ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.73 by jsr166, Sun Oct 11 00:50:06 2015 UTC vs.
Revision 1.80 by jsr166, Thu Oct 20 01:43:31 2016 UTC

# Line 7 | Line 7 | package java.util;
7  
8   import java.io.Serializable;
9   import java.util.function.Consumer;
10 + import java.util.function.Predicate;
11 + import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 52 | Line 54 | import java.util.function.Consumer;
54   * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
55 * @since   1.6
57   * @param <E> the type of elements held in this deque
58 + * @since   1.6
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
65 <     * full, except transiently within an addX method where it is
66 <     * resized (see doubleCapacity) immediately upon becoming full,
67 <     * thus avoiding head and tail wrapping around to equal each
68 <     * other.  We also guarantee that all array cells not holding
69 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    transient Object[] elements; // non-private to simplify nested class access
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75      transient int head;
76  
77 +    /** Number of elements in this collection. */
78 +    transient int size;
79 +
80      /**
81 <     * The index at which the next element would be added to the tail
82 <     * of the deque (via addLast(E), add(E), or push(E)).
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85       */
86 <    transient int tail;
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87  
88      /**
89 <     * The minimum capacity that we'll use for a newly created deque.
90 <     * Must be a power of 2.
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92       */
93 <    private static final int MIN_INITIAL_CAPACITY = 8;
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <    // ******  Array allocation and resizing utilities ******
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        int oldCapacity = elements.length;
119 >        int minCapacity;
120 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
121 >            if (minCapacity < 0)
122 >                throw new IllegalStateException("Sorry, deque too big");
123 >            return Integer.MAX_VALUE;
124 >        }
125 >        if (needed > jump)
126 >            return minCapacity;
127 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
128 >            ? oldCapacity + jump
129 >            : MAX_ARRAY_SIZE;
130 >    }
131  
132      /**
133 <     * Allocates empty array to hold the given number of elements.
133 >     * Increases the internal storage of this collection, if necessary,
134 >     * to ensure that it can hold at least the given number of elements.
135       *
136 <     * @param numElements  the number of elements to hold
136 >     * @param minCapacity the desired minimum capacity
137 >     * @since TBD
138       */
139 <    private void allocateElements(int numElements) {
140 <        int initialCapacity = MIN_INITIAL_CAPACITY;
141 <        // Find the best power of two to hold elements.
142 <        // Tests "<=" because arrays aren't kept full.
103 <        if (numElements >= initialCapacity) {
104 <            initialCapacity = numElements;
105 <            initialCapacity |= (initialCapacity >>>  1);
106 <            initialCapacity |= (initialCapacity >>>  2);
107 <            initialCapacity |= (initialCapacity >>>  4);
108 <            initialCapacity |= (initialCapacity >>>  8);
109 <            initialCapacity |= (initialCapacity >>> 16);
110 <            initialCapacity++;
111 <
112 <            if (initialCapacity < 0)    // Too many elements, must back off
113 <                initialCapacity >>>= 1; // Good luck allocating 2^30 elements
114 <        }
115 <        elements = new Object[initialCapacity];
139 >    /* public */ void ensureCapacity(int minCapacity) {
140 >        if (minCapacity > elements.length)
141 >            grow(minCapacity - elements.length);
142 >        // checkInvariants();
143      }
144  
145      /**
146 <     * Doubles the capacity of this deque.  Call only when full, i.e.,
147 <     * when head and tail have wrapped around to become equal.
146 >     * Minimizes the internal storage of this collection.
147 >     *
148 >     * @since TBD
149       */
150 <    private void doubleCapacity() {
151 <        assert head == tail;
152 <        int p = head;
153 <        int n = elements.length;
154 <        int r = n - p; // number of elements to the right of p
155 <        int newCapacity = n << 1;
128 <        if (newCapacity < 0)
129 <            throw new IllegalStateException("Sorry, deque too big");
130 <        Object[] a = new Object[newCapacity];
131 <        System.arraycopy(elements, p, a, 0, r);
132 <        System.arraycopy(elements, 0, a, r, p);
133 <        elements = a;
134 <        head = 0;
135 <        tail = n;
150 >    /* public */ void trimToSize() {
151 >        if (size < elements.length) {
152 >            elements = toArray();
153 >            head = 0;
154 >        }
155 >        // checkInvariants();
156      }
157  
158      /**
# Line 147 | Line 167 | public class ArrayDeque<E> extends Abstr
167       * Constructs an empty array deque with an initial capacity
168       * sufficient to hold the specified number of elements.
169       *
170 <     * @param numElements  lower bound on initial capacity of the deque
170 >     * @param numElements lower bound on initial capacity of the deque
171       */
172      public ArrayDeque(int numElements) {
173 <        allocateElements(numElements);
173 >        elements = new Object[numElements];
174      }
175  
176      /**
# Line 164 | Line 184 | public class ArrayDeque<E> extends Abstr
184       * @throws NullPointerException if the specified collection is null
185       */
186      public ArrayDeque(Collection<? extends E> c) {
187 <        allocateElements(c.size());
188 <        addAll(c);
187 >        Object[] elements = c.toArray();
188 >        // defend against c.toArray (incorrectly) not returning Object[]
189 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
190 >        if (elements.getClass() != Object[].class)
191 >            elements = Arrays.copyOf(elements, size, Object[].class);
192 >        for (Object obj : elements)
193 >            Objects.requireNonNull(obj);
194 >        size = elements.length;
195 >        this.elements = elements;
196 >    }
197 >
198 >    /**
199 >     * Increments i, mod modulus.
200 >     * Precondition and postcondition: 0 <= i < modulus.
201 >     */
202 >    static final int inc(int i, int modulus) {
203 >        if (++i == modulus) i = 0;
204 >        return i;
205 >    }
206 >
207 >    /**
208 >     * Decrements i, mod modulus.
209 >     * Precondition and postcondition: 0 <= i < modulus.
210 >     */
211 >    static final int dec(int i, int modulus) {
212 >        if (--i < 0) i += modulus;
213 >        return i;
214 >    }
215 >
216 >    /**
217 >     * Adds i and j, mod modulus.
218 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
219 >     */
220 >    static final int add(int i, int j, int modulus) {
221 >        if ((i += j) - modulus >= 0) i -= modulus;
222 >        return i;
223 >    }
224 >
225 >    /**
226 >     * Returns the array index of the last element.
227 >     * May return invalid index -1 if there are no elements.
228 >     */
229 >    final int tail() {
230 >        return add(head, size - 1, elements.length);
231 >    }
232 >
233 >    /**
234 >     * Returns element at array index i.
235 >     */
236 >    @SuppressWarnings("unchecked")
237 >    final E elementAt(int i) {
238 >        return (E) elements[i];
239 >    }
240 >
241 >    /**
242 >     * A version of elementAt that checks for null elements.
243 >     * This check doesn't catch all possible comodifications,
244 >     * but does catch ones that corrupt traversal.
245 >     */
246 >    E checkedElementAt(Object[] elements, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) elements[i];
248 >        if (e == null)
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253      // The main insertion and extraction methods are addFirst,
# Line 179 | Line 261 | public class ArrayDeque<E> extends Abstr
261       * @throws NullPointerException if the specified element is null
262       */
263      public void addFirst(E e) {
264 <        if (e == null)
265 <            throw new NullPointerException();
266 <        elements[head = (head - 1) & (elements.length - 1)] = e;
267 <        if (head == tail)
268 <            doubleCapacity();
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        Object[] elements;
267 >        int capacity, s = size;
268 >        while (s == (capacity = (elements = this.elements).length))
269 >            grow(1);
270 >        elements[head = dec(head, capacity)] = e;
271 >        size = s + 1;
272      }
273  
274      /**
# Line 195 | Line 280 | public class ArrayDeque<E> extends Abstr
280       * @throws NullPointerException if the specified element is null
281       */
282      public void addLast(E e) {
283 <        if (e == null)
284 <            throw new NullPointerException();
285 <        elements[tail] = e;
286 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
287 <            doubleCapacity();
283 >        // checkInvariants();
284 >        Objects.requireNonNull(e);
285 >        Object[] elements;
286 >        int capacity, s = size;
287 >        while (s == (capacity = (elements = this.elements).length))
288 >            grow(1);
289 >        elements[add(head, s, capacity)] = e;
290 >        size = s + 1;
291 >    }
292 >
293 >    /**
294 >     * Adds all of the elements in the specified collection at the end
295 >     * of this deque, as if by calling {@link #addLast} on each one,
296 >     * in the order that they are returned by the collection's
297 >     * iterator.
298 >     *
299 >     * @param c the elements to be inserted into this deque
300 >     * @return {@code true} if this deque changed as a result of the call
301 >     * @throws NullPointerException if the specified collection or any
302 >     *         of its elements are null
303 >     */
304 >    @Override
305 >    public boolean addAll(Collection<? extends E> c) {
306 >        // checkInvariants();
307 >        Object[] a, elements;
308 >        int newcomers, capacity, s = size;
309 >        if ((newcomers = (a = c.toArray()).length) == 0)
310 >            return false;
311 >        while ((capacity = (elements = this.elements).length) - s < newcomers)
312 >            grow(newcomers - (capacity - s));
313 >        int i = add(head, s, capacity);
314 >        for (Object x : a) {
315 >            Objects.requireNonNull(x);
316 >            elements[i] = x;
317 >            i = inc(i, capacity);
318 >            size++;
319 >        }
320 >        return true;
321      }
322  
323      /**
# Line 230 | Line 348 | public class ArrayDeque<E> extends Abstr
348       * @throws NoSuchElementException {@inheritDoc}
349       */
350      public E removeFirst() {
351 +        // checkInvariants();
352          E x = pollFirst();
353          if (x == null)
354              throw new NoSuchElementException();
# Line 240 | Line 359 | public class ArrayDeque<E> extends Abstr
359       * @throws NoSuchElementException {@inheritDoc}
360       */
361      public E removeLast() {
362 +        // checkInvariants();
363          E x = pollLast();
364          if (x == null)
365              throw new NoSuchElementException();
# Line 247 | Line 367 | public class ArrayDeque<E> extends Abstr
367      }
368  
369      public E pollFirst() {
370 +        // checkInvariants();
371 +        final int s, h;
372 +        if ((s = size) == 0)
373 +            return null;
374          final Object[] elements = this.elements;
375 <        final int h = head;
376 <        @SuppressWarnings("unchecked")
377 <        E result = (E) elements[h];
378 <        // Element is null if deque empty
379 <        if (result != null) {
256 <            elements[h] = null; // Must null out slot
257 <            head = (h + 1) & (elements.length - 1);
258 <        }
259 <        return result;
375 >        @SuppressWarnings("unchecked") E e = (E) elements[h = head];
376 >        elements[h] = null;
377 >        head = inc(h, elements.length);
378 >        size = s - 1;
379 >        return e;
380      }
381  
382      public E pollLast() {
383 +        // checkInvariants();
384 +        final int s, tail;
385 +        if ((s = size) == 0)
386 +            return null;
387          final Object[] elements = this.elements;
264        final int t = (tail - 1) & (elements.length - 1);
388          @SuppressWarnings("unchecked")
389 <        E result = (E) elements[t];
390 <        if (result != null) {
391 <            elements[t] = null;
392 <            tail = t;
270 <        }
271 <        return result;
389 >        E e = (E) elements[tail = add(head, s - 1, elements.length)];
390 >        elements[tail] = null;
391 >        size = s - 1;
392 >        return e;
393      }
394  
395      /**
396       * @throws NoSuchElementException {@inheritDoc}
397       */
398      public E getFirst() {
399 <        @SuppressWarnings("unchecked")
400 <        E result = (E) elements[head];
401 <        if (result == null)
281 <            throw new NoSuchElementException();
282 <        return result;
399 >        // checkInvariants();
400 >        if (size == 0) throw new NoSuchElementException();
401 >        return elementAt(head);
402      }
403  
404      /**
405       * @throws NoSuchElementException {@inheritDoc}
406       */
407      public E getLast() {
408 <        @SuppressWarnings("unchecked")
409 <        E result = (E) elements[(tail - 1) & (elements.length - 1)];
410 <        if (result == null)
292 <            throw new NoSuchElementException();
293 <        return result;
408 >        // checkInvariants();
409 >        if (size == 0) throw new NoSuchElementException();
410 >        return elementAt(tail());
411      }
412  
296    @SuppressWarnings("unchecked")
413      public E peekFirst() {
414 <        // elements[head] is null if deque empty
415 <        return (E) elements[head];
414 >        // checkInvariants();
415 >        return (size == 0) ? null : elementAt(head);
416      }
417  
302    @SuppressWarnings("unchecked")
418      public E peekLast() {
419 <        return (E) elements[(tail - 1) & (elements.length - 1)];
419 >        // checkInvariants();
420 >        return (size == 0) ? null : elementAt(tail());
421      }
422  
423      /**
# Line 317 | Line 433 | public class ArrayDeque<E> extends Abstr
433       * @return {@code true} if the deque contained the specified element
434       */
435      public boolean removeFirstOccurrence(Object o) {
436 +        // checkInvariants();
437          if (o != null) {
438 <            int mask = elements.length - 1;
439 <            int i = head;
440 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
441 <                if (o.equals(x)) {
438 >            final Object[] elements = this.elements;
439 >            final int capacity = elements.length;
440 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity)) {
441 >                if (o.equals(elements[i])) {
442                      delete(i);
443                      return true;
444                  }
# Line 344 | Line 461 | public class ArrayDeque<E> extends Abstr
461       */
462      public boolean removeLastOccurrence(Object o) {
463          if (o != null) {
464 <            int mask = elements.length - 1;
465 <            int i = (tail - 1) & mask;
466 <            for (Object x; (x = elements[i]) != null; i = (i - 1) & mask) {
467 <                if (o.equals(x)) {
464 >            final Object[] elements = this.elements;
465 >            final int capacity = elements.length;
466 >            for (int k = size, i = add(head, k - 1, capacity);
467 >                 --k >= 0; i = dec(i, capacity)) {
468 >                if (o.equals(elements[i])) {
469                      delete(i);
470                      return true;
471                  }
# Line 470 | Line 588 | public class ArrayDeque<E> extends Abstr
588          return removeFirst();
589      }
590  
473    private void checkInvariants() {
474        assert elements[tail] == null;
475        assert head == tail ? elements[head] == null :
476            (elements[head] != null &&
477             elements[(tail - 1) & (elements.length - 1)] != null);
478        assert elements[(head - 1) & (elements.length - 1)] == null;
479    }
480
591      /**
592 <     * Removes the element at the specified position in the elements array,
593 <     * adjusting head and tail as necessary.  This can result in motion of
594 <     * elements backwards or forwards in the array.
592 >     * Removes the element at the specified position in the elements array.
593 >     * This can result in forward or backwards motion of array elements.
594 >     * We optimize for least element motion.
595       *
596       * <p>This method is called delete rather than remove to emphasize
597       * that its semantics differ from those of {@link List#remove(int)}.
# Line 489 | Line 599 | public class ArrayDeque<E> extends Abstr
599       * @return true if elements moved backwards
600       */
601      boolean delete(int i) {
602 <        checkInvariants();
602 >        // checkInvariants();
603          final Object[] elements = this.elements;
604 <        final int mask = elements.length - 1;
604 >        final int capacity = elements.length;
605          final int h = head;
606 <        final int t = tail;
607 <        final int front = (i - h) & mask;
608 <        final int back  = (t - i) & mask;
499 <
500 <        // Invariant: head <= i < tail mod circularity
501 <        if (front >= ((t - h) & mask))
502 <            throw new ConcurrentModificationException();
503 <
504 <        // Optimize for least element motion
606 >        int front;              // number of elements before to-be-deleted elt
607 >        if ((front = i - h) < 0) front += capacity;
608 >        final int back = size - front - 1; // number of elements after
609          if (front < back) {
610 +            // move front elements forwards
611              if (h <= i) {
612                  System.arraycopy(elements, h, elements, h + 1, front);
613              } else { // Wrap around
614                  System.arraycopy(elements, 0, elements, 1, i);
615 <                elements[0] = elements[mask];
616 <                System.arraycopy(elements, h, elements, h + 1, mask - h);
615 >                elements[0] = elements[capacity - 1];
616 >                System.arraycopy(elements, h, elements, h + 1, front - (i + 1));
617              }
618              elements[h] = null;
619 <            head = (h + 1) & mask;
619 >            head = inc(h, capacity);
620 >            size--;
621 >            // checkInvariants();
622              return false;
623          } else {
624 <            if (i < t) { // Copy the null tail as well
624 >            // move back elements backwards
625 >            int tail = tail();
626 >            if (i <= tail) {
627                  System.arraycopy(elements, i + 1, elements, i, back);
519                tail = t - 1;
628              } else { // Wrap around
629 <                System.arraycopy(elements, i + 1, elements, i, mask - i);
630 <                elements[mask] = elements[0];
631 <                System.arraycopy(elements, 1, elements, 0, t);
632 <                tail = (t - 1) & mask;
629 >                int firstLeg = capacity - (i + 1);
630 >                System.arraycopy(elements, i + 1, elements, i, firstLeg);
631 >                elements[capacity - 1] = elements[0];
632 >                System.arraycopy(elements, 1, elements, 0, back - firstLeg - 1);
633              }
634 +            elements[tail] = null;
635 +            size--;
636 +            // checkInvariants();
637              return true;
638          }
639      }
# Line 535 | Line 646 | public class ArrayDeque<E> extends Abstr
646       * @return the number of elements in this deque
647       */
648      public int size() {
649 <        return (tail - head) & (elements.length - 1);
649 >        return size;
650      }
651  
652      /**
# Line 544 | Line 655 | public class ArrayDeque<E> extends Abstr
655       * @return {@code true} if this deque contains no elements
656       */
657      public boolean isEmpty() {
658 <        return head == tail;
658 >        return size == 0;
659      }
660  
661      /**
# Line 564 | Line 675 | public class ArrayDeque<E> extends Abstr
675      }
676  
677      private class DeqIterator implements Iterator<E> {
678 <        /**
679 <         * Index of element to be returned by subsequent call to next.
569 <         */
570 <        private int cursor = head;
678 >        /** Index of element to be returned by subsequent call to next. */
679 >        int cursor;
680  
681 <        /**
682 <         * Tail recorded at construction (also in remove), to stop
574 <         * iterator and also to check for comodification.
575 <         */
576 <        private int fence = tail;
681 >        /** Number of elements yet to be returned. */
682 >        int remaining = size;
683  
684          /**
685           * Index of element returned by most recent call to next.
686           * Reset to -1 if element is deleted by a call to remove.
687           */
688 <        private int lastRet = -1;
688 >        int lastRet = -1;
689 >
690 >        DeqIterator() { cursor = head; }
691 >
692 >        int advance(int i, int modulus) {
693 >            return inc(i, modulus);
694 >        }
695 >
696 >        void doRemove() {
697 >            if (delete(lastRet))
698 >                // if left-shifted, undo advance in next()
699 >                cursor = dec(cursor, elements.length);
700 >        }
701  
702 <        public boolean hasNext() {
703 <            return cursor != fence;
702 >        public final boolean hasNext() {
703 >            return remaining > 0;
704          }
705  
706 <        public E next() {
707 <            if (cursor == fence)
706 >        public final E next() {
707 >            if (remaining == 0)
708                  throw new NoSuchElementException();
709 <            @SuppressWarnings("unchecked")
592 <            E result = (E) elements[cursor];
593 <            // This check doesn't catch all possible comodifications,
594 <            // but does catch the ones that corrupt traversal
595 <            if (tail != fence || result == null)
596 <                throw new ConcurrentModificationException();
709 >            E e = checkedElementAt(elements, cursor);
710              lastRet = cursor;
711 <            cursor = (cursor + 1) & (elements.length - 1);
712 <            return result;
711 >            cursor = advance(cursor, elements.length);
712 >            remaining--;
713 >            return e;
714          }
715  
716 <        public void remove() {
716 >        public final void remove() {
717              if (lastRet < 0)
718                  throw new IllegalStateException();
719 <            if (delete(lastRet)) { // if left-shifted, undo increment in next()
606 <                cursor = (cursor - 1) & (elements.length - 1);
607 <                fence = tail;
608 <            }
719 >            doRemove();
720              lastRet = -1;
721          }
722  
723 <        public void forEachRemaining(Consumer<? super E> action) {
723 >        public final void forEachRemaining(Consumer<? super E> action) {
724              Objects.requireNonNull(action);
725 <            Object[] a = elements;
726 <            int m = a.length - 1, f = fence, i = cursor;
727 <            cursor = f;
728 <            while (i != f) {
729 <                @SuppressWarnings("unchecked") E e = (E)a[i];
730 <                i = (i + 1) & m;
731 <                if (e == null)
732 <                    throw new ConcurrentModificationException();
733 <                action.accept(e);
734 <            }
725 >            final Object[] elements = ArrayDeque.this.elements;
726 >            final int capacity = elements.length;
727 >            int k = remaining;
728 >            remaining = 0;
729 >            for (int i = cursor; --k >= 0; i = advance(i, capacity))
730 >                action.accept(checkedElementAt(elements, i));
731 >        }
732 >    }
733 >
734 >    private class DescendingIterator extends DeqIterator {
735 >        DescendingIterator() { cursor = tail(); }
736 >
737 >        @Override int advance(int i, int modulus) {
738 >            return dec(i, modulus);
739 >        }
740 >
741 >        @Override void doRemove() {
742 >            if (!delete(lastRet))
743 >                // if right-shifted, undo advance in next
744 >                cursor = inc(cursor, elements.length);
745          }
746      }
747  
748      /**
749 <     * This class is nearly a mirror-image of DeqIterator, using tail
750 <     * instead of head for initial cursor, and head instead of tail
751 <     * for fence.
749 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
750 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
751 >     * deque.
752 >     *
753 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
754 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
755 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
756 >     * the reporting of additional characteristic values.
757 >     *
758 >     * @return a {@code Spliterator} over the elements in this deque
759 >     * @since 1.8
760       */
761 <    private class DescendingIterator implements Iterator<E> {
762 <        private int cursor = tail;
763 <        private int fence = head;
764 <        private int lastRet = -1;
761 >    public Spliterator<E> spliterator() {
762 >        return new ArrayDequeSpliterator();
763 >    }
764 >
765 >    final class ArrayDequeSpliterator implements Spliterator<E> {
766 >        private int cursor;
767 >        private int remaining; // -1 until late-binding first use
768  
769 <        public boolean hasNext() {
770 <            return cursor != fence;
769 >        /** Constructs late-binding spliterator over all elements. */
770 >        ArrayDequeSpliterator() {
771 >            this.remaining = -1;
772          }
773  
774 <        public E next() {
775 <            if (cursor == fence)
776 <                throw new NoSuchElementException();
777 <            cursor = (cursor - 1) & (elements.length - 1);
645 <            @SuppressWarnings("unchecked")
646 <            E result = (E) elements[cursor];
647 <            if (head != fence || result == null)
648 <                throw new ConcurrentModificationException();
649 <            lastRet = cursor;
650 <            return result;
774 >        /** Constructs spliterator over the given slice. */
775 >        ArrayDequeSpliterator(int cursor, int count) {
776 >            this.cursor = cursor;
777 >            this.remaining = count;
778          }
779  
780 <        public void remove() {
781 <            if (lastRet < 0)
782 <                throw new IllegalStateException();
783 <            if (!delete(lastRet)) {
784 <                cursor = (cursor + 1) & (elements.length - 1);
658 <                fence = head;
780 >        /** Ensures late-binding initialization; then returns remaining. */
781 >        private int remaining() {
782 >            if (remaining < 0) {
783 >                cursor = head;
784 >                remaining = size;
785              }
786 <            lastRet = -1;
786 >            return remaining;
787 >        }
788 >
789 >        public ArrayDequeSpliterator trySplit() {
790 >            final int mid;
791 >            if ((mid = remaining() >> 1) > 0) {
792 >                int oldCursor = cursor;
793 >                cursor = add(cursor, mid, elements.length);
794 >                remaining -= mid;
795 >                return new ArrayDequeSpliterator(oldCursor, mid);
796 >            }
797 >            return null;
798 >        }
799 >
800 >        public void forEachRemaining(Consumer<? super E> action) {
801 >            Objects.requireNonNull(action);
802 >            final Object[] elements = ArrayDeque.this.elements;
803 >            final int capacity = elements.length;
804 >            int k = remaining();
805 >            remaining = 0;
806 >            for (int i = cursor; --k >= 0; i = inc(i, capacity))
807 >                action.accept(checkedElementAt(elements, i));
808 >        }
809 >
810 >        public boolean tryAdvance(Consumer<? super E> action) {
811 >            Objects.requireNonNull(action);
812 >            if (remaining() == 0)
813 >                return false;
814 >            action.accept(checkedElementAt(elements, cursor));
815 >            cursor = inc(cursor, elements.length);
816 >            remaining--;
817 >            return true;
818 >        }
819 >
820 >        public long estimateSize() {
821 >            return remaining();
822 >        }
823 >
824 >        public int characteristics() {
825 >            return Spliterator.NONNULL
826 >                | Spliterator.ORDERED
827 >                | Spliterator.SIZED
828 >                | Spliterator.SUBSIZED;
829 >        }
830 >    }
831 >
832 >    @Override
833 >    public void forEach(Consumer<? super E> action) {
834 >        // checkInvariants();
835 >        Objects.requireNonNull(action);
836 >        final Object[] elements = this.elements;
837 >        final int capacity = elements.length;
838 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
839 >            action.accept(elementAt(i));
840 >        // checkInvariants();
841 >    }
842 >
843 >    /**
844 >     * Replaces each element of this deque with the result of applying the
845 >     * operator to that element, as specified by {@link List#replaceAll}.
846 >     *
847 >     * @param operator the operator to apply to each element
848 >     * @since TBD
849 >     */
850 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
851 >        Objects.requireNonNull(operator);
852 >        final Object[] elements = this.elements;
853 >        final int capacity = elements.length;
854 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
855 >            elements[i] = operator.apply(elementAt(i));
856 >        // checkInvariants();
857 >    }
858 >
859 >    /**
860 >     * @throws NullPointerException {@inheritDoc}
861 >     */
862 >    @Override
863 >    public boolean removeIf(Predicate<? super E> filter) {
864 >        Objects.requireNonNull(filter);
865 >        return bulkRemove(filter);
866 >    }
867 >
868 >    /**
869 >     * @throws NullPointerException {@inheritDoc}
870 >     */
871 >    @Override
872 >    public boolean removeAll(Collection<?> c) {
873 >        Objects.requireNonNull(c);
874 >        return bulkRemove(e -> c.contains(e));
875 >    }
876 >
877 >    /**
878 >     * @throws NullPointerException {@inheritDoc}
879 >     */
880 >    @Override
881 >    public boolean retainAll(Collection<?> c) {
882 >        Objects.requireNonNull(c);
883 >        return bulkRemove(e -> !c.contains(e));
884 >    }
885 >
886 >    /** Implementation of bulk remove methods. */
887 >    private boolean bulkRemove(Predicate<? super E> filter) {
888 >        // checkInvariants();
889 >        final Object[] elements = this.elements;
890 >        final int capacity = elements.length;
891 >        int i = head, j = i, remaining = size, deleted = 0;
892 >        try {
893 >            for (; remaining > 0; remaining--, i = inc(i, capacity)) {
894 >                @SuppressWarnings("unchecked") E e = (E) elements[i];
895 >                if (filter.test(e))
896 >                    deleted++;
897 >                else {
898 >                    if (j != i)
899 >                        elements[j] = e;
900 >                    j = inc(j, capacity);
901 >                }
902 >            }
903 >            return deleted > 0;
904 >        } catch (Throwable ex) {
905 >            if (deleted > 0)
906 >                for (; remaining > 0;
907 >                     remaining--, i = inc(i, capacity), j = inc(j, capacity))
908 >                    elements[j] = elements[i];
909 >            throw ex;
910 >        } finally {
911 >            size -= deleted;
912 >            for (; --deleted >= 0; j = inc(j, capacity))
913 >                elements[j] = null;
914 >            // checkInvariants();
915          }
916      }
917  
# Line 671 | Line 925 | public class ArrayDeque<E> extends Abstr
925       */
926      public boolean contains(Object o) {
927          if (o != null) {
928 <            int mask = elements.length - 1;
929 <            int i = head;
930 <            for (Object x; (x = elements[i]) != null; i = (i + 1) & mask) {
931 <                if (o.equals(x))
928 >            final Object[] elements = this.elements;
929 >            final int capacity = elements.length;
930 >            for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
931 >                if (o.equals(elements[i]))
932                      return true;
679            }
933          }
934          return false;
935      }
# Line 703 | Line 956 | public class ArrayDeque<E> extends Abstr
956       * The deque will be empty after this call returns.
957       */
958      public void clear() {
959 <        int h = head;
960 <        int t = tail;
961 <        if (h != t) { // clear all cells
962 <            head = tail = 0;
963 <            int i = h;
964 <            int mask = elements.length - 1;
965 <            do {
966 <                elements[i] = null;
967 <                i = (i + 1) & mask;
715 <            } while (i != t);
959 >        final Object[] elements = this.elements;
960 >        final int capacity = elements.length;
961 >        final int h = this.head;
962 >        final int s = size;
963 >        if (capacity - h >= s)
964 >            Arrays.fill(elements, h, h + s, null);
965 >        else {
966 >            Arrays.fill(elements, h, capacity, null);
967 >            Arrays.fill(elements, 0, s - capacity + h, null);
968          }
969 +        size = head = 0;
970 +        // checkInvariants();
971      }
972  
973      /**
# Line 731 | Line 985 | public class ArrayDeque<E> extends Abstr
985       */
986      public Object[] toArray() {
987          final int head = this.head;
988 <        final int tail = this.tail;
989 <        boolean wrap = (tail < head);
990 <        int end = wrap ? tail + elements.length : tail;
991 <        Object[] a = Arrays.copyOfRange(elements, head, end);
738 <        if (wrap)
739 <            System.arraycopy(elements, 0, a, elements.length - head, tail);
988 >        final int firstLeg;
989 >        Object[] a = Arrays.copyOfRange(elements, head, head + size);
990 >        if ((firstLeg = elements.length - head) < size)
991 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
992          return a;
993      }
994  
# Line 778 | Line 1030 | public class ArrayDeque<E> extends Abstr
1030       */
1031      @SuppressWarnings("unchecked")
1032      public <T> T[] toArray(T[] a) {
1033 +        final Object[] elements = this.elements;
1034          final int head = this.head;
1035 <        final int tail = this.tail;
1036 <        boolean wrap = (tail < head);
1037 <        int size = (tail - head) + (wrap ? elements.length : 0);
785 <        int firstLeg = size - (wrap ? tail : 0);
786 <        int len = a.length;
787 <        if (size > len) {
1035 >        final int firstLeg;
1036 >        boolean wrap = (firstLeg = elements.length - head) < size;
1037 >        if (size > a.length) {
1038              a = (T[]) Arrays.copyOfRange(elements, head, head + size,
1039                                           a.getClass());
1040          } else {
1041 <            System.arraycopy(elements, head, a, 0, firstLeg);
1042 <            if (size < len)
1041 >            System.arraycopy(elements, head, a, 0, wrap ? firstLeg : size);
1042 >            if (size < a.length)
1043                  a[size] = null;
1044          }
1045          if (wrap)
1046 <            System.arraycopy(elements, 0, a, firstLeg, tail);
1046 >            System.arraycopy(elements, 0, a, firstLeg, size - firstLeg);
1047          return a;
1048      }
1049  
# Line 831 | Line 1081 | public class ArrayDeque<E> extends Abstr
1081          s.defaultWriteObject();
1082  
1083          // Write out size
1084 <        s.writeInt(size());
1084 >        s.writeInt(size);
1085  
1086          // Write out elements in order.
1087 <        int mask = elements.length - 1;
1088 <        for (int i = head; i != tail; i = (i + 1) & mask)
1087 >        final Object[] elements = this.elements;
1088 >        final int capacity = elements.length;
1089 >        for (int k = size, i = head; --k >= 0; i = inc(i, capacity))
1090              s.writeObject(elements[i]);
1091      }
1092  
# Line 851 | Line 1102 | public class ArrayDeque<E> extends Abstr
1102          s.defaultReadObject();
1103  
1104          // Read in size and allocate array
1105 <        int size = s.readInt();
855 <        allocateElements(size);
856 <        head = 0;
857 <        tail = size;
1105 >        elements = new Object[size = s.readInt()];
1106  
1107          // Read in all elements in the proper order.
1108          for (int i = 0; i < size; i++)
1109              elements[i] = s.readObject();
1110      }
1111  
1112 <    /**
1113 <     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
1114 <     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
1115 <     * deque.
1116 <     *
1117 <     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
1118 <     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
1119 <     * {@link Spliterator#NONNULL}.  Overriding implementations should document
1120 <     * the reporting of additional characteristic values.
1121 <     *
1122 <     * @return a {@code Spliterator} over the elements in this deque
1123 <     * @since 1.8
1124 <     */
1125 <    public Spliterator<E> spliterator() {
1126 <        return new DeqSpliterator<>(this, -1, -1);
1127 <    }
1128 <
1129 <    static final class DeqSpliterator<E> implements Spliterator<E> {
882 <        private final ArrayDeque<E> deq;
883 <        private int fence;  // -1 until first use
884 <        private int index;  // current index, modified on traverse/split
885 <
886 <        /** Creates new spliterator covering the given array and range. */
887 <        DeqSpliterator(ArrayDeque<E> deq, int origin, int fence) {
888 <            this.deq = deq;
889 <            this.index = origin;
890 <            this.fence = fence;
891 <        }
892 <
893 <        private int getFence() { // force initialization
894 <            int t;
895 <            if ((t = fence) < 0) {
896 <                t = fence = deq.tail;
897 <                index = deq.head;
898 <            }
899 <            return t;
900 <        }
901 <
902 <        public DeqSpliterator<E> trySplit() {
903 <            int t = getFence(), h = index, n = deq.elements.length;
904 <            if (h != t && ((h + 1) & (n - 1)) != t) {
905 <                if (h > t)
906 <                    t += n;
907 <                int m = ((h + t) >>> 1) & (n - 1);
908 <                return new DeqSpliterator<E>(deq, h, index = m);
909 <            }
910 <            return null;
911 <        }
912 <
913 <        public void forEachRemaining(Consumer<? super E> consumer) {
914 <            if (consumer == null)
915 <                throw new NullPointerException();
916 <            Object[] a = deq.elements;
917 <            int m = a.length - 1, f = getFence(), i = index;
918 <            index = f;
919 <            while (i != f) {
920 <                @SuppressWarnings("unchecked") E e = (E)a[i];
921 <                i = (i + 1) & m;
922 <                if (e == null)
923 <                    throw new ConcurrentModificationException();
924 <                consumer.accept(e);
925 <            }
926 <        }
927 <
928 <        public boolean tryAdvance(Consumer<? super E> consumer) {
929 <            if (consumer == null)
930 <                throw new NullPointerException();
931 <            Object[] a = deq.elements;
932 <            int m = a.length - 1, f = getFence(), i = index;
933 <            if (i != f) {
934 <                @SuppressWarnings("unchecked") E e = (E)a[i];
935 <                index = (i + 1) & m;
936 <                if (e == null)
937 <                    throw new ConcurrentModificationException();
938 <                consumer.accept(e);
939 <                return true;
940 <            }
941 <            return false;
942 <        }
943 <
944 <        public long estimateSize() {
945 <            int n = getFence() - index;
946 <            if (n < 0)
947 <                n += deq.elements.length;
948 <            return (long) n;
949 <        }
950 <
951 <        @Override
952 <        public int characteristics() {
953 <            return Spliterator.ORDERED | Spliterator.SIZED |
954 <                Spliterator.NONNULL | Spliterator.SUBSIZED;
1112 >    /** debugging */
1113 >    private void checkInvariants() {
1114 >        try {
1115 >            int capacity = elements.length;
1116 >            assert size >= 0 && size <= capacity;
1117 >            assert head >= 0 && ((capacity == 0 && head == 0 && size == 0)
1118 >                                 || head < capacity);
1119 >            assert size == 0
1120 >                || (elements[head] != null && elements[tail()] != null);
1121 >            assert size == capacity
1122 >                || (elements[dec(head, capacity)] == null
1123 >                    && elements[inc(tail(), capacity)] == null);
1124 >        } catch (Throwable t) {
1125 >            System.err.printf("head=%d size=%d capacity=%d%n",
1126 >                              head, size, elements.length);
1127 >            System.err.printf("elements=%s%n",
1128 >                              Arrays.toString(elements));
1129 >            throw t;
1130          }
1131      }
1132  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines