int back  = (t - i) & mask;
499 <
500 <        // Invariant: head <= i < tail mod circularity
501 <        if (front >= ((t - h) & mask))
502 <            throw new ConcurrentModificationException();
503 <
504 <        // Optimize for least element motion
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h, capacity);
622 >        final int back = size() - front - 1; // number of elements after
623          if (front < back) {
624 +            // move front elements forwards
625              if (h <= i) {
626 <                System.arraycopy(elements, h, elements, h + 1, front);
626 >                System.arraycopy(es, h, es, h + 1, front);
627              } else { // Wrap around
628 <                System.arraycopy(elements, 0, elements, 1, i);
629 <                elements[0] = elements[mask];
630 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
628 >                System.arraycopy(es, 0, es, 1, i);
629 >                es[0] = es[capacity - 1];
630 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
631              }
632 <            elements[h] = null;
633 <            head = (h + 1) & mask;
632 >            es[h] = null;
633 >            head = inc(h, capacity);
634 >            // checkInvariants();
635              return false;
636          } else {
637 <            if (i < t) { // Copy the null tail as well
638 <                System.arraycopy(elements, i + 1, elements, i, back);
639 <                tail = t - 1;
637 >            // move back elements backwards
638 >            tail = dec(tail, capacity);
639 >            if (i <= tail) {
640 >                System.arraycopy(es, i + 1, es, i, back);
641              } else { // Wrap around
642 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
643 <                elements[mask] = elements[0];
644 <                System.arraycopy(elements, 1, elements, 0, t);
645 <                tail = (t - 1) & mask;
642 >                int firstLeg = capacity - (i + 1);
643 >                System.arraycopy(es, i + 1, es, i, firstLeg);
644 >                es[capacity - 1] = es[0];
645 >                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
646              }
647 +            es[tail] = null;
648 +            // checkInvariants();
649              return true;
650          }
651      }
# Line 535 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
# Line 564 | Line 687 | public class ArrayDeque<E> extends Abstr
687      }
688  
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
569 <         */
570 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
574 <         * iterator and also to check for comodification.
575 <         */
576 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701  
702 <        public boolean hasNext() {
703 <            return cursor != fence;
702 >        DeqIterator() { cursor = head; }
703 >
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            @SuppressWarnings("unchecked")
712 <            E result = (E) elements[cursor];
593 <            // This check doesn't catch all possible comodifications,
594 <            // but does catch the ones that corrupt traversal
595 <            if (tail != fence || result == null)
596 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            cursor = inc(cursor, es.length);
715 >            remaining--;
716 >            return e;
717 >        }
718 >
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                cursor = dec(cursor, elements.length);
722          }
723  
724 <        public void remove() {
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
606 <                cursor = (cursor - 1) & (elements.length - 1);
607 <                fence = tail;
608 <            }
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729          }
730  
731          public void forEachRemaining(Consumer<? super E> action) {
732              Objects.requireNonNull(action);
733 <            Object[] a = elements;
734 <            int m = a.length - 1, f = fence, i = cursor;
735 <            cursor = f;
736 <            while (i != f) {
737 <                @SuppressWarnings("unchecked") E e = (E)a[i];
738 <                i = (i + 1) & m;
739 <                if (e == null)
740 <                    throw new ConcurrentModificationException();
741 <                action.accept(e);
733 >            int r;
734 >            if ((r = remaining) <= 0)
735 >                return;
736 >            remaining = 0;
737 >            final Object[] es = elements;
738 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 >                throw new ConcurrentModificationException();
740 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 >                 ; i = 0, to = end) {
742 >                for (; i < to; i++)
743 >                    action.accept(elementAt(es, i));
744 >                if (to == end) {
745 >                    if (end != tail)
746 >                        throw new ConcurrentModificationException();
747 >                    lastRet = dec(end, es.length);
748 >                    break;
749 >                }
750 >            }
751 >        }
752 >    }
753 >
754 >    private class DescendingIterator extends DeqIterator {
755 >        DescendingIterator() { cursor = last(); }
756 >
757 >        public final E next() {
758 >            if (remaining <= 0)
759 >                throw new NoSuchElementException();
760 >            final Object[] es = elements;
761 >            E e = nonNullElementAt(es, cursor);
762 >            lastRet = cursor;
763 >            cursor = dec(cursor, es.length);
764 >            remaining--;
765 >            return e;
766 >        }
767 >
768 >        void postDelete(boolean leftShifted) {
769 >            if (!leftShifted)
770 >                cursor = inc(cursor, elements.length);
771 >        }
772 >
773 >        public final void forEachRemaining(Consumer<? super E> action) {
774 >            Objects.requireNonNull(action);
775 >            int r;
776 >            if ((r = remaining) <= 0)
777 >                return;
778 >            remaining = 0;
779 >            final Object[] es = elements;
780 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 >                throw new ConcurrentModificationException();
782 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
783 >                 ; i = es.length - 1, to = end) {
784 >                for (; i >= to; i--)
785 >                    action.accept(elementAt(es, i));
786 >                if (to == end) {
787 >                    if (end != head)
788 >                        throw new ConcurrentModificationException();
789 >                    lastRet = head;
790 >                    break;
791 >                }
792              }
793          }
794      }
795  
796      /**
797 <     * This class is nearly a mirror-image of DeqIterator, using tail
798 <     * instead of head for initial cursor, and head instead of tail
799 <     * for fence.
797 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
798 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
799 >     * deque.
800 >     *
801 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
802 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
803 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
804 >     * the reporting of additional characteristic values.
805 >     *
806 >     * @return a {@code Spliterator} over the elements in this deque
807 >     * @since 1.8
808       */
809 <    private class DescendingIterator implements Iterator<E> {
810 <        private int cursor = tail;
811 <        private int fence = head;
812 <        private int lastRet = -1;
809 >    public Spliterator<E> spliterator() {
810 >        return new DeqSpliterator();
811 >    }
812 >
813 >    final class DeqSpliterator implements Spliterator<E> {
814 >        private int fence;      // -1 until first use
815 >        private int cursor;     // current index, modified on traverse/split
816  
817 <        public boolean hasNext() {
818 <            return cursor != fence;
817 >        /** Constructs late-binding spliterator over all elements. */
818 >        DeqSpliterator() {
819 >            this.fence = -1;
820          }
821  
822 <        public E next() {
823 <            if (cursor == fence)
824 <                throw new NoSuchElementException();
825 <            cursor = (cursor - 1) & (elements.length - 1);
645 <            @SuppressWarnings("unchecked")
646 <            E result = (E) elements[cursor];
647 <            if (head != fence || result == null)
648 <                throw new ConcurrentModificationException();
649 <            lastRet = cursor;
650 <            return result;
822 >        /** Constructs spliterator over the given range. */
823 >        DeqSpliterator(int origin, int fence) {
824 >            this.cursor = origin;
825 >            this.fence = fence;
826          }
827  
828 <        public void remove() {
829 <            if (lastRet < 0)
830 <                throw new IllegalStateException();
831 <            if (!delete(lastRet)) {
832 <                cursor = (cursor + 1) & (elements.length - 1);
833 <                fence = head;
828 >        /** Ensures late-binding initialization; then returns fence. */
829 >        private int getFence() { // force initialization
830 >            int t;
831 >            if ((t = fence) < 0) {
832 >                t = fence = tail;
833 >                cursor = head;
834              }
835 <            lastRet = -1;
835 >            return t;
836 >        }
837 >
838 >        public DeqSpliterator trySplit() {
839 >            final Object[] es = elements;
840 >            final int i, n;
841 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 >                ? null
843 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
844 >        }
845 >
846 >        public void forEachRemaining(Consumer<? super E> action) {
847 >            if (action == null)
848 >                throw new NullPointerException();
849 >            final int end = getFence(), cursor = this.cursor;
850 >            final Object[] es = elements;
851 >            if (cursor != end) {
852 >                this.cursor = end;
853 >                // null check at both ends of range is sufficient
854 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
855 >                    throw new ConcurrentModificationException();
856 >                for (int i = cursor, to = (i <= end) ? end : es.length;
857 >                     ; i = 0, to = end) {
858 >                    for (; i < to; i++)
859 >                        action.accept(elementAt(es, i));
860 >                    if (to == end) break;
861 >                }
862 >            }
863 >        }
864 >
865 >        public boolean tryAdvance(Consumer<? super E> action) {
866 >            if (action == null)
867 >                throw new NullPointerException();
868 >            int t, i;
869 >            if ((t = fence) < 0) t = getFence();
870 >            if (t == (i = cursor))
871 >                return false;
872 >            final Object[] es;
873 >            action.accept(nonNullElementAt(es = elements, i));
874 >            cursor = inc(i, es.length);
875 >            return true;
876 >        }
877 >
878 >        public long estimateSize() {
879 >            return sub(getFence(), cursor, elements.length);
880 >        }
881 >
882 >        public int characteristics() {
883 >            return Spliterator.NONNULL
884 >                | Spliterator.ORDERED
885 >                | Spliterator.SIZED
886 >                | Spliterator.SUBSIZED;
887 >        }
888 >    }
889 >
890 >    public void forEach(Consumer<? super E> action) {
891 >        Objects.requireNonNull(action);
892 >        final Object[] es = elements;
893 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
894 >             ; i = 0, to = end) {
895 >            for (; i < to; i++)
896 >                action.accept(elementAt(es, i));
897 >            if (to == end) {
898 >                if (end != tail) throw new ConcurrentModificationException();
899 >                break;
900 >            }
901 >        }
902 >        // checkInvariants();
903 >    }
904 >
905 >    /**
906 >     * Replaces each element of this deque with the result of applying the
907 >     * operator to that element, as specified by {@link List#replaceAll}.
908 >     *
909 >     * @param operator the operator to apply to each element
910 >     * @since TBD
911 >     */
912 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
913 >        Objects.requireNonNull(operator);
914 >        final Object[] es = elements;
915 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
916 >             ; i = 0, to = end) {
917 >            for (; i < to; i++)
918 >                es[i] = operator.apply(elementAt(es, i));
919 >            if (to == end) {
920 >                if (end != tail) throw new ConcurrentModificationException();
921 >                break;
922 >            }
923 >        }
924 >        // checkInvariants();
925 >    }
926 >
927 >    /**
928 >     * @throws NullPointerException {@inheritDoc}
929 >     */
930 >    public boolean removeIf(Predicate<? super E> filter) {
931 >        Objects.requireNonNull(filter);
932 >        return bulkRemove(filter);
933 >    }
934 >
935 >    /**
936 >     * @throws NullPointerException {@inheritDoc}
937 >     */
938 >    public boolean removeAll(Collection<?> c) {
939 >        Objects.requireNonNull(c);
940 >        return bulkRemove(e -> c.contains(e));
941 >    }
942 >
943 >    /**
944 >     * @throws NullPointerException {@inheritDoc}
945 >     */
946 >    public boolean retainAll(Collection<?> c) {
947 >        Objects.requireNonNull(c);
948 >        return bulkRemove(e -> !c.contains(e));
949 >    }
950 >
951 >    /** Implementation of bulk remove methods. */
952 >    private boolean bulkRemove(Predicate<? super E> filter) {
953 >        // checkInvariants();
954 >        final Object[] es = elements;
955 >        // Optimize for initial run of survivors
956 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
957 >             ; i = 0, to = end) {
958 >            for (; i < to; i++)
959 >                if (filter.test(elementAt(es, i)))
960 >                    return bulkRemoveModified(filter, i, to);
961 >            if (to == end) {
962 >                if (end != tail) throw new ConcurrentModificationException();
963 >                break;
964 >            }
965 >        }
966 >        return false;
967 >    }
968 >
969 >    /**
970 >     * Helper for bulkRemove, in case of at least one deletion.
971 >     * @param i valid index of first element to be deleted
972 >     */
973 >    private boolean bulkRemoveModified(
974 >        Predicate<? super E> filter, int i, int to) {
975 >        final Object[] es = elements;
976 >        final int capacity = es.length;
977 >        // a two-finger algorithm, with hare i reading, tortoise j writing
978 >        int j = i++;
979 >        final int end = tail;
980 >        try {
981 >            for (;; j = 0) {    // j rejoins i on second leg
982 >                E e;
983 >                // In this loop, i and j are on the same leg, with i > j
984 >                for (; i < to; i++)
985 >                    if (!filter.test(e = elementAt(es, i)))
986 >                        es[j++] = e;
987 >                if (to == end) break;
988 >                // In this loop, j is on the first leg, i on the second
989 >                for (i = 0, to = end; i < to && j < capacity; i++)
990 >                    if (!filter.test(e = elementAt(es, i)))
991 >                        es[j++] = e;
992 >                if (i >= to) {
993 >                    if (j == capacity) j = 0; // "corner" case
994 >                    break;
995 >                }
996 >            }
997 >            return true;
998 >        } catch (Throwable ex) {
999 >            // copy remaining elements
1000 >            for (; i != end; i = inc(i, capacity), j = inc(j, capacity))
1001 >                es[j] = es[i];
1002 >            throw ex;
1003 >        } finally {
1004 >            if (end != tail) throw new ConcurrentModificationException();
1005 >            circularClear(es, tail = j, end);
1006 >            // checkInvariants();
1007          }
1008      }
1009  
# Line 671 | Line 1017 | public class ArrayDeque<E> extends Abstr
1017       */
1018      public boolean contains(Object o) {
1019          if (o != null) {
1020 <            int mask = elements.length - 1;
1021 <            int i = head;
1022 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
1023 <                if (o.equals(x))
1024 <                    return true;
1020 >            final Object[] es = elements;
1021 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1022 >                 ; i = 0, to = end) {
1023 >                for (; i < to; i++)
1024 >                    if (o.equals(es[i]))
1025 >                        return true;
1026 >                if (to == end) break;
1027              }
1028          }
1029          return false;
# Line 703 | Line 1051 | public class ArrayDeque<E> extends Abstr
1051       * The deque will be empty after this call returns.
1052       */
1053      public void clear() {
1054 <        int h = head;
1055 <        int t = tail;
1056 <        if (h != t) { // clear all cells
1057 <            head = tail = 0;
1058 <            int i = h;
1059 <            int mask = elements.length - 1;
1060 <            do {
1061 <                elements[i] = null;
1062 <                i = (i + 1) & mask;
1063 <            } while (i != t);
1054 >        circularClear(elements, head, tail);
1055 >        head = tail = 0;
1056 >        // checkInvariants();
1057 >    }
1058 >
1059 >    /**
1060 >     * Nulls out slots starting at array index i, upto index end.
1061 >     */
1062 >    private static void circularClear(Object[] es, int i, int end) {
1063 >        for (int to = (i <= end) ? end : es.length;
1064 >             ; i = 0, to = end) {
1065 >            Arrays.fill(es, i, to, null);
1066 >            if (to == end) break;
1067          }
1068      }
1069  
# Line 730 | Line 1081 | public class ArrayDeque<E> extends Abstr
1081       * @return an array containing all of the elements in this deque
1082       */
1083      public Object[] toArray() {
1084 <        final int head = this.head;
1085 <        final int tail = this.tail;
1086 <        boolean wrap = (tail < head);
1087 <        int end = wrap ? tail + elements.length : tail;
1088 <        Object[] a = Arrays.copyOfRange(elements, head, end);
1089 <        if (wrap)
1090 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
1084 >        return toArray(Object[].class);
1085 >    }
1086 >
1087 >    private <T> T[] toArray(Class<T[]> klazz) {
1088 >        final Object[] es = elements;
1089 >        final T[] a;
1090 >        final int size = size(), head = this.head, end;
1091 >        final int len = Math.min(size, es.length - head);
1092 >        if ((end = head + size) >= 0) {
1093 >            a = Arrays.copyOfRange(es, head, end, klazz);
1094 >        } else {
1095 >            // integer overflow!
1096 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1097 >            System.arraycopy(es, head, a, 0, len);
1098 >        }
1099 >        if (tail < head)
1100 >            System.arraycopy(es, 0, a, len, tail);
1101          return a;
1102      }
1103  
# Line 778 | Line 1139 | public class ArrayDeque<E> extends Abstr
1139       */
1140      @SuppressWarnings("unchecked")
1141      public <T> T[] toArray(T[] a) {
1142 <        final int head = this.head;
1143 <        final int tail = this.tail;
1144 <        boolean wrap = (tail < head);
1145 <        int size = (tail - head) + (wrap ? elements.length : 0);
1146 <        int firstLeg = size - (wrap ? tail : 0);
1147 <        int len = a.length;
1148 <        if (size > len) {
1149 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
789 <                                         a.getClass());
790 <        } else {
791 <            System.arraycopy(elements, head, a, 0, firstLeg);
792 <            if (size < len)
793 <                a[size] = null;
1142 >        final int size;
1143 >        if ((size = size()) > a.length)
1144 >            return toArray((Class<T[]>) a.getClass());
1145 >        final Object[] es = elements;
1146 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1147 >             ; i = 0, len = tail) {
1148 >            System.arraycopy(es, i, a, j, len);
1149 >            if ((j += len) == size) break;
1150          }
1151 <        if (wrap)
1152 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1151 >        if (size < a.length)
1152 >            a[size] = null;
1153          return a;
1154      }
1155  
# Line 834 | Line 1190 | public class ArrayDeque<E> extends Abstr
1190          s.writeInt(size());
1191  
1192          // Write out elements in order.
1193 <        int mask = elements.length - 1;
1194 <        for (int i = head; i != tail; i = (i + 1) & mask)
1195 <            s.writeObject(elements[i]);
1193 >        final Object[] es = elements;
1194 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1195 >             ; i = 0, to = end) {
1196 >            for (; i < to; i++)
1197 >                s.writeObject(es[i]);
1198 >            if (to == end) break;
1199 >        }
1200      }
1201  
1202      /**
# Line 852 | Line 1212 | public class ArrayDeque<E> extends Abstr
1212  
1213          // Read in size and allocate array
1214          int size = s.readInt();
1215 <        allocateElements(size);
1216 <        head = 0;
857 <        tail = size;
1215 >        elements = new Object[size + 1];
1216 >        this.tail = size;
1217  
1218          // Read in all elements in the proper order.
1219          for (int i = 0; i < size; i++)
1220              elements[i] = s.readObject();
1221      }
1222  
1223 <    /**
1224 <     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1225 <     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1226 <     * deque.
1227 <     *
1228 <     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1229 <     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
1230 <     * {@link Spliterator#NONNULL}.  Overriding implementations should document
1231 <     * the reporting of additional characteristic values.
1232 <     *
1233 <     * @return a {@code Spliterator} over the elements in this deque
1234 <     * @since 1.8
1235 <     */
1236 <    public Spliterator<E> spliterator() {
1237 <        return new DeqSpliterator<>(this, -1, -1);
1238 <    }
1239 <
881 <    static final class DeqSpliterator<E> implements Spliterator<E> {
882 <        private final ArrayDeque<E> deq;
883 <        private int fence;  // -1 until first use
884 <        private int index;  // current index, modified on traverse/split
885 <
886 <        /** Creates new spliterator covering the given array and range. */
887 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
888 <            this.deq = deq;
889 <            this.index = origin;
890 <            this.fence = fence;
891 <        }
892 <
893 <        private int getFence() { // force initialization
894 <            int t;
895 <            if ((t = fence) < 0) {
896 <                t = fence = deq.tail;
897 <                index = deq.head;
898 <            }
899 <            return t;
900 <        }
901 <
902 <        public DeqSpliterator<E> trySplit() {
903 <            int t = getFence(), h = index, n = deq.elements.length;
904 <            if (h != t && ((h + 1) & (n - 1)) != t) {
905 <                if (h > t)
906 <                    t += n;
907 <                int m = ((h + t) >>> 1) & (n - 1);
908 <                return new DeqSpliterator<E>(deq, h, index = m);
909 <            }
910 <            return null;
911 <        }
912 <
913 <        public void forEachRemaining(Consumer<? super E> consumer) {
914 <            if (consumer == null)
915 <                throw new NullPointerException();
916 <            Object[] a = deq.elements;
917 <            int m = a.length - 1, f = getFence(), i = index;
918 <            index = f;
919 <            while (i != f) {
920 <                @SuppressWarnings("unchecked") E e = (E)a[i];
921 <                i = (i + 1) & m;
922 <                if (e == null)
923 <                    throw new ConcurrentModificationException();
924 <                consumer.accept(e);
925 <            }
926 <        }
927 <
928 <        public boolean tryAdvance(Consumer<? super E> consumer) {
929 <            if (consumer == null)
930 <                throw new NullPointerException();
931 <            Object[] a = deq.elements;
932 <            int m = a.length - 1, f = getFence(), i = index;
933 <            if (i != f) {
934 <                @SuppressWarnings("unchecked") E e = (E)a[i];
935 <                index = (i + 1) & m;
936 <                if (e == null)
937 <                    throw new ConcurrentModificationException();
938 <                consumer.accept(e);
939 <                return true;
940 <            }
941 <            return false;
942 <        }
943 <
944 <        public long estimateSize() {
945 <            int n = getFence() - index;
946 <            if (n < 0)
947 <                n += deq.elements.length;
948 <            return (long) n;
949 <        }
950 <
951 <        @Override
952 <        public int characteristics() {
953 <            return Spliterator.ORDERED | Spliterator.SIZED |
954 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1223 >    /** debugging */
1224 >    void checkInvariants() {
1225 >        try {
1226 >            int capacity = elements.length;
1227 >            // assert head >= 0 && head < capacity;
1228 >            // assert tail >= 0 && tail < capacity;
1229 >            // assert capacity > 0;
1230 >            // assert size() < capacity;
1231 >            // assert head == tail || elements[head] != null;
1232 >            // assert elements[tail] == null;
1233 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1234 >        } catch (Throwable t) {
1235 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1236 >                              head, tail, elements.length);
1237 >            System.err.printf("elements=%s%n",
1238 >                              Arrays.toString(elements));
1239 >            throw t;
1240          }
1241      }
1242  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines