ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.99 by jsr166, Sun Oct 30 16:32:40 2016 UTC vs.
Revision 1.132 by jsr166, Sun Oct 22 17:44:02 2017 UTC

# Line 9 | Line 9 | import java.io.Serializable;
9   import java.util.function.Consumer;
10   import java.util.function.Predicate;
11   import java.util.function.UnaryOperator;
12 + import jdk.internal.misc.SharedSecrets;
13  
14   /**
15   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 50 | Line 51 | import java.util.function.UnaryOperator;
51   * Iterator} interfaces.
52   *
53   * <p>This class is a member of the
54 < * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
55   * Java Collections Framework</a>.
56   *
57   * @author  Josh Bloch and Doug Lea
# Line 60 | Line 61 | import java.util.function.UnaryOperator;
61   public class ArrayDeque<E> extends AbstractCollection<E>
62                             implements Deque<E>, Cloneable, Serializable
63   {
64 +    /*
65 +     * VMs excel at optimizing simple array loops where indices are
66 +     * incrementing or decrementing over a valid slice, e.g.
67 +     *
68 +     * for (int i = start; i < end; i++) ... elements[i]
69 +     *
70 +     * Because in a circular array, elements are in general stored in
71 +     * two disjoint such slices, we help the VM by writing unusual
72 +     * nested loops for all traversals over the elements.  Having only
73 +     * one hot inner loop body instead of two or three eases human
74 +     * maintenance and encourages VM loop inlining into the caller.
75 +     */
76 +
77      /**
78       * The array in which the elements of the deque are stored.
79 <     * We guarantee that all array cells not holding deque elements
80 <     * are always null.
79 >     * All array cells not holding deque elements are always null.
80 >     * The array always has at least one null slot (at tail).
81       */
82      transient Object[] elements;
83  
84      /**
85       * The index of the element at the head of the deque (which is the
86       * element that would be removed by remove() or pop()); or an
87 <     * arbitrary number 0 <= head < elements.length if the deque is empty.
87 >     * arbitrary number 0 <= head < elements.length equal to tail if
88 >     * the deque is empty.
89       */
90      transient int head;
91  
92 <    /** Number of elements in this collection. */
93 <    transient int size;
92 >    /**
93 >     * The index at which the next element would be added to the tail
94 >     * of the deque (via addLast(E), add(E), or push(E));
95 >     * elements[tail] is always null.
96 >     */
97 >    transient int tail;
98  
99      /**
100       * The maximum size of array to allocate.
# Line 92 | Line 111 | public class ArrayDeque<E> extends Abstr
111       */
112      private void grow(int needed) {
113          // overflow-conscious code
95        // checkInvariants();
114          final int oldCapacity = elements.length;
115          int newCapacity;
116 <        // Double size if small; else grow by 50%
116 >        // Double capacity if small; else grow by 50%
117          int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
118          if (jump < needed
119              || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
120              newCapacity = newCapacity(needed, jump);
121 <        elements = Arrays.copyOf(elements, newCapacity);
122 <        if (oldCapacity - head < size) {
121 >        final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
122 >        // Exceptionally, here tail == head needs to be disambiguated
123 >        if (tail < head || (tail == head && es[head] != null)) {
124              // wrap around; slide first leg forward to end of array
125              int newSpace = newCapacity - oldCapacity;
126 <            System.arraycopy(elements, head,
127 <                             elements, head + newSpace,
126 >            System.arraycopy(es, head,
127 >                             es, head + newSpace,
128                               oldCapacity - head);
129 <            Arrays.fill(elements, head, head + newSpace, null);
130 <            head += newSpace;
129 >            for (int i = head, to = (head += newSpace); i < to; i++)
130 >                es[i] = null;
131          }
132          // checkInvariants();
133      }
# Line 136 | Line 155 | public class ArrayDeque<E> extends Abstr
155       * @since TBD
156       */
157      /* public */ void ensureCapacity(int minCapacity) {
158 <        if (minCapacity > elements.length)
159 <            grow(minCapacity - elements.length);
158 >        int needed;
159 >        if ((needed = (minCapacity + 1 - elements.length)) > 0)
160 >            grow(needed);
161          // checkInvariants();
162      }
163  
# Line 147 | Line 167 | public class ArrayDeque<E> extends Abstr
167       * @since TBD
168       */
169      /* public */ void trimToSize() {
170 <        if (size < elements.length) {
171 <            elements = toArray();
170 >        int size;
171 >        if ((size = size()) + 1 < elements.length) {
172 >            elements = toArray(new Object[size + 1]);
173              head = 0;
174 +            tail = size;
175          }
176          // checkInvariants();
177      }
# Line 169 | Line 191 | public class ArrayDeque<E> extends Abstr
191       * @param numElements lower bound on initial capacity of the deque
192       */
193      public ArrayDeque(int numElements) {
194 <        elements = new Object[numElements];
194 >        elements =
195 >            new Object[(numElements < 1) ? 1 :
196 >                       (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
197 >                       numElements + 1];
198      }
199  
200      /**
# Line 183 | Line 208 | public class ArrayDeque<E> extends Abstr
208       * @throws NullPointerException if the specified collection is null
209       */
210      public ArrayDeque(Collection<? extends E> c) {
211 <        Object[] es = c.toArray();
212 <        // defend against c.toArray (incorrectly) not returning Object[]
188 <        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 <        if (es.getClass() != Object[].class)
190 <            es = Arrays.copyOf(es, es.length, Object[].class);
191 <        for (Object obj : es)
192 <            Objects.requireNonNull(obj);
193 <        this.elements = es;
194 <        this.size = es.length;
211 >        this(c.size());
212 >        addAll(c);
213      }
214  
215      /**
216 <     * Increments i, mod modulus.
216 >     * Circularly increments i, mod modulus.
217       * Precondition and postcondition: 0 <= i < modulus.
218       */
219      static final int inc(int i, int modulus) {
# Line 204 | Line 222 | public class ArrayDeque<E> extends Abstr
222      }
223  
224      /**
225 <     * Decrements i, mod modulus.
225 >     * Circularly decrements i, mod modulus.
226       * Precondition and postcondition: 0 <= i < modulus.
227       */
228      static final int dec(int i, int modulus) {
# Line 213 | Line 231 | public class ArrayDeque<E> extends Abstr
231      }
232  
233      /**
234 <     * Adds i and j, mod modulus.
235 <     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
234 >     * Circularly adds the given distance to index i, mod modulus.
235 >     * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
236 >     * @return index 0 <= i < modulus
237       */
238 <    static final int add(int i, int j, int modulus) {
239 <        if ((i += j) - modulus >= 0) i -= modulus;
238 >    static final int inc(int i, int distance, int modulus) {
239 >        if ((i += distance) - modulus >= 0) i -= modulus;
240          return i;
241      }
242  
243      /**
244 <     * Returns the array index of the last element.
245 <     * May return invalid index -1 if there are no elements.
244 >     * Subtracts j from i, mod modulus.
245 >     * Index i must be logically ahead of index j.
246 >     * Precondition: 0 <= i < modulus, 0 <= j < modulus.
247 >     * @return the "circular distance" from j to i; corner case i == j
248 >     * is disambiguated to "empty", returning 0.
249       */
250 <    final int tail() {
251 <        return add(head, size - 1, elements.length);
250 >    static final int sub(int i, int j, int modulus) {
251 >        if ((i -= j) < 0) i += modulus;
252 >        return i;
253      }
254  
255      /**
256       * Returns element at array index i.
257 +     * This is a slight abuse of generics, accepted by javac.
258       */
259      @SuppressWarnings("unchecked")
260 <    private E elementAt(int i) {
261 <        return (E) elements[i];
260 >    static final <E> E elementAt(Object[] es, int i) {
261 >        return (E) es[i];
262      }
263  
264      /**
265       * A version of elementAt that checks for null elements.
266       * This check doesn't catch all possible comodifications,
267 <     * but does catch ones that corrupt traversal.  It's a little
244 <     * surprising that javac allows this abuse of generics.
267 >     * but does catch ones that corrupt traversal.
268       */
269      static final <E> E nonNullElementAt(Object[] es, int i) {
270          @SuppressWarnings("unchecked") E e = (E) es[i];
# Line 261 | Line 284 | public class ArrayDeque<E> extends Abstr
284       * @throws NullPointerException if the specified element is null
285       */
286      public void addFirst(E e) {
287 <        // checkInvariants();
288 <        Objects.requireNonNull(e);
289 <        Object[] es;
290 <        int capacity, h;
291 <        final int s;
269 <        if ((s = size) == (capacity = (es = elements).length)) {
287 >        if (e == null)
288 >            throw new NullPointerException();
289 >        final Object[] es = elements;
290 >        es[head = dec(head, es.length)] = e;
291 >        if (head == tail)
292              grow(1);
271            capacity = (es = elements).length;
272        }
273        if ((h = head - 1) < 0) h = capacity - 1;
274        es[head = h] = e;
275        size = s + 1;
293          // checkInvariants();
294      }
295  
# Line 285 | Line 302 | public class ArrayDeque<E> extends Abstr
302       * @throws NullPointerException if the specified element is null
303       */
304      public void addLast(E e) {
305 <        // checkInvariants();
306 <        Objects.requireNonNull(e);
307 <        Object[] es;
308 <        int capacity;
309 <        final int s;
293 <        if ((s = size) == (capacity = (es = elements).length)) {
305 >        if (e == null)
306 >            throw new NullPointerException();
307 >        final Object[] es = elements;
308 >        es[tail] = e;
309 >        if (head == (tail = inc(tail, es.length)))
310              grow(1);
295            capacity = (es = elements).length;
296        }
297        es[add(head, s, capacity)] = e;
298        size = s + 1;
311          // checkInvariants();
312      }
313  
314      /**
315       * Adds all of the elements in the specified collection at the end
316       * of this deque, as if by calling {@link #addLast} on each one,
317 <     * in the order that they are returned by the collection's
306 <     * iterator.
317 >     * in the order that they are returned by the collection's iterator.
318       *
319       * @param c the elements to be inserted into this deque
320       * @return {@code true} if this deque changed as a result of the call
# Line 311 | Line 322 | public class ArrayDeque<E> extends Abstr
322       *         of its elements are null
323       */
324      public boolean addAll(Collection<? extends E> c) {
325 <        final int s = size, needed = c.size() - (elements.length - s);
326 <        if (needed > 0)
325 >        final int s, needed;
326 >        if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
327              grow(needed);
328 <        c.forEach((e) -> addLast(e));
328 >        c.forEach(this::addLast);
329          // checkInvariants();
330 <        return size > s;
330 >        return size() > s;
331      }
332  
333      /**
# Line 347 | Line 358 | public class ArrayDeque<E> extends Abstr
358       * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeFirst() {
350        // checkInvariants();
361          E e = pollFirst();
362          if (e == null)
363              throw new NoSuchElementException();
364 +        // checkInvariants();
365          return e;
366      }
367  
# Line 358 | Line 369 | public class ArrayDeque<E> extends Abstr
369       * @throws NoSuchElementException {@inheritDoc}
370       */
371      public E removeLast() {
361        // checkInvariants();
372          E e = pollLast();
373          if (e == null)
374              throw new NoSuchElementException();
375 +        // checkInvariants();
376          return e;
377      }
378  
379      public E pollFirst() {
380 +        final Object[] es;
381 +        final int h;
382 +        E e = elementAt(es = elements, h = head);
383 +        if (e != null) {
384 +            es[h] = null;
385 +            head = inc(h, es.length);
386 +        }
387          // checkInvariants();
370        int s, h;
371        if ((s = size) <= 0)
372            return null;
373        final Object[] es = elements;
374        @SuppressWarnings("unchecked") E e = (E) es[h = head];
375        es[h] = null;
376        if (++h >= es.length) h = 0;
377        head = h;
378        size = s - 1;
388          return e;
389      }
390  
391      public E pollLast() {
392 +        final Object[] es;
393 +        final int t;
394 +        E e = elementAt(es = elements, t = dec(tail, es.length));
395 +        if (e != null)
396 +            es[tail = t] = null;
397          // checkInvariants();
384        final int s, tail;
385        if ((s = size) <= 0)
386            return null;
387        final Object[] es = elements;
388        @SuppressWarnings("unchecked")
389        E e = (E) es[tail = add(head, s - 1, es.length)];
390        es[tail] = null;
391        size = s - 1;
398          return e;
399      }
400  
# Line 396 | Line 402 | public class ArrayDeque<E> extends Abstr
402       * @throws NoSuchElementException {@inheritDoc}
403       */
404      public E getFirst() {
405 +        E e = elementAt(elements, head);
406 +        if (e == null)
407 +            throw new NoSuchElementException();
408          // checkInvariants();
409 <        if (size <= 0) throw new NoSuchElementException();
401 <        return elementAt(head);
409 >        return e;
410      }
411  
412      /**
413       * @throws NoSuchElementException {@inheritDoc}
414       */
407    @SuppressWarnings("unchecked")
415      public E getLast() {
409        // checkInvariants();
410        final int s;
411        if ((s = size) <= 0) throw new NoSuchElementException();
416          final Object[] es = elements;
417 <        return (E) es[add(head, s - 1, es.length)];
417 >        E e = elementAt(es, dec(tail, es.length));
418 >        if (e == null)
419 >            throw new NoSuchElementException();
420 >        // checkInvariants();
421 >        return e;
422      }
423  
424      public E peekFirst() {
425          // checkInvariants();
426 <        return (size <= 0) ? null : elementAt(head);
426 >        return elementAt(elements, head);
427      }
428  
421    @SuppressWarnings("unchecked")
429      public E peekLast() {
430          // checkInvariants();
431 <        final int s;
432 <        if ((s = size) <= 0) return null;
426 <        final Object[] es = elements;
427 <        return (E) es[add(head, s - 1, es.length)];
431 >        final Object[] es;
432 >        return elementAt(es = elements, dec(tail, es.length));
433      }
434  
435      /**
# Line 442 | Line 447 | public class ArrayDeque<E> extends Abstr
447      public boolean removeFirstOccurrence(Object o) {
448          if (o != null) {
449              final Object[] es = elements;
450 <            int i, end, to, todo;
451 <            todo = (end = (i = head) + size)
447 <                - (to = (es.length - end >= 0) ? end : es.length);
448 <            for (;; to = todo, i = 0, todo = 0) {
450 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 >                 ; i = 0, to = end) {
452                  for (; i < to; i++)
453                      if (o.equals(es[i])) {
454                          delete(i);
455                          return true;
456                      }
457 <                if (todo == 0) break;
457 >                if (to == end) break;
458              }
459          }
460          return false;
# Line 472 | Line 475 | public class ArrayDeque<E> extends Abstr
475      public boolean removeLastOccurrence(Object o) {
476          if (o != null) {
477              final Object[] es = elements;
478 <            int i, to, end, todo;
479 <            todo = (to = ((end = (i = tail()) - size) >= -1) ? end : -1) - end;
480 <            for (;; to = (i = es.length - 1) - todo, todo = 0) {
478 <                for (; i > to; i--)
478 >            for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 >                 ; i = es.length, to = end) {
480 >                for (i--; i > to - 1; i--)
481                      if (o.equals(es[i])) {
482                          delete(i);
483                          return true;
484                      }
485 <                if (todo == 0) break;
485 >                if (to == end) break;
486              }
487          }
488          return false;
# Line 518 | Line 520 | public class ArrayDeque<E> extends Abstr
520      /**
521       * Retrieves and removes the head of the queue represented by this deque.
522       *
523 <     * This method differs from {@link #poll poll} only in that it throws an
524 <     * exception if this deque is empty.
523 >     * This method differs from {@link #poll() poll()} only in that it
524 >     * throws an exception if this deque is empty.
525       *
526       * <p>This method is equivalent to {@link #removeFirst}.
527       *
# Line 608 | Line 610 | public class ArrayDeque<E> extends Abstr
610       * <p>This method is called delete rather than remove to emphasize
611       * that its semantics differ from those of {@link List#remove(int)}.
612       *
613 <     * @return true if elements moved backwards
613 >     * @return true if elements near tail moved backwards
614       */
615      boolean delete(int i) {
616          // checkInvariants();
617          final Object[] es = elements;
618          final int capacity = es.length;
619 <        final int h = head;
620 <        int front;              // number of elements before to-be-deleted elt
621 <        if ((front = i - h) < 0) front += capacity;
622 <        final int back = size - front - 1; // number of elements after
619 >        final int h, t;
620 >        // number of elements before to-be-deleted elt
621 >        final int front = sub(i, h = head, capacity);
622 >        // number of elements after to-be-deleted elt
623 >        final int back = sub(t = tail, i, capacity) - 1;
624          if (front < back) {
625              // move front elements forwards
626              if (h <= i) {
# Line 628 | Line 631 | public class ArrayDeque<E> extends Abstr
631                  System.arraycopy(es, h, es, h + 1, front - (i + 1));
632              }
633              es[h] = null;
634 <            if ((head = (h + 1)) >= capacity) head = 0;
632 <            size--;
634 >            head = inc(h, capacity);
635              // checkInvariants();
636              return false;
637          } else {
638              // move back elements backwards
639 <            int tail = tail();
639 >            tail = dec(t, capacity);
640              if (i <= tail) {
641                  System.arraycopy(es, i + 1, es, i, back);
642              } else { // Wrap around
643 <                int firstLeg = capacity - (i + 1);
642 <                System.arraycopy(es, i + 1, es, i, firstLeg);
643 >                System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
644                  es[capacity - 1] = es[0];
645 <                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
645 >                System.arraycopy(es, 1, es, 0, t - 1);
646              }
647              es[tail] = null;
647            size--;
648              // checkInvariants();
649              return true;
650          }
# Line 658 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return size;
661 >        return sub(tail, head, elements.length);
662      }
663  
664      /**
# Line 667 | Line 667 | public class ArrayDeque<E> extends Abstr
667       * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670 <        return size == 0;
670 >        return head == tail;
671      }
672  
673      /**
# Line 691 | Line 691 | public class ArrayDeque<E> extends Abstr
691          int cursor;
692  
693          /** Number of elements yet to be returned. */
694 <        int remaining = size;
694 >        int remaining = size();
695  
696          /**
697           * Index of element returned by most recent call to next.
# Line 710 | Line 710 | public class ArrayDeque<E> extends Abstr
710                  throw new NoSuchElementException();
711              final Object[] es = elements;
712              E e = nonNullElementAt(es, cursor);
713 <            lastRet = cursor;
714 <            if (++cursor >= es.length) cursor = 0;
713 >            cursor = inc(lastRet = cursor, es.length);
714              remaining--;
715              return e;
716          }
717  
718          void postDelete(boolean leftShifted) {
719              if (leftShifted)
720 <                if (--cursor < 0) cursor = elements.length - 1;
720 >                cursor = dec(cursor, elements.length);
721          }
722  
723          public final void remove() {
# Line 730 | Line 729 | public class ArrayDeque<E> extends Abstr
729  
730          public void forEachRemaining(Consumer<? super E> action) {
731              Objects.requireNonNull(action);
732 <            final int k;
733 <            if ((k = remaining) > 0) {
734 <                remaining = 0;
735 <                ArrayDeque.forEachRemaining(action, elements, cursor, k);
736 <                if ((lastRet = cursor + k - 1) >= elements.length)
737 <                    lastRet -= elements.length;
732 >            int r;
733 >            if ((r = remaining) <= 0)
734 >                return;
735 >            remaining = 0;
736 >            final Object[] es = elements;
737 >            if (es[cursor] == null || sub(tail, cursor, es.length) != r)
738 >                throw new ConcurrentModificationException();
739 >            for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
740 >                 ; i = 0, to = end) {
741 >                for (; i < to; i++)
742 >                    action.accept(elementAt(es, i));
743 >                if (to == end) {
744 >                    if (end != tail)
745 >                        throw new ConcurrentModificationException();
746 >                    lastRet = dec(end, es.length);
747 >                    break;
748 >                }
749              }
750          }
751      }
752  
753      private class DescendingIterator extends DeqIterator {
754 <        DescendingIterator() { cursor = tail(); }
754 >        DescendingIterator() { cursor = dec(tail, elements.length); }
755  
756          public final E next() {
757              if (remaining <= 0)
758                  throw new NoSuchElementException();
759              final Object[] es = elements;
760              E e = nonNullElementAt(es, cursor);
761 <            lastRet = cursor;
752 <            if (--cursor < 0) cursor = es.length - 1;
761 >            cursor = dec(lastRet = cursor, es.length);
762              remaining--;
763              return e;
764          }
765  
766          void postDelete(boolean leftShifted) {
767              if (!leftShifted)
768 <                if (++cursor >= elements.length) cursor = 0;
768 >                cursor = inc(cursor, elements.length);
769          }
770  
771          public final void forEachRemaining(Consumer<? super E> action) {
772              Objects.requireNonNull(action);
773 <            final int k;
774 <            if ((k = remaining) > 0) {
775 <                remaining = 0;
776 <                final Object[] es = elements;
777 <                int i, end, to, todo;
778 <                todo = (to = ((end = (i = cursor) - k) >= -1) ? end : -1) - end;
779 <                for (;; to = (i = es.length - 1) - todo, todo = 0) {
780 <                    for (; i > to; i--)
781 <                        action.accept(nonNullElementAt(es, i));
782 <                    if (todo == 0) break;
773 >            int r;
774 >            if ((r = remaining) <= 0)
775 >                return;
776 >            remaining = 0;
777 >            final Object[] es = elements;
778 >            if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
779 >                throw new ConcurrentModificationException();
780 >            for (int i = cursor, end = head, to = (i >= end) ? end : 0;
781 >                 ; i = es.length - 1, to = end) {
782 >                // hotspot generates faster code than for: i >= to !
783 >                for (; i > to - 1; i--)
784 >                    action.accept(elementAt(es, i));
785 >                if (to == end) {
786 >                    if (end != head)
787 >                        throw new ConcurrentModificationException();
788 >                    lastRet = end;
789 >                    break;
790                  }
775                if ((lastRet = cursor - (k - 1)) < 0)
776                    lastRet += es.length;
791              }
792          }
793      }
# Line 792 | Line 806 | public class ArrayDeque<E> extends Abstr
806       * @since 1.8
807       */
808      public Spliterator<E> spliterator() {
809 <        return new ArrayDequeSpliterator();
809 >        return new DeqSpliterator();
810      }
811  
812 <    final class ArrayDequeSpliterator implements Spliterator<E> {
813 <        private int cursor;
814 <        private int remaining; // -1 until late-binding first use
812 >    final class DeqSpliterator implements Spliterator<E> {
813 >        private int fence;      // -1 until first use
814 >        private int cursor;     // current index, modified on traverse/split
815  
816          /** Constructs late-binding spliterator over all elements. */
817 <        ArrayDequeSpliterator() {
818 <            this.remaining = -1;
805 <        }
806 <
807 <        /** Constructs spliterator over the given slice. */
808 <        ArrayDequeSpliterator(int cursor, int count) {
809 <            this.cursor = cursor;
810 <            this.remaining = count;
817 >        DeqSpliterator() {
818 >            this.fence = -1;
819          }
820  
821 <        /** Ensures late-binding initialization; then returns remaining. */
822 <        private int remaining() {
823 <            if (remaining < 0) {
821 >        /** Constructs spliterator over the given range. */
822 >        DeqSpliterator(int origin, int fence) {
823 >            // assert 0 <= origin && origin < elements.length;
824 >            // assert 0 <= fence && fence < elements.length;
825 >            this.cursor = origin;
826 >            this.fence = fence;
827 >        }
828 >
829 >        /** Ensures late-binding initialization; then returns fence. */
830 >        private int getFence() { // force initialization
831 >            int t;
832 >            if ((t = fence) < 0) {
833 >                t = fence = tail;
834                  cursor = head;
817                remaining = size;
835              }
836 <            return remaining;
836 >            return t;
837          }
838  
839 <        public ArrayDequeSpliterator trySplit() {
840 <            final int mid;
841 <            if ((mid = remaining() >> 1) > 0) {
842 <                int oldCursor = cursor;
843 <                cursor = add(cursor, mid, elements.length);
844 <                remaining -= mid;
828 <                return new ArrayDequeSpliterator(oldCursor, mid);
829 <            }
830 <            return null;
839 >        public DeqSpliterator trySplit() {
840 >            final Object[] es = elements;
841 >            final int i, n;
842 >            return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
843 >                ? null
844 >                : new DeqSpliterator(i, cursor = inc(i, n, es.length));
845          }
846  
847          public void forEachRemaining(Consumer<? super E> action) {
848 <            Objects.requireNonNull(action);
849 <            final int k = remaining(); // side effect!
850 <            remaining = 0;
851 <            ArrayDeque.forEachRemaining(action, elements, cursor, k);
848 >            if (action == null)
849 >                throw new NullPointerException();
850 >            final int end = getFence(), cursor = this.cursor;
851 >            final Object[] es = elements;
852 >            if (cursor != end) {
853 >                this.cursor = end;
854 >                // null check at both ends of range is sufficient
855 >                if (es[cursor] == null || es[dec(end, es.length)] == null)
856 >                    throw new ConcurrentModificationException();
857 >                for (int i = cursor, to = (i <= end) ? end : es.length;
858 >                     ; i = 0, to = end) {
859 >                    for (; i < to; i++)
860 >                        action.accept(elementAt(es, i));
861 >                    if (to == end) break;
862 >                }
863 >            }
864          }
865  
866          public boolean tryAdvance(Consumer<? super E> action) {
867              Objects.requireNonNull(action);
868 <            final int k;
869 <            if ((k = remaining()) <= 0)
868 >            final Object[] es = elements;
869 >            if (fence < 0) { fence = tail; cursor = head; } // late-binding
870 >            final int i;
871 >            if ((i = cursor) == fence)
872                  return false;
873 <            action.accept(nonNullElementAt(elements, cursor));
874 <            if (++cursor >= elements.length) cursor = 0;
875 <            remaining = k - 1;
873 >            E e = nonNullElementAt(es, i);
874 >            cursor = inc(i, es.length);
875 >            action.accept(e);
876              return true;
877          }
878  
879          public long estimateSize() {
880 <            return remaining();
880 >            return sub(getFence(), cursor, elements.length);
881          }
882  
883          public int characteristics() {
# Line 860 | Line 888 | public class ArrayDeque<E> extends Abstr
888          }
889      }
890  
891 <    @SuppressWarnings("unchecked")
891 >    /**
892 >     * @throws NullPointerException {@inheritDoc}
893 >     */
894      public void forEach(Consumer<? super E> action) {
895          Objects.requireNonNull(action);
896          final Object[] es = elements;
897 <        int i, end, to, todo;
898 <        todo = (end = (i = head) + size)
869 <            - (to = (es.length - end >= 0) ? end : es.length);
870 <        for (;; to = todo, i = 0, todo = 0) {
897 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
898 >             ; i = 0, to = end) {
899              for (; i < to; i++)
900 <                action.accept((E) es[i]);
901 <            if (todo == 0) break;
900 >                action.accept(elementAt(es, i));
901 >            if (to == end) {
902 >                if (end != tail) throw new ConcurrentModificationException();
903 >                break;
904 >            }
905          }
906          // checkInvariants();
907      }
908  
909      /**
879     * Calls action on remaining elements, starting at index i and
880     * traversing in ascending order.  A variant of forEach that also
881     * checks for concurrent modification, for use in iterators.
882     */
883    static <E> void forEachRemaining(
884        Consumer<? super E> action, Object[] es, int i, int remaining) {
885        int end, to, todo;
886        todo = (end = i + remaining)
887            - (to = (es.length - end >= 0) ? end : es.length);
888        for (;; to = todo, i = 0, todo = 0) {
889            for (; i < to; i++)
890                action.accept(nonNullElementAt(es, i));
891            if (todo == 0) break;
892        }
893    }
894
895    /**
910       * Replaces each element of this deque with the result of applying the
911       * operator to that element, as specified by {@link List#replaceAll}.
912       *
913       * @param operator the operator to apply to each element
914       * @since TBD
915       */
902    @SuppressWarnings("unchecked")
916      /* public */ void replaceAll(UnaryOperator<E> operator) {
917          Objects.requireNonNull(operator);
918          final Object[] es = elements;
919 <        int i, end, to, todo;
920 <        todo = (end = (i = head) + size)
908 <            - (to = (es.length - end >= 0) ? end : es.length);
909 <        for (;; to = todo, i = 0, todo = 0) {
919 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
920 >             ; i = 0, to = end) {
921              for (; i < to; i++)
922 <                es[i] = operator.apply((E) es[i]);
923 <            if (todo == 0) break;
922 >                es[i] = operator.apply(elementAt(es, i));
923 >            if (to == end) {
924 >                if (end != tail) throw new ConcurrentModificationException();
925 >                break;
926 >            }
927          }
928          // checkInvariants();
929      }
# Line 942 | Line 956 | public class ArrayDeque<E> extends Abstr
956      private boolean bulkRemove(Predicate<? super E> filter) {
957          // checkInvariants();
958          final Object[] es = elements;
959 +        // Optimize for initial run of survivors
960 +        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
961 +             ; i = 0, to = end) {
962 +            for (; i < to; i++)
963 +                if (filter.test(elementAt(es, i)))
964 +                    return bulkRemoveModified(filter, i);
965 +            if (to == end) {
966 +                if (end != tail) throw new ConcurrentModificationException();
967 +                break;
968 +            }
969 +        }
970 +        return false;
971 +    }
972 +
973 +    // A tiny bit set implementation
974 +
975 +    private static long[] nBits(int n) {
976 +        return new long[((n - 1) >> 6) + 1];
977 +    }
978 +    private static void setBit(long[] bits, int i) {
979 +        bits[i >> 6] |= 1L << i;
980 +    }
981 +    private static boolean isClear(long[] bits, int i) {
982 +        return (bits[i >> 6] & (1L << i)) == 0;
983 +    }
984 +
985 +    /**
986 +     * Helper for bulkRemove, in case of at least one deletion.
987 +     * Tolerate predicates that reentrantly access the collection for
988 +     * read (but writers still get CME), so traverse once to find
989 +     * elements to delete, a second pass to physically expunge.
990 +     *
991 +     * @param beg valid index of first element to be deleted
992 +     */
993 +    private boolean bulkRemoveModified(
994 +        Predicate<? super E> filter, final int beg) {
995 +        final Object[] es = elements;
996          final int capacity = es.length;
997 <        int i = head, j = i, remaining = size, deleted = 0;
998 <        try {
999 <            for (; remaining > 0; remaining--) {
1000 <                @SuppressWarnings("unchecked") E e = (E) es[i];
1001 <                if (filter.test(e))
1002 <                    deleted++;
1003 <                else {
1004 <                    if (j != i)
1005 <                        es[j] = e;
1006 <                    if (++j >= capacity) j = 0;
1007 <                }
1008 <                if (++i >= capacity) i = 0;
997 >        final int end = tail;
998 >        final long[] deathRow = nBits(sub(end, beg, capacity));
999 >        deathRow[0] = 1L;   // set bit 0
1000 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1001 >             ; i = 0, to = end, k -= capacity) {
1002 >            for (; i < to; i++)
1003 >                if (filter.test(elementAt(es, i)))
1004 >                    setBit(deathRow, i - k);
1005 >            if (to == end) break;
1006 >        }
1007 >        // a two-finger traversal, with hare i reading, tortoise w writing
1008 >        int w = beg;
1009 >        for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1010 >             ; w = 0) { // w rejoins i on second leg
1011 >            // In this loop, i and w are on the same leg, with i > w
1012 >            for (; i < to; i++)
1013 >                if (isClear(deathRow, i - k))
1014 >                    es[w++] = es[i];
1015 >            if (to == end) break;
1016 >            // In this loop, w is on the first leg, i on the second
1017 >            for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1018 >                if (isClear(deathRow, i - k))
1019 >                    es[w++] = es[i];
1020 >            if (i >= to) {
1021 >                if (w == capacity) w = 0; // "corner" case
1022 >                break;
1023              }
959            return deleted > 0;
960        } catch (Throwable ex) {
961            if (deleted > 0)
962                for (; remaining > 0; remaining--) {
963                    es[j] = es[i];
964                    if (++i >= capacity) i = 0;
965                    if (++j >= capacity) j = 0;
966                }
967            throw ex;
968        } finally {
969            size -= deleted;
970            clearSlice(es, j, deleted);
971            // checkInvariants();
1024          }
1025 +        if (end != tail) throw new ConcurrentModificationException();
1026 +        circularClear(es, tail = w, end);
1027 +        // checkInvariants();
1028 +        return true;
1029      }
1030  
1031      /**
# Line 983 | Line 1039 | public class ArrayDeque<E> extends Abstr
1039      public boolean contains(Object o) {
1040          if (o != null) {
1041              final Object[] es = elements;
1042 <            int i, end, to, todo;
1043 <            todo = (end = (i = head) + size)
988 <                - (to = (es.length - end >= 0) ? end : es.length);
989 <            for (;; to = todo, i = 0, todo = 0) {
1042 >            for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1043 >                 ; i = 0, to = end) {
1044                  for (; i < to; i++)
1045                      if (o.equals(es[i]))
1046                          return true;
1047 <                if (todo == 0) break;
1047 >                if (to == end) break;
1048              }
1049          }
1050          return false;
# Line 1018 | Line 1072 | public class ArrayDeque<E> extends Abstr
1072       * The deque will be empty after this call returns.
1073       */
1074      public void clear() {
1075 <        clearSlice(elements, head, size);
1076 <        size = head = 0;
1075 >        circularClear(elements, head, tail);
1076 >        head = tail = 0;
1077          // checkInvariants();
1078      }
1079  
1080      /**
1081 <     * Nulls out count elements, starting at array index i.
1081 >     * Nulls out slots starting at array index i, upto index end.
1082 >     * Condition i == end means "empty" - nothing to do.
1083       */
1084 <    private static void clearSlice(Object[] es, int i, int count) {
1085 <        int end, to, todo;
1086 <        todo = (end = i + count)
1087 <            - (to = (es.length - end >= 0) ? end : es.length);
1088 <        for (;; to = todo, i = 0, todo = 0) {
1089 <            Arrays.fill(es, i, to, null);
1090 <            if (todo == 0) break;
1084 >    private static void circularClear(Object[] es, int i, int end) {
1085 >        // assert 0 <= i && i < es.length;
1086 >        // assert 0 <= end && end < es.length;
1087 >        for (int to = (i <= end) ? end : es.length;
1088 >             ; i = 0, to = end) {
1089 >            for (; i < to; i++) es[i] = null;
1090 >            if (to == end) break;
1091          }
1092      }
1093  
# Line 1055 | Line 1110 | public class ArrayDeque<E> extends Abstr
1110  
1111      private <T> T[] toArray(Class<T[]> klazz) {
1112          final Object[] es = elements;
1058        final int capacity = es.length;
1059        final int head = this.head, end = head + size;
1113          final T[] a;
1114 <        if (end >= 0) {
1114 >        final int head = this.head, tail = this.tail, end;
1115 >        if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1116 >            // Uses null extension feature of copyOfRange
1117              a = Arrays.copyOfRange(es, head, end, klazz);
1118          } else {
1119              // integer overflow!
1120 <            a = Arrays.copyOfRange(es, 0, size, klazz);
1121 <            System.arraycopy(es, head, a, 0, capacity - head);
1120 >            a = Arrays.copyOfRange(es, 0, end - head, klazz);
1121 >            System.arraycopy(es, head, a, 0, es.length - head);
1122          }
1123 <        if (end - capacity > 0)
1124 <            System.arraycopy(es, 0, a, capacity - head, end - capacity);
1123 >        if (end != tail)
1124 >            System.arraycopy(es, 0, a, es.length - head, tail);
1125          return a;
1126      }
1127  
# Line 1109 | Line 1164 | public class ArrayDeque<E> extends Abstr
1164      @SuppressWarnings("unchecked")
1165      public <T> T[] toArray(T[] a) {
1166          final int size;
1167 <        if ((size = this.size) > a.length)
1167 >        if ((size = size()) > a.length)
1168              return toArray((Class<T[]>) a.getClass());
1169          final Object[] es = elements;
1170 <        final int head = this.head, end = head + size;
1171 <        final int front = (es.length - end >= 0) ? size : es.length - head;
1172 <        System.arraycopy(es, head, a, 0, front);
1173 <        if (front < size)
1174 <            System.arraycopy(es, 0, a, front, size - front);
1170 >        for (int i = head, j = 0, len = Math.min(size, es.length - i);
1171 >             ; i = 0, len = tail) {
1172 >            System.arraycopy(es, i, a, j, len);
1173 >            if ((j += len) == size) break;
1174 >        }
1175          if (size < a.length)
1176              a[size] = null;
1177          return a;
# Line 1156 | Line 1211 | public class ArrayDeque<E> extends Abstr
1211          s.defaultWriteObject();
1212  
1213          // Write out size
1214 <        s.writeInt(size);
1214 >        s.writeInt(size());
1215  
1216          // Write out elements in order.
1217          final Object[] es = elements;
1218 <        int i, end, to, todo;
1219 <        todo = (end = (i = head) + size)
1165 <            - (to = (es.length - end >= 0) ? end : es.length);
1166 <        for (;; to = todo, i = 0, todo = 0) {
1218 >        for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1219 >             ; i = 0, to = end) {
1220              for (; i < to; i++)
1221                  s.writeObject(es[i]);
1222 <            if (todo == 0) break;
1222 >            if (to == end) break;
1223          }
1224      }
1225  
# Line 1182 | Line 1235 | public class ArrayDeque<E> extends Abstr
1235          s.defaultReadObject();
1236  
1237          // Read in size and allocate array
1238 <        elements = new Object[size = s.readInt()];
1238 >        int size = s.readInt();
1239 >        SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, size + 1);
1240 >        elements = new Object[size + 1];
1241 >        this.tail = size;
1242  
1243          // Read in all elements in the proper order.
1244          for (int i = 0; i < size; i++)
# Line 1191 | Line 1247 | public class ArrayDeque<E> extends Abstr
1247  
1248      /** debugging */
1249      void checkInvariants() {
1250 +        // Use head and tail fields with empty slot at tail strategy.
1251 +        // head == tail disambiguates to "empty".
1252          try {
1253              int capacity = elements.length;
1254 <            // assert size >= 0 && size <= capacity;
1255 <            // assert head >= 0;
1256 <            // assert capacity == 0 || head < capacity;
1257 <            // assert size == 0 || elements[head] != null;
1258 <            // assert size == 0 || elements[tail()] != null;
1259 <            // assert size == capacity || elements[dec(head, capacity)] == null;
1260 <            // assert size == capacity || elements[inc(tail(), capacity)] == null;
1254 >            // assert 0 <= head && head < capacity;
1255 >            // assert 0 <= tail && tail < capacity;
1256 >            // assert capacity > 0;
1257 >            // assert size() < capacity;
1258 >            // assert head == tail || elements[head] != null;
1259 >            // assert elements[tail] == null;
1260 >            // assert head == tail || elements[dec(tail, capacity)] != null;
1261          } catch (Throwable t) {
1262 <            System.err.printf("head=%d size=%d capacity=%d%n",
1263 <                              head, size, elements.length);
1262 >            System.err.printf("head=%d tail=%d capacity=%d%n",
1263 >                              head, tail, elements.length);
1264              System.err.printf("elements=%s%n",
1265                                Arrays.toString(elements));
1266              throw t;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines