ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.77 by jsr166, Tue Oct 18 00:33:05 2016 UTC vs.
Revision 1.113 by jsr166, Sun Nov 13 02:10:09 2016 UTC

# Line 60 | Line 60 | import java.util.function.UnaryOperator;
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63 +    /*
64 +     * VMs excel at optimizing simple array loops where indices are
65 +     * incrementing or decrementing over a valid slice, e.g.
66 +     *
67 +     * for (int i = start; i < end; i++) ... elements[i]
68 +     *
69 +     * Because in a circular array, elements are in general stored in
70 +     * two disjoint such slices, we help the VM by writing unusual
71 +     * nested loops for all traversals over the elements.
72 +     */
73 +
74      /**
75       * The array in which the elements of the deque are stored.
76       * We guarantee that all array cells not holding deque elements
# Line 70 | Line 81 | public class ArrayDeque<E> extends Abstr
81      /**
82       * The index of the element at the head of the deque (which is the
83       * element that would be removed by remove() or pop()); or an
84 <     * arbitrary number 0 <= head < elements.length if the deque is empty.
84 >     * arbitrary number 0 <= head < elements.length equal to tail if
85 >     * the deque is empty.
86       */
87      transient int head;
88  
89 <    /** Number of elements in this collection. */
90 <    transient int size;
89 >    /**
90 >     * The index at which the next element would be added to the tail
91 >     * of the deque (via addLast(E), add(E), or push(E)).
92 >     */
93 >    transient int tail;
94  
95      /**
96       * The maximum size of array to allocate.
# Line 92 | Line 107 | public class ArrayDeque<E> extends Abstr
107       */
108      private void grow(int needed) {
109          // overflow-conscious code
110 <        // checkInvariants();
96 <        int oldCapacity = elements.length;
110 >        final int oldCapacity = elements.length;
111          int newCapacity;
112 <        // Double size if small; else grow by 50%
112 >        // Double capacity if small; else grow by 50%
113          int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114          if (jump < needed
115              || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116              newCapacity = newCapacity(needed, jump);
117          elements = Arrays.copyOf(elements, newCapacity);
118 <        if (oldCapacity - head < size) {
118 >        // Exceptionally, here tail == head needs to be disambiguated
119 >        if (tail < head || (tail == head && elements[head] != null)) {
120              // wrap around; slide first leg forward to end of array
121              int newSpace = newCapacity - oldCapacity;
122              System.arraycopy(elements, head,
# Line 115 | Line 130 | public class ArrayDeque<E> extends Abstr
130  
131      /** Capacity calculation for edge conditions, especially overflow. */
132      private int newCapacity(int needed, int jump) {
133 <        int oldCapacity = elements.length;
119 <        int minCapacity;
133 >        final int oldCapacity = elements.length, minCapacity;
134          if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135              if (minCapacity < 0)
136                  throw new IllegalStateException("Sorry, deque too big");
# Line 134 | Line 148 | public class ArrayDeque<E> extends Abstr
148       * to ensure that it can hold at least the given number of elements.
149       *
150       * @param minCapacity the desired minimum capacity
151 <     * @since 9
151 >     * @since TBD
152       */
153 <    public void ensureCapacity(int minCapacity) {
154 <        if (minCapacity > elements.length)
155 <            grow(minCapacity - elements.length);
153 >    /* public */ void ensureCapacity(int minCapacity) {
154 >        int needed;
155 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 >            grow(needed);
157          // checkInvariants();
158      }
159  
160      /**
161       * Minimizes the internal storage of this collection.
162       *
163 <     * @since 9
163 >     * @since TBD
164       */
165 <    public void trimToSize() {
166 <        if (size < elements.length) {
167 <            elements = toArray();
165 >    /* public */ void trimToSize() {
166 >        int size;
167 >        if ((size = size()) + 1 < elements.length) {
168 >            elements = toArray(new Object[size + 1]);
169              head = 0;
170 +            tail = size;
171          }
172          // checkInvariants();
173      }
# Line 170 | Line 187 | public class ArrayDeque<E> extends Abstr
187       * @param numElements lower bound on initial capacity of the deque
188       */
189      public ArrayDeque(int numElements) {
190 <        elements = new Object[numElements];
190 >        elements = new Object[Math.max(1, numElements + 1)];
191      }
192  
193      /**
# Line 184 | Line 201 | public class ArrayDeque<E> extends Abstr
201       * @throws NullPointerException if the specified collection is null
202       */
203      public ArrayDeque(Collection<? extends E> c) {
204 <        Object[] elements = c.toArray();
205 <        // defend against c.toArray (incorrectly) not returning Object[]
189 <        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 <        if (elements.getClass() != Object[].class)
191 <            elements = Arrays.copyOf(elements, size, Object[].class);
192 <        for (Object obj : elements)
193 <            Objects.requireNonNull(obj);
194 <        size = elements.length;
195 <        this.elements = elements;
204 >        elements = new Object[c.size() + 1];
205 >        addAll(c);
206      }
207  
208      /**
209 <     * Returns the array index of the last element.
210 <     * May return invalid index -1 if there are no elements.
209 >     * Increments i, mod modulus.
210 >     * Precondition and postcondition: 0 <= i < modulus.
211       */
212 <    final int tail() {
213 <        return add(head, size - 1, elements.length);
212 >    static final int inc(int i, int modulus) {
213 >        if (++i >= modulus) i = 0;
214 >        return i;
215      }
216  
217      /**
218 <     * Adds i and j, mod modulus.
219 <     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 >     * Decrements i, mod modulus.
219 >     * Precondition and postcondition: 0 <= i < modulus.
220       */
221 <    static final int add(int i, int j, int modulus) {
222 <        if ((i += j) - modulus >= 0) i -= modulus;
221 >    static final int dec(int i, int modulus) {
222 >        if (--i < 0) i = modulus - 1;
223          return i;
224      }
225  
226      /**
227 <     * Increments i, mod modulus.
228 <     * Precondition and postcondition: 0 <= i < modulus.
227 >     * Adds i and j, mod modulus.
228 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229       */
230 <    static final int inc(int i, int modulus) {
231 <        if (++i == modulus) i = 0;
230 >    static final int add(int i, int j, int modulus) {
231 >        if ((i += j) - modulus >= 0) i -= modulus;
232          return i;
233      }
234  
235      /**
236 <     * Decrements i, mod modulus.
237 <     * Precondition and postcondition: 0 <= i < modulus.
236 >     * Subtracts j from i, mod modulus.
237 >     * Index i must be logically ahead of j.
238 >     * Returns the "circular distance" from j to i.
239 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240       */
241 <    static final int dec(int i, int modulus) {
242 <        if (--i < 0) i += modulus;
241 >    static final int sub(int i, int j, int modulus) {
242 >        if ((i -= j) < 0) i += modulus;
243          return i;
244      }
245  
246      /**
247       * Returns element at array index i.
248 +     * This is a slight abuse of generics, accepted by javac.
249       */
250      @SuppressWarnings("unchecked")
251 <    final E elementAt(int i) {
252 <        return (E) elements[i];
251 >    static final <E> E elementAt(Object[] es, int i) {
252 >        return (E) es[i];
253      }
254  
255      /**
# Line 243 | Line 257 | public class ArrayDeque<E> extends Abstr
257       * This check doesn't catch all possible comodifications,
258       * but does catch ones that corrupt traversal.
259       */
260 <    E checkedElementAt(Object[] elements, int i) {
261 <        @SuppressWarnings("unchecked") E e = (E) elements[i];
260 >    static final <E> E nonNullElementAt(Object[] es, int i) {
261 >        @SuppressWarnings("unchecked") E e = (E) es[i];
262          if (e == null)
263              throw new ConcurrentModificationException();
264          return e;
# Line 261 | Line 275 | public class ArrayDeque<E> extends Abstr
275       * @throws NullPointerException if the specified element is null
276       */
277      public void addFirst(E e) {
278 <        // checkInvariants();
279 <        Objects.requireNonNull(e);
280 <        Object[] elements;
281 <        int capacity, s = size;
282 <        while (s == (capacity = (elements = this.elements).length))
278 >        if (e == null)
279 >            throw new NullPointerException();
280 >        final Object[] es = elements;
281 >        es[head = dec(head, es.length)] = e;
282 >        if (head == tail)
283              grow(1);
284 <        elements[head = dec(head, capacity)] = e;
271 <        size = s + 1;
284 >        // checkInvariants();
285      }
286  
287      /**
# Line 280 | Line 293 | public class ArrayDeque<E> extends Abstr
293       * @throws NullPointerException if the specified element is null
294       */
295      public void addLast(E e) {
296 <        // checkInvariants();
297 <        Objects.requireNonNull(e);
298 <        Object[] elements;
299 <        int capacity, s = size;
300 <        while (s == (capacity = (elements = this.elements).length))
296 >        if (e == null)
297 >            throw new NullPointerException();
298 >        final Object[] es = elements;
299 >        es[tail] = e;
300 >        if (head == (tail = inc(tail, es.length)))
301              grow(1);
302 <        elements[add(head, s, capacity)] = e;
290 <        size = s + 1;
302 >        // checkInvariants();
303      }
304  
305      /**
# Line 301 | Line 313 | public class ArrayDeque<E> extends Abstr
313       * @throws NullPointerException if the specified collection or any
314       *         of its elements are null
315       */
304    @Override
316      public boolean addAll(Collection<? extends E> c) {
317 +        final int s = size(), needed;
318 +        if ((needed = s + c.size() - elements.length + 1) > 0)
319 +            grow(needed);
320 +        c.forEach(e -> addLast(e));
321          // checkInvariants();
322 <        Object[] a, elements;
308 <        int len, capacity, s = size;
309 <        if ((len = (a = c.toArray()).length) == 0)
310 <            return false;
311 <        while ((capacity = (elements = this.elements).length) - s < len)
312 <            grow(len - (capacity - s));
313 <        int i = add(head, s, capacity);
314 <        for (Object x : a) {
315 <            Objects.requireNonNull(x);
316 <            elements[i] = x;
317 <            i = inc(i, capacity);
318 <            size++;
319 <        }
320 <        return true;
322 >        return size() > s;
323      }
324  
325      /**
# Line 348 | Line 350 | public class ArrayDeque<E> extends Abstr
350       * @throws NoSuchElementException {@inheritDoc}
351       */
352      public E removeFirst() {
353 <        // checkInvariants();
354 <        E x = pollFirst();
353 <        if (x == null)
353 >        E e = pollFirst();
354 >        if (e == null)
355              throw new NoSuchElementException();
356 <        return x;
356 >        // checkInvariants();
357 >        return e;
358      }
359  
360      /**
361       * @throws NoSuchElementException {@inheritDoc}
362       */
363      public E removeLast() {
364 <        // checkInvariants();
365 <        E x = pollLast();
364 <        if (x == null)
364 >        E e = pollLast();
365 >        if (e == null)
366              throw new NoSuchElementException();
367 <        return x;
367 >        // checkInvariants();
368 >        return e;
369      }
370  
371      public E pollFirst() {
372 +        final Object[] es;
373 +        final int h;
374 +        E e = elementAt(es = elements, h = head);
375 +        if (e != null) {
376 +            es[h] = null;
377 +            head = inc(h, es.length);
378 +        }
379          // checkInvariants();
371        final int s, h;
372        if ((s = size) == 0)
373            return null;
374        final Object[] elements = this.elements;
375        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
376        elements[h] = null;
377        head = inc(h, elements.length);
378        size = s - 1;
380          return e;
381      }
382  
383      public E pollLast() {
384 +        final Object[] es;
385 +        final int t;
386 +        E e = elementAt(es = elements, t = dec(tail, es.length));
387 +        if (e != null)
388 +            es[tail = t] = null;
389          // checkInvariants();
384        final int s, tail;
385        if ((s = size) == 0)
386            return null;
387        final Object[] elements = this.elements;
388        @SuppressWarnings("unchecked")
389        E e = (E) elements[tail = add(head, s - 1, elements.length)];
390        elements[tail] = null;
391        size = s - 1;
390          return e;
391      }
392  
# Line 396 | Line 394 | public class ArrayDeque<E> extends Abstr
394       * @throws NoSuchElementException {@inheritDoc}
395       */
396      public E getFirst() {
397 +        E e = elementAt(elements, head);
398 +        if (e == null)
399 +            throw new NoSuchElementException();
400          // checkInvariants();
401 <        if (size == 0) throw new NoSuchElementException();
401 <        return elementAt(head);
401 >        return e;
402      }
403  
404      /**
405       * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getLast() {
408 +        final Object[] es = elements;
409 +        E e = elementAt(es, dec(tail, es.length));
410 +        if (e == null)
411 +            throw new NoSuchElementException();
412          // checkInvariants();
413 <        if (size == 0) throw new NoSuchElementException();
410 <        return elementAt(tail());
413 >        return e;
414      }
415  
416      public E peekFirst() {
417          // checkInvariants();
418 <        return (size == 0) ? null : elementAt(head);
418 >        return elementAt(elements, head);
419      }
420  
421      public E peekLast() {
422          // checkInvariants();
423 <        return (size == 0) ? null : elementAt(tail());
423 >        final Object[] es;
424 >        return elementAt(es = elements, dec(tail, es.length));
425      }
426  
427      /**
# Line 433 | Line 437 | public class ArrayDeque<E> extends Abstr
437       * @return {@code true} if the deque contained the specified element
438       */
439      public boolean removeFirstOccurrence(Object o) {
436        // checkInvariants();
440          if (o != null) {
441 <            final Object[] elements = this.elements;
442 <            final int capacity = elements.length;
443 <            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
444 <                if (o.equals(elements[i])) {
445 <                    delete(i);
446 <                    return true;
447 <                }
441 >            final Object[] es = elements;
442 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
443 >                 ; i = 0, to = end) {
444 >                for (; i < to; i++)
445 >                    if (o.equals(es[i])) {
446 >                        delete(i);
447 >                        return true;
448 >                    }
449 >                if (to == end) break;
450              }
451          }
452          return false;
# Line 461 | Line 466 | public class ArrayDeque<E> extends Abstr
466       */
467      public boolean removeLastOccurrence(Object o) {
468          if (o != null) {
469 <            final Object[] elements = this.elements;
470 <            final int capacity = elements.length;
471 <            for (int k = size, i = add(head, k - 1, capacity);
472 <                 --k >= 0; i = dec(i, capacity)) {
473 <                if (o.equals(elements[i])) {
474 <                    delete(i);
475 <                    return true;
476 <                }
469 >            final Object[] es = elements;
470 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
471 >                 ; i = es.length, to = end) {
472 >                for (i--; i > to - 1; i--)
473 >                    if (o.equals(es[i])) {
474 >                        delete(i);
475 >                        return true;
476 >                    }
477 >                if (to == end) break;
478              }
479          }
480          return false;
# Line 596 | Line 602 | public class ArrayDeque<E> extends Abstr
602       * <p>This method is called delete rather than remove to emphasize
603       * that its semantics differ from those of {@link List#remove(int)}.
604       *
605 <     * @return true if elements moved backwards
605 >     * @return true if elements near tail moved backwards
606       */
607      boolean delete(int i) {
608          // checkInvariants();
609 <        final Object[] elements = this.elements;
610 <        final int capacity = elements.length;
609 >        final Object[] es = elements;
610 >        final int capacity = es.length;
611          final int h = head;
612 <        int front;              // number of elements before to-be-deleted elt
613 <        if ((front = i - h) < 0) front += capacity;
614 <        final int back = size - front - 1; // number of elements after
612 >        // number of elements before to-be-deleted elt
613 >        final int front = sub(i, h, capacity);
614 >        final int back = size() - front - 1; // number of elements after
615          if (front < back) {
616              // move front elements forwards
617              if (h <= i) {
618 <                System.arraycopy(elements, h, elements, h + 1, front);
618 >                System.arraycopy(es, h, es, h + 1, front);
619              } else { // Wrap around
620 <                System.arraycopy(elements, 0, elements, 1, i);
621 <                elements[0] = elements[capacity - 1];
622 <                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
620 >                System.arraycopy(es, 0, es, 1, i);
621 >                es[0] = es[capacity - 1];
622 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
623              }
624 <            elements[h] = null;
624 >            es[h] = null;
625              head = inc(h, capacity);
620            size--;
626              // checkInvariants();
627              return false;
628          } else {
629              // move back elements backwards
630 <            int tail = tail();
630 >            tail = dec(tail, capacity);
631              if (i <= tail) {
632 <                System.arraycopy(elements, i + 1, elements, i, back);
632 >                System.arraycopy(es, i + 1, es, i, back);
633              } else { // Wrap around
634                  int firstLeg = capacity - (i + 1);
635 <                System.arraycopy(elements, i + 1, elements, i, firstLeg);
636 <                elements[capacity - 1] = elements[0];
637 <                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
635 >                System.arraycopy(es, i + 1, es, i, firstLeg);
636 >                es[capacity - 1] = es[0];
637 >                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
638              }
639 <            elements[tail] = null;
635 <            size--;
639 >            es[tail] = null;
640              // checkInvariants();
641              return true;
642          }
# Line 646 | Line 650 | public class ArrayDeque<E> extends Abstr
650       * @return the number of elements in this deque
651       */
652      public int size() {
653 <        return size;
653 >        return sub(tail, head, elements.length);
654      }
655  
656      /**
# Line 655 | Line 659 | public class ArrayDeque<E> extends Abstr
659       * @return {@code true} if this deque contains no elements
660       */
661      public boolean isEmpty() {
662 <        return size == 0;
662 >        return head == tail;
663      }
664  
665      /**
# Line 679 | Line 683 | public class ArrayDeque<E> extends Abstr
683          int cursor;
684  
685          /** Number of elements yet to be returned. */
686 <        int remaining = size;
686 >        int remaining = size();
687  
688          /**
689           * Index of element returned by most recent call to next.
# Line 689 | Line 693 | public class ArrayDeque<E> extends Abstr
693  
694          DeqIterator() { cursor = head; }
695  
692        int advance(int i, int modulus) {
693            return inc(i, modulus);
694        }
695
696        void doRemove() {
697            if (delete(lastRet))
698                // if left-shifted, undo advance in next()
699                cursor = dec(cursor, elements.length);
700        }
701
696          public final boolean hasNext() {
697              return remaining > 0;
698          }
699  
700 <        public final E next() {
701 <            if (remaining == 0)
700 >        public E next() {
701 >            if (remaining <= 0)
702                  throw new NoSuchElementException();
703 <            E e = checkedElementAt(elements, cursor);
703 >            final Object[] es = elements;
704 >            E e = nonNullElementAt(es, cursor);
705              lastRet = cursor;
706 <            cursor = advance(cursor, elements.length);
706 >            cursor = inc(cursor, es.length);
707              remaining--;
708              return e;
709          }
710  
711 +        void postDelete(boolean leftShifted) {
712 +            if (leftShifted)
713 +                cursor = dec(cursor, elements.length);
714 +        }
715 +
716          public final void remove() {
717              if (lastRet < 0)
718                  throw new IllegalStateException();
719 <            doRemove();
719 >            postDelete(delete(lastRet));
720              lastRet = -1;
721          }
722  
723 <        public final void forEachRemaining(Consumer<? super E> action) {
723 >        public void forEachRemaining(Consumer<? super E> action) {
724              Objects.requireNonNull(action);
725 <            final Object[] elements = ArrayDeque.this.elements;
726 <            final int capacity = elements.length;
727 <            int k = remaining;
725 >            int r;
726 >            if ((r = remaining) <= 0)
727 >                return;
728              remaining = 0;
729 <            for (int i = cursor; --k >= 0; i = advance(i, capacity))
730 <                action.accept(checkedElementAt(elements, i));
729 >            final Object[] es = elements;
730 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
731 >                throw new ConcurrentModificationException();
732 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
733 >                 ; i = 0, to = end) {
734 >                for (; i < to; i++)
735 >                    action.accept(elementAt(es, i));
736 >                if (to == end) {
737 >                    if (end != tail)
738 >                        throw new ConcurrentModificationException();
739 >                    lastRet = dec(end, es.length);
740 >                    break;
741 >                }
742 >            }
743          }
744      }
745  
746      private class DescendingIterator extends DeqIterator {
747 <        DescendingIterator() { cursor = tail(); }
747 >        DescendingIterator() { cursor = dec(tail, elements.length); }
748  
749 <        @Override int advance(int i, int modulus) {
750 <            return dec(i, modulus);
749 >        public final E next() {
750 >            if (remaining <= 0)
751 >                throw new NoSuchElementException();
752 >            final Object[] es = elements;
753 >            E e = nonNullElementAt(es, cursor);
754 >            lastRet = cursor;
755 >            cursor = dec(cursor, es.length);
756 >            remaining--;
757 >            return e;
758          }
759  
760 <        @Override void doRemove() {
761 <            if (!delete(lastRet))
743 <                // if right-shifted, undo advance in next
760 >        void postDelete(boolean leftShifted) {
761 >            if (!leftShifted)
762                  cursor = inc(cursor, elements.length);
763          }
764 +
765 +        public final void forEachRemaining(Consumer<? super E> action) {
766 +            Objects.requireNonNull(action);
767 +            int r;
768 +            if ((r = remaining) <= 0)
769 +                return;
770 +            remaining = 0;
771 +            final Object[] es = elements;
772 +            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
773 +                throw new ConcurrentModificationException();
774 +            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
775 +                 ; i = es.length - 1, to = end) {
776 +                // hotspot generates faster code than for: i >= to !
777 +                for (; i > to - 1; i--)
778 +                    action.accept(elementAt(es, i));
779 +                if (to == end) {
780 +                    if (end != head)
781 +                        throw new ConcurrentModificationException();
782 +                    lastRet = end;
783 +                    break;
784 +                }
785 +            }
786 +        }
787      }
788  
789      /**
# Line 759 | Line 800 | public class ArrayDeque<E> extends Abstr
800       * @since 1.8
801       */
802      public Spliterator<E> spliterator() {
803 <        return new ArrayDequeSpliterator();
803 >        return new DeqSpliterator();
804      }
805  
806 <    final class ArrayDequeSpliterator implements Spliterator<E> {
807 <        private int cursor;
808 <        private int remaining; // -1 until late-binding first use
806 >    final class DeqSpliterator implements Spliterator<E> {
807 >        private int fence;      // -1 until first use
808 >        private int cursor;     // current index, modified on traverse/split
809  
810          /** Constructs late-binding spliterator over all elements. */
811 <        ArrayDequeSpliterator() {
812 <            this.remaining = -1;
811 >        DeqSpliterator() {
812 >            this.fence = -1;
813          }
814  
815 <        /** Constructs spliterator over the given slice. */
816 <        ArrayDequeSpliterator(int cursor, int count) {
817 <            this.cursor = cursor;
818 <            this.remaining = count;
815 >        /** Constructs spliterator over the given range. */
816 >        DeqSpliterator(int origin, int fence) {
817 >            this.cursor = origin;
818 >            this.fence = fence;
819          }
820  
821 <        /** Ensures late-binding initialization; then returns remaining. */
822 <        private int remaining() {
823 <            if (remaining < 0) {
821 >        /** Ensures late-binding initialization; then returns fence. */
822 >        private int getFence() { // force initialization
823 >            int t;
824 >            if ((t = fence) < 0) {
825 >                t = fence = tail;
826                  cursor = head;
784                remaining = size;
827              }
828 <            return remaining;
828 >            return t;
829          }
830  
831 <        public ArrayDequeSpliterator trySplit() {
832 <            final int mid;
833 <            if ((mid = remaining() >> 1) > 0) {
834 <                int oldCursor = cursor;
835 <                cursor = add(cursor, mid, elements.length);
836 <                remaining -= mid;
795 <                return new ArrayDequeSpliterator(oldCursor, mid);
796 <            }
797 <            return null;
831 >        public DeqSpliterator trySplit() {
832 >            final Object[] es = elements;
833 >            final int i, n;
834 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
835 >                ? null
836 >                : new DeqSpliterator(i, cursor = add(i, n, es.length));
837          }
838  
839          public void forEachRemaining(Consumer<? super E> action) {
840 <            Objects.requireNonNull(action);
841 <            final Object[] elements = ArrayDeque.this.elements;
842 <            final int capacity = elements.length;
843 <            int k = remaining();
844 <            remaining = 0;
845 <            for (int i = cursor; --k >= 0; i = inc(i, capacity))
846 <                action.accept(checkedElementAt(elements, i));
840 >            if (action == null)
841 >                throw new NullPointerException();
842 >            final int end = getFence(), cursor = this.cursor;
843 >            final Object[] es = elements;
844 >            if (cursor != end) {
845 >                this.cursor = end;
846 >                // null check at both ends of range is sufficient
847 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
848 >                    throw new ConcurrentModificationException();
849 >                for (int i = cursor, to = (i <= end) ? end : es.length;
850 >                     ; i = 0, to = end) {
851 >                    for (; i < to; i++)
852 >                        action.accept(elementAt(es, i));
853 >                    if (to == end) break;
854 >                }
855 >            }
856          }
857  
858          public boolean tryAdvance(Consumer<? super E> action) {
859 <            Objects.requireNonNull(action);
860 <            if (remaining() == 0)
859 >            if (action == null)
860 >                throw new NullPointerException();
861 >            int t, i;
862 >            if ((t = fence) < 0) t = getFence();
863 >            if (t == (i = cursor))
864                  return false;
865 <            action.accept(checkedElementAt(elements, cursor));
866 <            cursor = inc(cursor, elements.length);
867 <            remaining--;
865 >            final Object[] es;
866 >            action.accept(nonNullElementAt(es = elements, i));
867 >            cursor = inc(i, es.length);
868              return true;
869          }
870  
871          public long estimateSize() {
872 <            return remaining();
872 >            return sub(getFence(), cursor, elements.length);
873          }
874  
875          public int characteristics() {
# Line 829 | Line 880 | public class ArrayDeque<E> extends Abstr
880          }
881      }
882  
832    @Override
883      public void forEach(Consumer<? super E> action) {
834        // checkInvariants();
884          Objects.requireNonNull(action);
885 <        final Object[] elements = this.elements;
886 <        final int capacity = elements.length;
887 <        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
888 <            action.accept(elementAt(i));
885 >        final Object[] es = elements;
886 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
887 >             ; i = 0, to = end) {
888 >            for (; i < to; i++)
889 >                action.accept(elementAt(es, i));
890 >            if (to == end) {
891 >                if (end != tail) throw new ConcurrentModificationException();
892 >                break;
893 >            }
894 >        }
895          // checkInvariants();
896      }
897  
# Line 845 | Line 900 | public class ArrayDeque<E> extends Abstr
900       * operator to that element, as specified by {@link List#replaceAll}.
901       *
902       * @param operator the operator to apply to each element
903 <     * @since 9
903 >     * @since TBD
904       */
905 <    public void replaceAll(UnaryOperator<E> operator) {
905 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
906          Objects.requireNonNull(operator);
907 <        final Object[] elements = this.elements;
908 <        final int capacity = elements.length;
909 <        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
910 <            elements[i] = operator.apply(elementAt(i));
907 >        final Object[] es = elements;
908 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
909 >             ; i = 0, to = end) {
910 >            for (; i < to; i++)
911 >                es[i] = operator.apply(elementAt(es, i));
912 >            if (to == end) {
913 >                if (end != tail) throw new ConcurrentModificationException();
914 >                break;
915 >            }
916 >        }
917          // checkInvariants();
918      }
919  
920      /**
921       * @throws NullPointerException {@inheritDoc}
922       */
862    @Override
923      public boolean removeIf(Predicate<? super E> filter) {
924          Objects.requireNonNull(filter);
925          return bulkRemove(filter);
# Line 868 | Line 928 | public class ArrayDeque<E> extends Abstr
928      /**
929       * @throws NullPointerException {@inheritDoc}
930       */
871    @Override
931      public boolean removeAll(Collection<?> c) {
932          Objects.requireNonNull(c);
933          return bulkRemove(e -> c.contains(e));
# Line 877 | Line 936 | public class ArrayDeque<E> extends Abstr
936      /**
937       * @throws NullPointerException {@inheritDoc}
938       */
880    @Override
939      public boolean retainAll(Collection<?> c) {
940          Objects.requireNonNull(c);
941          return bulkRemove(e -> !c.contains(e));
# Line 886 | Line 944 | public class ArrayDeque<E> extends Abstr
944      /** Implementation of bulk remove methods. */
945      private boolean bulkRemove(Predicate<? super E> filter) {
946          // checkInvariants();
947 <        final Object[] elements = this.elements;
948 <        final int capacity = elements.length;
949 <        int i = head, j = i, remaining = size, deleted = 0;
950 <        try {
951 <            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
952 <                @SuppressWarnings("unchecked") E e = (E) elements[i];
953 <                if (filter.test(e))
954 <                    deleted++;
955 <                else {
956 <                    if (j != i)
899 <                        elements[j] = e;
900 <                    j = inc(j, capacity);
901 <                }
947 >        final Object[] es = elements;
948 >        // Optimize for initial run of survivors
949 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
950 >             ; i = 0, to = end) {
951 >            for (; i < to; i++)
952 >                if (filter.test(elementAt(es, i)))
953 >                    return bulkRemoveModified(filter, i);
954 >            if (to == end) {
955 >                if (end != tail) throw new ConcurrentModificationException();
956 >                break;
957              }
903            return deleted > 0;
904        } catch (Throwable ex) {
905            for (; remaining > 0;
906                 remaining--, i = inc(i, capacity), j = inc(j, capacity))
907                elements[j] = elements[i];
908            throw ex;
909        } finally {
910            size -= deleted;
911            for (; --deleted >= 0; j = inc(j, capacity))
912                elements[j] = null;
913            // checkInvariants();
958          }
959 +        return false;
960 +    }
961 +
962 +    // A tiny bit set implementation
963 +
964 +    private static long[] nBits(int n) {
965 +        return new long[((n - 1) >> 6) + 1];
966 +    }
967 +    private static void setBit(long[] bits, int i) {
968 +        bits[i >> 6] |= 1L << i;
969 +    }
970 +    private static boolean isClear(long[] bits, int i) {
971 +        return (bits[i >> 6] & (1L << i)) == 0;
972 +    }
973 +
974 +    /**
975 +     * Helper for bulkRemove, in case of at least one deletion.
976 +     * Tolerate predicates that reentrantly access the collection for
977 +     * read (but writers still get CME), so traverse once to find
978 +     * elements to delete, a second pass to physically expunge.
979 +     *
980 +     * @param beg valid index of first element to be deleted
981 +     */
982 +    private boolean bulkRemoveModified(
983 +        Predicate<? super E> filter, final int beg) {
984 +        final Object[] es = elements;
985 +        final int capacity = es.length;
986 +        final int end = tail;
987 +        final long[] deathRow = nBits(sub(end, beg, capacity));
988 +        deathRow[0] = 1L;   // set bit 0
989 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
990 +             ; i = 0, to = end, k -= capacity) {
991 +            for (; i < to; i++)
992 +                if (filter.test(elementAt(es, i)))
993 +                    setBit(deathRow, i - k);
994 +            if (to == end) break;
995 +        }
996 +        // a two-finger traversal, with hare i reading, tortoise w writing
997 +        int w = beg;
998 +        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
999 +             ; w = 0) { // w rejoins i on second leg
1000 +            // In this loop, i and w are on the same leg, with i > w
1001 +            for (; i < to; i++)
1002 +                if (isClear(deathRow, i - k))
1003 +                    es[w++] = es[i];
1004 +            if (to == end) break;
1005 +            // In this loop, w is on the first leg, i on the second
1006 +            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1007 +                if (isClear(deathRow, i - k))
1008 +                    es[w++] = es[i];
1009 +            if (i >= to) {
1010 +                if (w == capacity) w = 0; // "corner" case
1011 +                break;
1012 +            }
1013 +        }
1014 +        if (end != tail) throw new ConcurrentModificationException();
1015 +        circularClear(es, tail = w, end);
1016 +        // checkInvariants();
1017 +        return true;
1018      }
1019  
1020      /**
# Line 924 | Line 1027 | public class ArrayDeque<E> extends Abstr
1027       */
1028      public boolean contains(Object o) {
1029          if (o != null) {
1030 <            final Object[] elements = this.elements;
1031 <            final int capacity = elements.length;
1032 <            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1033 <                if (o.equals(elements[i]))
1034 <                    return true;
1030 >            final Object[] es = elements;
1031 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1032 >                 ; i = 0, to = end) {
1033 >                for (; i < to; i++)
1034 >                    if (o.equals(es[i]))
1035 >                        return true;
1036 >                if (to == end) break;
1037 >            }
1038          }
1039          return false;
1040      }
# Line 955 | Line 1061 | public class ArrayDeque<E> extends Abstr
1061       * The deque will be empty after this call returns.
1062       */
1063      public void clear() {
1064 <        final Object[] elements = this.elements;
1065 <        final int capacity = elements.length;
960 <        final int h = this.head;
961 <        final int s = size;
962 <        if (capacity - h >= s)
963 <            Arrays.fill(elements, h, h + s, null);
964 <        else {
965 <            Arrays.fill(elements, h, capacity, null);
966 <            Arrays.fill(elements, 0, s - capacity + h, null);
967 <        }
968 <        size = head = 0;
1064 >        circularClear(elements, head, tail);
1065 >        head = tail = 0;
1066          // checkInvariants();
1067      }
1068  
1069      /**
1070 +     * Nulls out slots starting at array index i, upto index end.
1071 +     */
1072 +    private static void circularClear(Object[] es, int i, int end) {
1073 +        for (int to = (i <= end) ? end : es.length;
1074 +             ; i = 0, to = end) {
1075 +            Arrays.fill(es, i, to, null);
1076 +            if (to == end) break;
1077 +        }
1078 +    }
1079 +
1080 +    /**
1081       * Returns an array containing all of the elements in this deque
1082       * in proper sequence (from first to last element).
1083       *
# Line 983 | Line 1091 | public class ArrayDeque<E> extends Abstr
1091       * @return an array containing all of the elements in this deque
1092       */
1093      public Object[] toArray() {
1094 <        final int head = this.head;
1095 <        final int firstLeg;
1096 <        Object[] a = Arrays.copyOfRange(elements, head, head + size);
1097 <        if ((firstLeg = elements.length - head) < size)
1098 <            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1094 >        return toArray(Object[].class);
1095 >    }
1096 >
1097 >    private <T> T[] toArray(Class<T[]> klazz) {
1098 >        final Object[] es = elements;
1099 >        final T[] a;
1100 >        final int size = size(), head = this.head, end;
1101 >        final int len = Math.min(size, es.length - head);
1102 >        if ((end = head + size) >= 0) {
1103 >            a = Arrays.copyOfRange(es, head, end, klazz);
1104 >        } else {
1105 >            // integer overflow!
1106 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1107 >            System.arraycopy(es, head, a, 0, len);
1108 >        }
1109 >        if (tail < head)
1110 >            System.arraycopy(es, 0, a, len, tail);
1111          return a;
1112      }
1113  
# Line 1029 | Line 1149 | public class ArrayDeque<E> extends Abstr
1149       */
1150      @SuppressWarnings("unchecked")
1151      public <T> T[] toArray(T[] a) {
1152 <        final Object[] elements = this.elements;
1153 <        final int head = this.head;
1154 <        final int firstLeg;
1155 <        boolean wrap = (firstLeg = elements.length - head) < size;
1156 <        if (size > a.length) {
1157 <            a = (T[]) Arrays.copyOfRange(elements, head, head + size,
1158 <                                         a.getClass());
1159 <        } else {
1040 <            System.arraycopy(elements, head, a, 0, wrap ? firstLeg : size);
1041 <            if (size < a.length)
1042 <                a[size] = null;
1152 >        final int size;
1153 >        if ((size = size()) > a.length)
1154 >            return toArray((Class<T[]>) a.getClass());
1155 >        final Object[] es = elements;
1156 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1157 >             ; i = 0, len = tail) {
1158 >            System.arraycopy(es, i, a, j, len);
1159 >            if ((j += len) == size) break;
1160          }
1161 <        if (wrap)
1162 <            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1161 >        if (size < a.length)
1162 >            a[size] = null;
1163          return a;
1164      }
1165  
# Line 1080 | Line 1197 | public class ArrayDeque<E> extends Abstr
1197          s.defaultWriteObject();
1198  
1199          // Write out size
1200 <        s.writeInt(size);
1200 >        s.writeInt(size());
1201  
1202          // Write out elements in order.
1203 <        final Object[] elements = this.elements;
1204 <        final int capacity = elements.length;
1205 <        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1206 <            s.writeObject(elements[i]);
1203 >        final Object[] es = elements;
1204 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1205 >             ; i = 0, to = end) {
1206 >            for (; i < to; i++)
1207 >                s.writeObject(es[i]);
1208 >            if (to == end) break;
1209 >        }
1210      }
1211  
1212      /**
# Line 1101 | Line 1221 | public class ArrayDeque<E> extends Abstr
1221          s.defaultReadObject();
1222  
1223          // Read in size and allocate array
1224 <        elements = new Object[size = s.readInt()];
1224 >        int size = s.readInt();
1225 >        elements = new Object[size + 1];
1226 >        this.tail = size;
1227  
1228          // Read in all elements in the proper order.
1229          for (int i = 0; i < size; i++)
# Line 1109 | Line 1231 | public class ArrayDeque<E> extends Abstr
1231      }
1232  
1233      /** debugging */
1234 <    private void checkInvariants() {
1234 >    void checkInvariants() {
1235          try {
1236              int capacity = elements.length;
1237 <            assert size >= 0 && size <= capacity;
1238 <            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1239 <                                 || head < capacity);
1240 <            assert size == 0
1241 <                || (elements[head] != null && elements[tail()] != null);
1242 <            assert size == capacity
1243 <                || (elements[dec(head, capacity)] == null
1122 <                    && elements[inc(tail(), capacity)] == null);
1237 >            // assert head >= 0 && head < capacity;
1238 >            // assert tail >= 0 && tail < capacity;
1239 >            // assert capacity > 0;
1240 >            // assert size() < capacity;
1241 >            // assert head == tail || elements[head] != null;
1242 >            // assert elements[tail] == null;
1243 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1244          } catch (Throwable t) {
1245 <            System.err.printf("head=%d size=%d capacity=%d%n",
1246 <                              head, size, elements.length);
1245 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1246 >                              head, tail, elements.length);
1247              System.err.printf("elements=%s%n",
1248                                Arrays.toString(elements));
1249              throw t;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines