ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
(Generate patch)

Comparing jsr166/src/main/java/util/ArrayDeque.java (file contents):
Revision 1.4 by dl, Tue Mar 8 19:07:39 2005 UTC vs.
Revision 1.99 by jsr166, Sun Oct 30 16:32:40 2016 UTC

# Line 1 | Line 1
1   /*
2   * Written by Josh Bloch of Google Inc. and released to the public domain,
3 < * as explained at http://creativecommons.org/licenses/publicdomain.
3 > * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4   */
5  
6   package java.util;
7 < import java.io.*;
7 >
8 > import java.io.Serializable;
9 > import java.util.function.Consumer;
10 > import java.util.function.Predicate;
11 > import java.util.function.UnaryOperator;
12  
13   /**
14   * Resizable-array implementation of the {@link Deque} interface.  Array
# Line 15 | Line 19 | import java.io.*;
19   * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20   * when used as a queue.
21   *
22 < * <p>Most <tt>ArrayDeque</tt> operations run in amortized constant time.
23 < * Exceptions include {@link #remove(Object) remove}, {@link
24 < * #removeFirstOccurrence removeFirstOccurrence}, {@link #removeLastOccurrence
25 < * removeLastOccurrence}, {@link #contains contains }, {@link #iterator
26 < * iterator.remove()}, and the bulk operations, all of which run in linear
27 < * time.
22 > * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 > * Exceptions include
24 > * {@link #remove(Object) remove},
25 > * {@link #removeFirstOccurrence removeFirstOccurrence},
26 > * {@link #removeLastOccurrence removeLastOccurrence},
27 > * {@link #contains contains},
28 > * {@link #iterator iterator.remove()},
29 > * and the bulk operations, all of which run in linear time.
30   *
31 < * <p>The iterators returned by this class's <tt>iterator</tt> method are
32 < * <i>fail-fast</i>: If the deque is modified at any time after the iterator
33 < * is created, in any way except through the iterator's own remove method, the
34 < * iterator will generally throw a {@link ConcurrentModificationException}.
35 < * Thus, in the face of concurrent modification, the iterator fails quickly
36 < * and cleanly, rather than risking arbitrary, non-deterministic behavior at
37 < * an undetermined time in the future.
31 > * <p>The iterators returned by this class's {@link #iterator() iterator}
32 > * method are <em>fail-fast</em>: If the deque is modified at any time after
33 > * the iterator is created, in any way except through the iterator's own
34 > * {@code remove} method, the iterator will generally throw a {@link
35 > * ConcurrentModificationException}.  Thus, in the face of concurrent
36 > * modification, the iterator fails quickly and cleanly, rather than risking
37 > * arbitrary, non-deterministic behavior at an undetermined time in the
38 > * future.
39   *
40   * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41   * as it is, generally speaking, impossible to make any hard guarantees in the
42   * presence of unsynchronized concurrent modification.  Fail-fast iterators
43 < * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
43 > * throw {@code ConcurrentModificationException} on a best-effort basis.
44   * Therefore, it would be wrong to write a program that depended on this
45   * exception for its correctness: <i>the fail-fast behavior of iterators
46   * should be used only to detect bugs.</i>
47   *
48   * <p>This class and its iterator implement all of the
49 < * optional methods of the {@link Collection} and {@link
50 < * Iterator} interfaces.  This class is a member of the <a
51 < * href="{@docRoot}/../guide/collections/index.html"> Java Collections
52 < * Framework</a>.
49 > * <em>optional</em> methods of the {@link Collection} and {@link
50 > * Iterator} interfaces.
51 > *
52 > * <p>This class is a member of the
53 > * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 > * Java Collections Framework</a>.
55   *
56   * @author  Josh Bloch and Doug Lea
57 + * @param <E> the type of elements held in this deque
58   * @since   1.6
49 * @param <E> the type of elements held in this collection
59   */
60   public class ArrayDeque<E> extends AbstractCollection<E>
61                             implements Deque<E>, Cloneable, Serializable
62   {
63      /**
64       * The array in which the elements of the deque are stored.
65 <     * The capacity of the deque is the length of this array, which is
66 <     * always a power of two. The array is never allowed to become
58 <     * full, except transiently within an addX method where it is
59 <     * resized (see doubleCapacity) immediately upon becoming full,
60 <     * thus avoiding head and tail wrapping around to equal each
61 <     * other.  We also guarantee that all array cells not holding
62 <     * deque elements are always null.
65 >     * We guarantee that all array cells not holding deque elements
66 >     * are always null.
67       */
68 <    private transient E[] elements;
68 >    transient Object[] elements;
69  
70      /**
71       * The index of the element at the head of the deque (which is the
72       * element that would be removed by remove() or pop()); or an
73 <     * arbitrary number equal to tail if the deque is empty.
70 <     */
71 <    private transient int head;
72 <
73 <    /**
74 <     * The index at which the next element would be added to the tail
75 <     * of the deque (via addLast(E), add(E), or push(E)).
76 <     */
77 <    private transient int tail;
78 <
79 <    /**
80 <     * The minimum capacity that we'll use for a newly created deque.
81 <     * Must be a power of 2.
73 >     * arbitrary number 0 <= head < elements.length if the deque is empty.
74       */
75 <    private static final int MIN_INITIAL_CAPACITY = 8;
75 >    transient int head;
76  
77 <    // ******  Array allocation and resizing utilities ******
77 >    /** Number of elements in this collection. */
78 >    transient int size;
79  
80      /**
81 <     * Allocate empty array to hold the given number of elements.
82 <     *
83 <     * @param numElements  the number of elements to hold.
84 <     */
85 <    private void allocateElements(int numElements) {  
86 <        int initialCapacity = MIN_INITIAL_CAPACITY;
87 <        // Find the best power of two to hold elements.
88 <        // Tests "<=" because arrays aren't kept full.
89 <        if (numElements >= initialCapacity) {
90 <            initialCapacity = numElements;
91 <            initialCapacity |= (initialCapacity >>>  1);
92 <            initialCapacity |= (initialCapacity >>>  2);
93 <            initialCapacity |= (initialCapacity >>>  4);
94 <            initialCapacity |= (initialCapacity >>>  8);
95 <            initialCapacity |= (initialCapacity >>> 16);
96 <            initialCapacity++;
81 >     * The maximum size of array to allocate.
82 >     * Some VMs reserve some header words in an array.
83 >     * Attempts to allocate larger arrays may result in
84 >     * OutOfMemoryError: Requested array size exceeds VM limit
85 >     */
86 >    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
87 >
88 >    /**
89 >     * Increases the capacity of this deque by at least the given amount.
90 >     *
91 >     * @param needed the required minimum extra capacity; must be positive
92 >     */
93 >    private void grow(int needed) {
94 >        // overflow-conscious code
95 >        // checkInvariants();
96 >        final int oldCapacity = elements.length;
97 >        int newCapacity;
98 >        // Double size if small; else grow by 50%
99 >        int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
100 >        if (jump < needed
101 >            || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
102 >            newCapacity = newCapacity(needed, jump);
103 >        elements = Arrays.copyOf(elements, newCapacity);
104 >        if (oldCapacity - head < size) {
105 >            // wrap around; slide first leg forward to end of array
106 >            int newSpace = newCapacity - oldCapacity;
107 >            System.arraycopy(elements, head,
108 >                             elements, head + newSpace,
109 >                             oldCapacity - head);
110 >            Arrays.fill(elements, head, head + newSpace, null);
111 >            head += newSpace;
112 >        }
113 >        // checkInvariants();
114 >    }
115  
116 <            if (initialCapacity < 0)   // Too many elements, must back off
117 <                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
116 >    /** Capacity calculation for edge conditions, especially overflow. */
117 >    private int newCapacity(int needed, int jump) {
118 >        final int oldCapacity = elements.length, minCapacity;
119 >        if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
120 >            if (minCapacity < 0)
121 >                throw new IllegalStateException("Sorry, deque too big");
122 >            return Integer.MAX_VALUE;
123          }
124 <        elements = (E[]) new Object[initialCapacity];
124 >        if (needed > jump)
125 >            return minCapacity;
126 >        return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
127 >            ? oldCapacity + jump
128 >            : MAX_ARRAY_SIZE;
129      }
130  
131      /**
132 <     * Double the capacity of this deque.  Call only when full, i.e.,
133 <     * when head and tail have wrapped around to become equal.
132 >     * Increases the internal storage of this collection, if necessary,
133 >     * to ensure that it can hold at least the given number of elements.
134 >     *
135 >     * @param minCapacity the desired minimum capacity
136 >     * @since TBD
137       */
138 <    private void doubleCapacity() {
139 <        assert head == tail;
140 <        int p = head;
141 <        int n = elements.length;
119 <        int r = n - p; // number of elements to the right of p
120 <        int newCapacity = n << 1;
121 <        if (newCapacity < 0)
122 <            throw new IllegalStateException("Sorry, deque too big");
123 <        Object[] a = new Object[newCapacity];
124 <        System.arraycopy(elements, p, a, 0, r);
125 <        System.arraycopy(elements, 0, a, r, p);
126 <        elements = (E[])a;
127 <        head = 0;
128 <        tail = n;
138 >    /* public */ void ensureCapacity(int minCapacity) {
139 >        if (minCapacity > elements.length)
140 >            grow(minCapacity - elements.length);
141 >        // checkInvariants();
142      }
143  
144      /**
145 <     * Copy the elements from our element array into the specified array,
133 <     * in order (from first to last element in the deque).  It is assumed
134 <     * that the array is large enough to hold all elements in the deque.
145 >     * Minimizes the internal storage of this collection.
146       *
147 <     * @return its argument
147 >     * @since TBD
148       */
149 <    private <T> T[] copyElements(T[] a) {
150 <        if (head < tail) {
151 <            System.arraycopy(elements, head, a, 0, size());
152 <        } else if (head > tail) {
142 <            int headPortionLen = elements.length - head;
143 <            System.arraycopy(elements, head, a, 0, headPortionLen);
144 <            System.arraycopy(elements, 0, a, headPortionLen, tail);
149 >    /* public */ void trimToSize() {
150 >        if (size < elements.length) {
151 >            elements = toArray();
152 >            head = 0;
153          }
154 <        return a;
154 >        // checkInvariants();
155      }
156  
157      /**
# Line 151 | Line 159 | public class ArrayDeque<E> extends Abstr
159       * sufficient to hold 16 elements.
160       */
161      public ArrayDeque() {
162 <        elements = (E[]) new Object[16];
162 >        elements = new Object[16];
163      }
164  
165      /**
166       * Constructs an empty array deque with an initial capacity
167       * sufficient to hold the specified number of elements.
168       *
169 <     * @param numElements  lower bound on initial capacity of the deque
169 >     * @param numElements lower bound on initial capacity of the deque
170       */
171      public ArrayDeque(int numElements) {
172 <        allocateElements(numElements);
172 >        elements = new Object[numElements];
173      }
174  
175      /**
# Line 175 | Line 183 | public class ArrayDeque<E> extends Abstr
183       * @throws NullPointerException if the specified collection is null
184       */
185      public ArrayDeque(Collection<? extends E> c) {
186 <        allocateElements(c.size());
187 <        addAll(c);
186 >        Object[] es = c.toArray();
187 >        // defend against c.toArray (incorrectly) not returning Object[]
188 >        // (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
189 >        if (es.getClass() != Object[].class)
190 >            es = Arrays.copyOf(es, es.length, Object[].class);
191 >        for (Object obj : es)
192 >            Objects.requireNonNull(obj);
193 >        this.elements = es;
194 >        this.size = es.length;
195      }
196  
197 <    // The main insertion and extraction methods are addFirst,
198 <    // addLast, pollFirst, pollLast. The other methods are defined in
199 <    // terms of these.
197 >    /**
198 >     * Increments i, mod modulus.
199 >     * Precondition and postcondition: 0 <= i < modulus.
200 >     */
201 >    static final int inc(int i, int modulus) {
202 >        if (++i >= modulus) i = 0;
203 >        return i;
204 >    }
205  
206      /**
207 <     * Inserts the specified element to the front this deque.
208 <     *
189 <     * @param e the element to insert
190 <     * @throws NullPointerException if <tt>e</tt> is null
207 >     * Decrements i, mod modulus.
208 >     * Precondition and postcondition: 0 <= i < modulus.
209       */
210 <    public void addFirst(E e) {
210 >    static final int dec(int i, int modulus) {
211 >        if (--i < 0) i = modulus - 1;
212 >        return i;
213 >    }
214 >
215 >    /**
216 >     * Adds i and j, mod modulus.
217 >     * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
218 >     */
219 >    static final int add(int i, int j, int modulus) {
220 >        if ((i += j) - modulus >= 0) i -= modulus;
221 >        return i;
222 >    }
223 >
224 >    /**
225 >     * Returns the array index of the last element.
226 >     * May return invalid index -1 if there are no elements.
227 >     */
228 >    final int tail() {
229 >        return add(head, size - 1, elements.length);
230 >    }
231 >
232 >    /**
233 >     * Returns element at array index i.
234 >     */
235 >    @SuppressWarnings("unchecked")
236 >    private E elementAt(int i) {
237 >        return (E) elements[i];
238 >    }
239 >
240 >    /**
241 >     * A version of elementAt that checks for null elements.
242 >     * This check doesn't catch all possible comodifications,
243 >     * but does catch ones that corrupt traversal.  It's a little
244 >     * surprising that javac allows this abuse of generics.
245 >     */
246 >    static final <E> E nonNullElementAt(Object[] es, int i) {
247 >        @SuppressWarnings("unchecked") E e = (E) es[i];
248          if (e == null)
249 <            throw new NullPointerException();
250 <        elements[head = (head - 1) & (elements.length - 1)] = e;
196 <        if (head == tail)
197 <            doubleCapacity();
249 >            throw new ConcurrentModificationException();
250 >        return e;
251      }
252  
253 +    // The main insertion and extraction methods are addFirst,
254 +    // addLast, pollFirst, pollLast. The other methods are defined in
255 +    // terms of these.
256 +
257      /**
258 <     * Inserts the specified element to the end this deque.
202 <     * This method is equivalent to {@link Collection#add} and
203 <     * {@link #push}.
258 >     * Inserts the specified element at the front of this deque.
259       *
260 <     * @param e the element to insert
261 <     * @throws NullPointerException if <tt>e</tt> is null
260 >     * @param e the element to add
261 >     * @throws NullPointerException if the specified element is null
262       */
263 <    public void addLast(E e) {
264 <        if (e == null)
265 <            throw new NullPointerException();
266 <        elements[tail] = e;
267 <        if ( (tail = (tail + 1) & (elements.length - 1)) == head)
268 <            doubleCapacity();
263 >    public void addFirst(E e) {
264 >        // checkInvariants();
265 >        Objects.requireNonNull(e);
266 >        Object[] es;
267 >        int capacity, h;
268 >        final int s;
269 >        if ((s = size) == (capacity = (es = elements).length)) {
270 >            grow(1);
271 >            capacity = (es = elements).length;
272 >        }
273 >        if ((h = head - 1) < 0) h = capacity - 1;
274 >        es[head = h] = e;
275 >        size = s + 1;
276 >        // checkInvariants();
277      }
278  
279      /**
280 <     * Retrieves and removes the first element of this deque, or
281 <     * <tt>null</tt> if this deque is empty.
280 >     * Inserts the specified element at the end of this deque.
281 >     *
282 >     * <p>This method is equivalent to {@link #add}.
283       *
284 <     * @return the first element of this deque, or <tt>null</tt> if
285 <     *     this deque is empty
284 >     * @param e the element to add
285 >     * @throws NullPointerException if the specified element is null
286       */
287 <    public E pollFirst() {
288 <        int h = head;
289 <        E result = elements[h]; // Element is null if deque empty
290 <        if (result == null)
291 <            return null;
292 <        elements[h] = null;     // Must null out slot
293 <        head = (h + 1) & (elements.length - 1);
294 <        return result;
287 >    public void addLast(E e) {
288 >        // checkInvariants();
289 >        Objects.requireNonNull(e);
290 >        Object[] es;
291 >        int capacity;
292 >        final int s;
293 >        if ((s = size) == (capacity = (es = elements).length)) {
294 >            grow(1);
295 >            capacity = (es = elements).length;
296 >        }
297 >        es[add(head, s, capacity)] = e;
298 >        size = s + 1;
299 >        // checkInvariants();
300      }
301  
302      /**
303 <     * Retrieves and removes the last element of this deque, or
304 <     * <tt>null</tt> if this deque is empty.
303 >     * Adds all of the elements in the specified collection at the end
304 >     * of this deque, as if by calling {@link #addLast} on each one,
305 >     * in the order that they are returned by the collection's
306 >     * iterator.
307       *
308 <     * @return the last element of this deque, or <tt>null</tt> if
309 <     *     this deque is empty
308 >     * @param c the elements to be inserted into this deque
309 >     * @return {@code true} if this deque changed as a result of the call
310 >     * @throws NullPointerException if the specified collection or any
311 >     *         of its elements are null
312       */
313 <    public E pollLast() {
314 <        int t = (tail - 1) & (elements.length - 1);
315 <        E result = elements[t];
316 <        if (result == null)
317 <            return null;
318 <        elements[t] = null;
319 <        tail = t;
247 <        return result;
313 >    public boolean addAll(Collection<? extends E> c) {
314 >        final int s = size, needed = c.size() - (elements.length - s);
315 >        if (needed > 0)
316 >            grow(needed);
317 >        c.forEach((e) -> addLast(e));
318 >        // checkInvariants();
319 >        return size > s;
320      }
321  
322      /**
323 <     * Inserts the specified element to the front this deque.
323 >     * Inserts the specified element at the front of this deque.
324       *
325 <     * @param e the element to insert
326 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerFirst})
327 <     * @throws NullPointerException if <tt>e</tt> is null
325 >     * @param e the element to add
326 >     * @return {@code true} (as specified by {@link Deque#offerFirst})
327 >     * @throws NullPointerException if the specified element is null
328       */
329      public boolean offerFirst(E e) {
330          addFirst(e);
# Line 260 | Line 332 | public class ArrayDeque<E> extends Abstr
332      }
333  
334      /**
335 <     * Inserts the specified element to the end this deque.
335 >     * Inserts the specified element at the end of this deque.
336       *
337 <     * @param e the element to insert
338 <     * @return <tt>true</tt> (as per the spec for {@link Deque#offerLast})
339 <     * @throws NullPointerException if <tt>e</tt> is null
337 >     * @param e the element to add
338 >     * @return {@code true} (as specified by {@link Deque#offerLast})
339 >     * @throws NullPointerException if the specified element is null
340       */
341      public boolean offerLast(E e) {
342          addLast(e);
# Line 272 | Line 344 | public class ArrayDeque<E> extends Abstr
344      }
345  
346      /**
347 <     * Retrieves and removes the first element of this deque.  This method
276 <     * differs from the <tt>pollFirst</tt> method in that it throws an
277 <     * exception if this deque is empty.
278 <     *
279 <     * @return the first element of this deque
280 <     * @throws NoSuchElementException if this deque is empty
347 >     * @throws NoSuchElementException {@inheritDoc}
348       */
349      public E removeFirst() {
350 <        E x = pollFirst();
351 <        if (x == null)
350 >        // checkInvariants();
351 >        E e = pollFirst();
352 >        if (e == null)
353              throw new NoSuchElementException();
354 <        return x;
354 >        return e;
355      }
356  
357      /**
358 <     * Retrieves and removes the last element of this deque.  This method
291 <     * differs from the <tt>pollLast</tt> method in that it throws an
292 <     * exception if this deque is empty.
293 <     *
294 <     * @return the last element of this deque
295 <     * @throws NoSuchElementException if this deque is empty
358 >     * @throws NoSuchElementException {@inheritDoc}
359       */
360      public E removeLast() {
361 <        E x = pollLast();
362 <        if (x == null)
361 >        // checkInvariants();
362 >        E e = pollLast();
363 >        if (e == null)
364              throw new NoSuchElementException();
365 <        return x;
365 >        return e;
366      }
367  
368 <    /**
369 <     * Retrieves, but does not remove, the first element of this deque,
370 <     * returning <tt>null</tt> if this deque is empty.
371 <     *
372 <     * @return the first element of this deque, or <tt>null</tt> if
373 <     *     this deque is empty
374 <     */
375 <    public E peekFirst() {
376 <        return elements[head]; // elements[head] is null if deque empty
368 >    public E pollFirst() {
369 >        // checkInvariants();
370 >        int s, h;
371 >        if ((s = size) <= 0)
372 >            return null;
373 >        final Object[] es = elements;
374 >        @SuppressWarnings("unchecked") E e = (E) es[h = head];
375 >        es[h] = null;
376 >        if (++h >= es.length) h = 0;
377 >        head = h;
378 >        size = s - 1;
379 >        return e;
380      }
381  
382 <    /**
383 <     * Retrieves, but does not remove, the last element of this deque,
384 <     * returning <tt>null</tt> if this deque is empty.
385 <     *
386 <     * @return the last element of this deque, or <tt>null</tt> if this deque
387 <     *     is empty
388 <     */
389 <    public E peekLast() {
390 <        return elements[(tail - 1) & (elements.length - 1)];
382 >    public E pollLast() {
383 >        // checkInvariants();
384 >        final int s, tail;
385 >        if ((s = size) <= 0)
386 >            return null;
387 >        final Object[] es = elements;
388 >        @SuppressWarnings("unchecked")
389 >        E e = (E) es[tail = add(head, s - 1, es.length)];
390 >        es[tail] = null;
391 >        size = s - 1;
392 >        return e;
393      }
394  
395      /**
396 <     * Retrieves, but does not remove, the first element of this
328 <     * deque.  This method differs from the <tt>peek</tt> method only
329 <     * in that it throws an exception if this deque is empty.
330 <     *
331 <     * @return the first element of this deque
332 <     * @throws NoSuchElementException if this deque is empty
396 >     * @throws NoSuchElementException {@inheritDoc}
397       */
398      public E getFirst() {
399 <        E x = elements[head];
400 <        if (x == null)
401 <            throw new NoSuchElementException();
338 <        return x;
399 >        // checkInvariants();
400 >        if (size <= 0) throw new NoSuchElementException();
401 >        return elementAt(head);
402      }
403  
404      /**
405 <     * Retrieves, but does not remove, the last element of this
343 <     * deque.  This method differs from the <tt>peek</tt> method only
344 <     * in that it throws an exception if this deque is empty.
345 <     *
346 <     * @return the last element of this deque
347 <     * @throws NoSuchElementException if this deque is empty
405 >     * @throws NoSuchElementException {@inheritDoc}
406       */
407 +    @SuppressWarnings("unchecked")
408      public E getLast() {
409 <        E x = elements[(tail - 1) & (elements.length - 1)];
410 <        if (x == null)
411 <            throw new NoSuchElementException();
412 <        return x;
409 >        // checkInvariants();
410 >        final int s;
411 >        if ((s = size) <= 0) throw new NoSuchElementException();
412 >        final Object[] es = elements;
413 >        return (E) es[add(head, s - 1, es.length)];
414 >    }
415 >
416 >    public E peekFirst() {
417 >        // checkInvariants();
418 >        return (size <= 0) ? null : elementAt(head);
419 >    }
420 >
421 >    @SuppressWarnings("unchecked")
422 >    public E peekLast() {
423 >        // checkInvariants();
424 >        final int s;
425 >        if ((s = size) <= 0) return null;
426 >        final Object[] es = elements;
427 >        return (E) es[add(head, s - 1, es.length)];
428      }
429  
430      /**
431       * Removes the first occurrence of the specified element in this
432 <     * deque (when traversing the deque from head to tail).  If the deque
433 <     * does not contain the element, it is unchanged.
434 <     *
435 <     * @param e element to be removed from this deque, if present
436 <     * @return <tt>true</tt> if the deque contained the specified element
437 <     */
438 <    public boolean removeFirstOccurrence(Object e) {
439 <        if (e == null)
440 <            return false;
441 <        int mask = elements.length - 1;
442 <        int i = head;
443 <        E x;
444 <        while ( (x = elements[i]) != null) {
445 <            if (e.equals(x)) {
446 <                delete(i);
447 <                return true;
432 >     * deque (when traversing the deque from head to tail).
433 >     * If the deque does not contain the element, it is unchanged.
434 >     * More formally, removes the first element {@code e} such that
435 >     * {@code o.equals(e)} (if such an element exists).
436 >     * Returns {@code true} if this deque contained the specified element
437 >     * (or equivalently, if this deque changed as a result of the call).
438 >     *
439 >     * @param o element to be removed from this deque, if present
440 >     * @return {@code true} if the deque contained the specified element
441 >     */
442 >    public boolean removeFirstOccurrence(Object o) {
443 >        if (o != null) {
444 >            final Object[] es = elements;
445 >            int i, end, to, todo;
446 >            todo = (end = (i = head) + size)
447 >                - (to = (es.length - end >= 0) ? end : es.length);
448 >            for (;; to = todo, i = 0, todo = 0) {
449 >                for (; i < to; i++)
450 >                    if (o.equals(es[i])) {
451 >                        delete(i);
452 >                        return true;
453 >                    }
454 >                if (todo == 0) break;
455              }
375            i = (i + 1) & mask;
456          }
457          return false;
458      }
459  
460      /**
461       * Removes the last occurrence of the specified element in this
462 <     * deque (when traversing the deque from head to tail).  If the deque
463 <     * does not contain the element, it is unchanged.
464 <     *
465 <     * @param e element to be removed from this deque, if present
466 <     * @return <tt>true</tt> if the deque contained the specified element
467 <     */
468 <    public boolean removeLastOccurrence(Object e) {
469 <        if (e == null)
470 <            return false;
471 <        int mask = elements.length - 1;
472 <        int i = (tail - 1) & mask;
473 <        E x;
474 <        while ( (x = elements[i]) != null) {
475 <            if (e.equals(x)) {
476 <                delete(i);
477 <                return true;
462 >     * deque (when traversing the deque from head to tail).
463 >     * If the deque does not contain the element, it is unchanged.
464 >     * More formally, removes the last element {@code e} such that
465 >     * {@code o.equals(e)} (if such an element exists).
466 >     * Returns {@code true} if this deque contained the specified element
467 >     * (or equivalently, if this deque changed as a result of the call).
468 >     *
469 >     * @param o element to be removed from this deque, if present
470 >     * @return {@code true} if the deque contained the specified element
471 >     */
472 >    public boolean removeLastOccurrence(Object o) {
473 >        if (o != null) {
474 >            final Object[] es = elements;
475 >            int i, to, end, todo;
476 >            todo = (to = ((end = (i = tail()) - size) >= -1) ? end : -1) - end;
477 >            for (;; to = (i = es.length - 1) - todo, todo = 0) {
478 >                for (; i > to; i--)
479 >                    if (o.equals(es[i])) {
480 >                        delete(i);
481 >                        return true;
482 >                    }
483 >                if (todo == 0) break;
484              }
399            i = (i - 1) & mask;
485          }
486          return false;
487      }
# Line 404 | Line 489 | public class ArrayDeque<E> extends Abstr
489      // *** Queue methods ***
490  
491      /**
492 <     * Inserts the specified element to the end of this deque.
408 <     *
409 <     * <p>This method is equivalent to {@link #offerLast}.
410 <     *
411 <     * @param e the element to insert
412 <     * @return <tt>true</tt> (as per the spec for {@link Queue#offer})
413 <     * @throws NullPointerException if <tt>e</tt> is null
414 <     */
415 <    public boolean offer(E e) {
416 <        return offerLast(e);
417 <    }
418 <
419 <    /**
420 <     * Inserts the specified element to the end of this deque.
492 >     * Inserts the specified element at the end of this deque.
493       *
494       * <p>This method is equivalent to {@link #addLast}.
495       *
496 <     * @param e the element to insert
497 <     * @return <tt>true</tt> (as per the spec for {@link Collection#add})
498 <     * @throws NullPointerException if <tt>e</tt> is null
496 >     * @param e the element to add
497 >     * @return {@code true} (as specified by {@link Collection#add})
498 >     * @throws NullPointerException if the specified element is null
499       */
500      public boolean add(E e) {
501          addLast(e);
# Line 431 | Line 503 | public class ArrayDeque<E> extends Abstr
503      }
504  
505      /**
506 <     * Retrieves and removes the head of the queue represented by
435 <     * this deque, or <tt>null</tt> if this deque is empty.  In other words,
436 <     * retrieves and removes the first element of this deque, or <tt>null</tt>
437 <     * if this deque is empty.
506 >     * Inserts the specified element at the end of this deque.
507       *
508 <     * <p>This method is equivalent to {@link #pollFirst}.
508 >     * <p>This method is equivalent to {@link #offerLast}.
509       *
510 <     * @return the first element of this deque, or <tt>null</tt> if
511 <     *     this deque is empty
510 >     * @param e the element to add
511 >     * @return {@code true} (as specified by {@link Queue#offer})
512 >     * @throws NullPointerException if the specified element is null
513       */
514 <    public E poll() {
515 <        return pollFirst();
514 >    public boolean offer(E e) {
515 >        return offerLast(e);
516      }
517  
518      /**
519       * Retrieves and removes the head of the queue represented by this deque.
520 <     * This method differs from the <tt>poll</tt> method in that it throws an
520 >     *
521 >     * This method differs from {@link #poll poll} only in that it throws an
522       * exception if this deque is empty.
523       *
524       * <p>This method is equivalent to {@link #removeFirst}.
525       *
526       * @return the head of the queue represented by this deque
527 <     * @throws NoSuchElementException if this deque is empty
527 >     * @throws NoSuchElementException {@inheritDoc}
528       */
529      public E remove() {
530          return removeFirst();
531      }
532  
533      /**
534 <     * Retrieves, but does not remove, the head of the queue represented by
535 <     * this deque, returning <tt>null</tt> if this deque is empty.
534 >     * Retrieves and removes the head of the queue represented by this deque
535 >     * (in other words, the first element of this deque), or returns
536 >     * {@code null} if this deque is empty.
537       *
538 <     * <p>This method is equivalent to {@link #peekFirst}
538 >     * <p>This method is equivalent to {@link #pollFirst}.
539       *
540       * @return the head of the queue represented by this deque, or
541 <     *     <tt>null</tt> if this deque is empty
541 >     *         {@code null} if this deque is empty
542       */
543 <    public E peek() {
544 <        return peekFirst();
543 >    public E poll() {
544 >        return pollFirst();
545      }
546  
547      /**
548       * Retrieves, but does not remove, the head of the queue represented by
549 <     * this deque.  This method differs from the <tt>peek</tt> method only in
549 >     * this deque.  This method differs from {@link #peek peek} only in
550       * that it throws an exception if this deque is empty.
551       *
552 <     * <p>This method is equivalent to {@link #getFirst}
552 >     * <p>This method is equivalent to {@link #getFirst}.
553       *
554       * @return the head of the queue represented by this deque
555 <     * @throws NoSuchElementException if this deque is empty
555 >     * @throws NoSuchElementException {@inheritDoc}
556       */
557      public E element() {
558          return getFirst();
559      }
560  
561 +    /**
562 +     * Retrieves, but does not remove, the head of the queue represented by
563 +     * this deque, or returns {@code null} if this deque is empty.
564 +     *
565 +     * <p>This method is equivalent to {@link #peekFirst}.
566 +     *
567 +     * @return the head of the queue represented by this deque, or
568 +     *         {@code null} if this deque is empty
569 +     */
570 +    public E peek() {
571 +        return peekFirst();
572 +    }
573 +
574      // *** Stack methods ***
575  
576      /**
577       * Pushes an element onto the stack represented by this deque.  In other
578 <     * words, inserts the element to the front this deque.
578 >     * words, inserts the element at the front of this deque.
579       *
580       * <p>This method is equivalent to {@link #addFirst}.
581       *
582       * @param e the element to push
583 <     * @throws NullPointerException if <tt>e</tt> is null
583 >     * @throws NullPointerException if the specified element is null
584       */
585      public void push(E e) {
586          addFirst(e);
# Line 508 | Line 593 | public class ArrayDeque<E> extends Abstr
593       * <p>This method is equivalent to {@link #removeFirst()}.
594       *
595       * @return the element at the front of this deque (which is the top
596 <     *     of the stack represented by this deque)
597 <     * @throws NoSuchElementException if this deque is empty
596 >     *         of the stack represented by this deque)
597 >     * @throws NoSuchElementException {@inheritDoc}
598       */
599      public E pop() {
600          return removeFirst();
601      }
602  
603      /**
604 <     * Remove the element at the specified position in the elements array,
605 <     * adjusting head, tail, and size as necessary.  This can result in
606 <     * motion of elements backwards or forwards in the array.
607 <     *
608 <     * <p>This method is called delete rather than remove to emphasize
609 <     * that its semantics differ from those of List.remove(int).
610 <     *
604 >     * Removes the element at the specified position in the elements array.
605 >     * This can result in forward or backwards motion of array elements.
606 >     * We optimize for least element motion.
607 >     *
608 >     * <p>This method is called delete rather than remove to emphasize
609 >     * that its semantics differ from those of {@link List#remove(int)}.
610 >     *
611       * @return true if elements moved backwards
612       */
613 <    private boolean delete(int i) {
614 <        // Case 1: Deque doesn't wrap
615 <        // Case 2: Deque does wrap and removed element is in the head portion
616 <        if ((head < tail || tail == 0) || i >= head) {
617 <            System.arraycopy(elements, head, elements, head + 1, i - head);
618 <            elements[head] = null;
619 <            head = (head + 1) & (elements.length - 1);
613 >    boolean delete(int i) {
614 >        // checkInvariants();
615 >        final Object[] es = elements;
616 >        final int capacity = es.length;
617 >        final int h = head;
618 >        int front;              // number of elements before to-be-deleted elt
619 >        if ((front = i - h) < 0) front += capacity;
620 >        final int back = size - front - 1; // number of elements after
621 >        if (front < back) {
622 >            // move front elements forwards
623 >            if (h <= i) {
624 >                System.arraycopy(es, h, es, h + 1, front);
625 >            } else { // Wrap around
626 >                System.arraycopy(es, 0, es, 1, i);
627 >                es[0] = es[capacity - 1];
628 >                System.arraycopy(es, h, es, h + 1, front - (i + 1));
629 >            }
630 >            es[h] = null;
631 >            if ((head = (h + 1)) >= capacity) head = 0;
632 >            size--;
633 >            // checkInvariants();
634              return false;
635 +        } else {
636 +            // move back elements backwards
637 +            int tail = tail();
638 +            if (i <= tail) {
639 +                System.arraycopy(es, i + 1, es, i, back);
640 +            } else { // Wrap around
641 +                int firstLeg = capacity - (i + 1);
642 +                System.arraycopy(es, i + 1, es, i, firstLeg);
643 +                es[capacity - 1] = es[0];
644 +                System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
645 +            }
646 +            es[tail] = null;
647 +            size--;
648 +            // checkInvariants();
649 +            return true;
650          }
537
538        // Case 3: Deque wraps and removed element is in the tail portion
539        tail--;
540        System.arraycopy(elements, i + 1, elements, i, tail - i);
541        elements[tail] = null;
542        return true;
651      }
652  
653      // *** Collection Methods ***
# Line 550 | Line 658 | public class ArrayDeque<E> extends Abstr
658       * @return the number of elements in this deque
659       */
660      public int size() {
661 <        return (tail - head) & (elements.length - 1);
661 >        return size;
662      }
663  
664      /**
665 <     * Returns <tt>true</tt> if this collection contains no elements.<p>
665 >     * Returns {@code true} if this deque contains no elements.
666       *
667 <     * @return <tt>true</tt> if this collection contains no elements.
667 >     * @return {@code true} if this deque contains no elements
668       */
669      public boolean isEmpty() {
670 <        return head == tail;
670 >        return size == 0;
671      }
672  
673      /**
# Line 567 | Line 675 | public class ArrayDeque<E> extends Abstr
675       * will be ordered from first (head) to last (tail).  This is the same
676       * order that elements would be dequeued (via successive calls to
677       * {@link #remove} or popped (via successive calls to {@link #pop}).
678 <     *
679 <     * @return an <tt>Iterator</tt> over the elements in this deque
678 >     *
679 >     * @return an iterator over the elements in this deque
680       */
681      public Iterator<E> iterator() {
682          return new DeqIterator();
683      }
684  
685 +    public Iterator<E> descendingIterator() {
686 +        return new DescendingIterator();
687 +    }
688 +
689      private class DeqIterator implements Iterator<E> {
690 <        /**
691 <         * Index of element to be returned by subsequent call to next.
580 <         */
581 <        private int cursor = head;
690 >        /** Index of element to be returned by subsequent call to next. */
691 >        int cursor;
692  
693 <        /**
694 <         * Tail recorded at construction (also in remove), to stop
585 <         * iterator and also to check for comodification.
586 <         */
587 <        private int fence = tail;
693 >        /** Number of elements yet to be returned. */
694 >        int remaining = size;
695  
696          /**
697           * Index of element returned by most recent call to next.
698           * Reset to -1 if element is deleted by a call to remove.
699           */
700 <        private int lastRet = -1;
700 >        int lastRet = -1;
701 >
702 >        DeqIterator() { cursor = head; }
703  
704 <        public boolean hasNext() {
705 <            return cursor != fence;
704 >        public final boolean hasNext() {
705 >            return remaining > 0;
706          }
707  
708          public E next() {
709 <            E result;
601 <            if (cursor == fence)
709 >            if (remaining <= 0)
710                  throw new NoSuchElementException();
711 <            // This check doesn't catch all possible comodifications,
712 <            // but does catch the ones that corrupt traversal
605 <            if (tail != fence || (result = elements[cursor]) == null)
606 <                throw new ConcurrentModificationException();
711 >            final Object[] es = elements;
712 >            E e = nonNullElementAt(es, cursor);
713              lastRet = cursor;
714 <            cursor = (cursor + 1) & (elements.length - 1);
715 <            return result;
714 >            if (++cursor >= es.length) cursor = 0;
715 >            remaining--;
716 >            return e;
717          }
718  
719 <        public void remove() {
719 >        void postDelete(boolean leftShifted) {
720 >            if (leftShifted)
721 >                if (--cursor < 0) cursor = elements.length - 1;
722 >        }
723 >
724 >        public final void remove() {
725              if (lastRet < 0)
726                  throw new IllegalStateException();
727 <            if (delete(lastRet))
616 <                cursor--;
727 >            postDelete(delete(lastRet));
728              lastRet = -1;
729 <            fence = tail;
729 >        }
730 >
731 >        public void forEachRemaining(Consumer<? super E> action) {
732 >            Objects.requireNonNull(action);
733 >            final int k;
734 >            if ((k = remaining) > 0) {
735 >                remaining = 0;
736 >                ArrayDeque.forEachRemaining(action, elements, cursor, k);
737 >                if ((lastRet = cursor + k - 1) >= elements.length)
738 >                    lastRet -= elements.length;
739 >            }
740 >        }
741 >    }
742 >
743 >    private class DescendingIterator extends DeqIterator {
744 >        DescendingIterator() { cursor = tail(); }
745 >
746 >        public final E next() {
747 >            if (remaining <= 0)
748 >                throw new NoSuchElementException();
749 >            final Object[] es = elements;
750 >            E e = nonNullElementAt(es, cursor);
751 >            lastRet = cursor;
752 >            if (--cursor < 0) cursor = es.length - 1;
753 >            remaining--;
754 >            return e;
755 >        }
756 >
757 >        void postDelete(boolean leftShifted) {
758 >            if (!leftShifted)
759 >                if (++cursor >= elements.length) cursor = 0;
760 >        }
761 >
762 >        public final void forEachRemaining(Consumer<? super E> action) {
763 >            Objects.requireNonNull(action);
764 >            final int k;
765 >            if ((k = remaining) > 0) {
766 >                remaining = 0;
767 >                final Object[] es = elements;
768 >                int i, end, to, todo;
769 >                todo = (to = ((end = (i = cursor) - k) >= -1) ? end : -1) - end;
770 >                for (;; to = (i = es.length - 1) - todo, todo = 0) {
771 >                    for (; i > to; i--)
772 >                        action.accept(nonNullElementAt(es, i));
773 >                    if (todo == 0) break;
774 >                }
775 >                if ((lastRet = cursor - (k - 1)) < 0)
776 >                    lastRet += es.length;
777 >            }
778 >        }
779 >    }
780 >
781 >    /**
782 >     * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
783 >     * and <em>fail-fast</em> {@link Spliterator} over the elements in this
784 >     * deque.
785 >     *
786 >     * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
787 >     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
788 >     * {@link Spliterator#NONNULL}.  Overriding implementations should document
789 >     * the reporting of additional characteristic values.
790 >     *
791 >     * @return a {@code Spliterator} over the elements in this deque
792 >     * @since 1.8
793 >     */
794 >    public Spliterator<E> spliterator() {
795 >        return new ArrayDequeSpliterator();
796 >    }
797 >
798 >    final class ArrayDequeSpliterator implements Spliterator<E> {
799 >        private int cursor;
800 >        private int remaining; // -1 until late-binding first use
801 >
802 >        /** Constructs late-binding spliterator over all elements. */
803 >        ArrayDequeSpliterator() {
804 >            this.remaining = -1;
805 >        }
806 >
807 >        /** Constructs spliterator over the given slice. */
808 >        ArrayDequeSpliterator(int cursor, int count) {
809 >            this.cursor = cursor;
810 >            this.remaining = count;
811 >        }
812 >
813 >        /** Ensures late-binding initialization; then returns remaining. */
814 >        private int remaining() {
815 >            if (remaining < 0) {
816 >                cursor = head;
817 >                remaining = size;
818 >            }
819 >            return remaining;
820 >        }
821 >
822 >        public ArrayDequeSpliterator trySplit() {
823 >            final int mid;
824 >            if ((mid = remaining() >> 1) > 0) {
825 >                int oldCursor = cursor;
826 >                cursor = add(cursor, mid, elements.length);
827 >                remaining -= mid;
828 >                return new ArrayDequeSpliterator(oldCursor, mid);
829 >            }
830 >            return null;
831 >        }
832 >
833 >        public void forEachRemaining(Consumer<? super E> action) {
834 >            Objects.requireNonNull(action);
835 >            final int k = remaining(); // side effect!
836 >            remaining = 0;
837 >            ArrayDeque.forEachRemaining(action, elements, cursor, k);
838 >        }
839 >
840 >        public boolean tryAdvance(Consumer<? super E> action) {
841 >            Objects.requireNonNull(action);
842 >            final int k;
843 >            if ((k = remaining()) <= 0)
844 >                return false;
845 >            action.accept(nonNullElementAt(elements, cursor));
846 >            if (++cursor >= elements.length) cursor = 0;
847 >            remaining = k - 1;
848 >            return true;
849 >        }
850 >
851 >        public long estimateSize() {
852 >            return remaining();
853 >        }
854 >
855 >        public int characteristics() {
856 >            return Spliterator.NONNULL
857 >                | Spliterator.ORDERED
858 >                | Spliterator.SIZED
859 >                | Spliterator.SUBSIZED;
860 >        }
861 >    }
862 >
863 >    @SuppressWarnings("unchecked")
864 >    public void forEach(Consumer<? super E> action) {
865 >        Objects.requireNonNull(action);
866 >        final Object[] es = elements;
867 >        int i, end, to, todo;
868 >        todo = (end = (i = head) + size)
869 >            - (to = (es.length - end >= 0) ? end : es.length);
870 >        for (;; to = todo, i = 0, todo = 0) {
871 >            for (; i < to; i++)
872 >                action.accept((E) es[i]);
873 >            if (todo == 0) break;
874 >        }
875 >        // checkInvariants();
876 >    }
877 >
878 >    /**
879 >     * Calls action on remaining elements, starting at index i and
880 >     * traversing in ascending order.  A variant of forEach that also
881 >     * checks for concurrent modification, for use in iterators.
882 >     */
883 >    static <E> void forEachRemaining(
884 >        Consumer<? super E> action, Object[] es, int i, int remaining) {
885 >        int end, to, todo;
886 >        todo = (end = i + remaining)
887 >            - (to = (es.length - end >= 0) ? end : es.length);
888 >        for (;; to = todo, i = 0, todo = 0) {
889 >            for (; i < to; i++)
890 >                action.accept(nonNullElementAt(es, i));
891 >            if (todo == 0) break;
892          }
893      }
894  
895      /**
896 <     * Returns <tt>true</tt> if this deque contains the specified
897 <     * element.  More formally, returns <tt>true</tt> if and only if this
898 <     * deque contains at least one element <tt>e</tt> such that
899 <     * <tt>e.equals(o)</tt>.
896 >     * Replaces each element of this deque with the result of applying the
897 >     * operator to that element, as specified by {@link List#replaceAll}.
898 >     *
899 >     * @param operator the operator to apply to each element
900 >     * @since TBD
901 >     */
902 >    @SuppressWarnings("unchecked")
903 >    /* public */ void replaceAll(UnaryOperator<E> operator) {
904 >        Objects.requireNonNull(operator);
905 >        final Object[] es = elements;
906 >        int i, end, to, todo;
907 >        todo = (end = (i = head) + size)
908 >            - (to = (es.length - end >= 0) ? end : es.length);
909 >        for (;; to = todo, i = 0, todo = 0) {
910 >            for (; i < to; i++)
911 >                es[i] = operator.apply((E) es[i]);
912 >            if (todo == 0) break;
913 >        }
914 >        // checkInvariants();
915 >    }
916 >
917 >    /**
918 >     * @throws NullPointerException {@inheritDoc}
919 >     */
920 >    public boolean removeIf(Predicate<? super E> filter) {
921 >        Objects.requireNonNull(filter);
922 >        return bulkRemove(filter);
923 >    }
924 >
925 >    /**
926 >     * @throws NullPointerException {@inheritDoc}
927 >     */
928 >    public boolean removeAll(Collection<?> c) {
929 >        Objects.requireNonNull(c);
930 >        return bulkRemove(e -> c.contains(e));
931 >    }
932 >
933 >    /**
934 >     * @throws NullPointerException {@inheritDoc}
935 >     */
936 >    public boolean retainAll(Collection<?> c) {
937 >        Objects.requireNonNull(c);
938 >        return bulkRemove(e -> !c.contains(e));
939 >    }
940 >
941 >    /** Implementation of bulk remove methods. */
942 >    private boolean bulkRemove(Predicate<? super E> filter) {
943 >        // checkInvariants();
944 >        final Object[] es = elements;
945 >        final int capacity = es.length;
946 >        int i = head, j = i, remaining = size, deleted = 0;
947 >        try {
948 >            for (; remaining > 0; remaining--) {
949 >                @SuppressWarnings("unchecked") E e = (E) es[i];
950 >                if (filter.test(e))
951 >                    deleted++;
952 >                else {
953 >                    if (j != i)
954 >                        es[j] = e;
955 >                    if (++j >= capacity) j = 0;
956 >                }
957 >                if (++i >= capacity) i = 0;
958 >            }
959 >            return deleted > 0;
960 >        } catch (Throwable ex) {
961 >            if (deleted > 0)
962 >                for (; remaining > 0; remaining--) {
963 >                    es[j] = es[i];
964 >                    if (++i >= capacity) i = 0;
965 >                    if (++j >= capacity) j = 0;
966 >                }
967 >            throw ex;
968 >        } finally {
969 >            size -= deleted;
970 >            clearSlice(es, j, deleted);
971 >            // checkInvariants();
972 >        }
973 >    }
974 >
975 >    /**
976 >     * Returns {@code true} if this deque contains the specified element.
977 >     * More formally, returns {@code true} if and only if this deque contains
978 >     * at least one element {@code e} such that {@code o.equals(e)}.
979       *
980       * @param o object to be checked for containment in this deque
981 <     * @return <tt>true</tt> if this deque contains the specified element
981 >     * @return {@code true} if this deque contains the specified element
982       */
983      public boolean contains(Object o) {
984 <        if (o == null)
985 <            return false;
986 <        int mask = elements.length - 1;
987 <        int i = head;
988 <        E x;
989 <        while ( (x = elements[i]) != null) {
990 <            if (o.equals(x))
991 <                return true;
992 <            i = (i + 1) & mask;
984 >        if (o != null) {
985 >            final Object[] es = elements;
986 >            int i, end, to, todo;
987 >            todo = (end = (i = head) + size)
988 >                - (to = (es.length - end >= 0) ? end : es.length);
989 >            for (;; to = todo, i = 0, todo = 0) {
990 >                for (; i < to; i++)
991 >                    if (o.equals(es[i]))
992 >                        return true;
993 >                if (todo == 0) break;
994 >            }
995          }
996          return false;
997      }
998  
999      /**
1000       * Removes a single instance of the specified element from this deque.
1001 <     * This method is equivalent to {@link #removeFirstOccurrence}.
1001 >     * If the deque does not contain the element, it is unchanged.
1002 >     * More formally, removes the first element {@code e} such that
1003 >     * {@code o.equals(e)} (if such an element exists).
1004 >     * Returns {@code true} if this deque contained the specified element
1005 >     * (or equivalently, if this deque changed as a result of the call).
1006 >     *
1007 >     * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1008       *
1009 <     * @param e element to be removed from this deque, if present
1010 <     * @return <tt>true</tt> if this deque contained the specified element
1009 >     * @param o element to be removed from this deque, if present
1010 >     * @return {@code true} if this deque contained the specified element
1011       */
1012 <    public boolean remove(Object e) {
1013 <        return removeFirstOccurrence(e);
1012 >    public boolean remove(Object o) {
1013 >        return removeFirstOccurrence(o);
1014      }
1015  
1016      /**
1017       * Removes all of the elements from this deque.
1018 +     * The deque will be empty after this call returns.
1019       */
1020      public void clear() {
1021 <        int h = head;
1022 <        int t = tail;
1023 <        if (h != t) { // clear all cells
1024 <            head = tail = 0;
1025 <            int i = h;
1026 <            int mask = elements.length - 1;
1027 <            do {
1028 <                elements[i] = null;
1029 <                i = (i + 1) & mask;
1030 <            } while(i != t);
1021 >        clearSlice(elements, head, size);
1022 >        size = head = 0;
1023 >        // checkInvariants();
1024 >    }
1025 >
1026 >    /**
1027 >     * Nulls out count elements, starting at array index i.
1028 >     */
1029 >    private static void clearSlice(Object[] es, int i, int count) {
1030 >        int end, to, todo;
1031 >        todo = (end = i + count)
1032 >            - (to = (es.length - end >= 0) ? end : es.length);
1033 >        for (;; to = todo, i = 0, todo = 0) {
1034 >            Arrays.fill(es, i, to, null);
1035 >            if (todo == 0) break;
1036          }
1037      }
1038  
1039      /**
1040 <     * Returns an array containing all of the elements in this list
1041 <     * in the correct order.
1040 >     * Returns an array containing all of the elements in this deque
1041 >     * in proper sequence (from first to last element).
1042 >     *
1043 >     * <p>The returned array will be "safe" in that no references to it are
1044 >     * maintained by this deque.  (In other words, this method must allocate
1045 >     * a new array).  The caller is thus free to modify the returned array.
1046       *
1047 <     * @return an array containing all of the elements in this list
1048 <     *         in the correct order
1047 >     * <p>This method acts as bridge between array-based and collection-based
1048 >     * APIs.
1049 >     *
1050 >     * @return an array containing all of the elements in this deque
1051       */
1052      public Object[] toArray() {
1053 <        return copyElements(new Object[size()]);
1053 >        return toArray(Object[].class);
1054 >    }
1055 >
1056 >    private <T> T[] toArray(Class<T[]> klazz) {
1057 >        final Object[] es = elements;
1058 >        final int capacity = es.length;
1059 >        final int head = this.head, end = head + size;
1060 >        final T[] a;
1061 >        if (end >= 0) {
1062 >            a = Arrays.copyOfRange(es, head, end, klazz);
1063 >        } else {
1064 >            // integer overflow!
1065 >            a = Arrays.copyOfRange(es, 0, size, klazz);
1066 >            System.arraycopy(es, head, a, 0, capacity - head);
1067 >        }
1068 >        if (end - capacity > 0)
1069 >            System.arraycopy(es, 0, a, capacity - head, end - capacity);
1070 >        return a;
1071      }
1072  
1073      /**
1074 <     * Returns an array containing all of the elements in this deque in the
1075 <     * correct order; the runtime type of the returned array is that of the
1076 <     * specified array.  If the deque fits in the specified array, it is
1077 <     * returned therein.  Otherwise, a new array is allocated with the runtime
1078 <     * type of the specified array and the size of this deque.
1074 >     * Returns an array containing all of the elements in this deque in
1075 >     * proper sequence (from first to last element); the runtime type of the
1076 >     * returned array is that of the specified array.  If the deque fits in
1077 >     * the specified array, it is returned therein.  Otherwise, a new array
1078 >     * is allocated with the runtime type of the specified array and the
1079 >     * size of this deque.
1080 >     *
1081 >     * <p>If this deque fits in the specified array with room to spare
1082 >     * (i.e., the array has more elements than this deque), the element in
1083 >     * the array immediately following the end of the deque is set to
1084 >     * {@code null}.
1085 >     *
1086 >     * <p>Like the {@link #toArray()} method, this method acts as bridge between
1087 >     * array-based and collection-based APIs.  Further, this method allows
1088 >     * precise control over the runtime type of the output array, and may,
1089 >     * under certain circumstances, be used to save allocation costs.
1090 >     *
1091 >     * <p>Suppose {@code x} is a deque known to contain only strings.
1092 >     * The following code can be used to dump the deque into a newly
1093 >     * allocated array of {@code String}:
1094       *
1095 <     * <p>If the deque fits in the specified array with room to spare (i.e.,
1096 <     * the array has more elements than the deque), the element in the array
1097 <     * immediately following the end of the collection is set to <tt>null</tt>.
1095 >     * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1096 >     *
1097 >     * Note that {@code toArray(new Object[0])} is identical in function to
1098 >     * {@code toArray()}.
1099       *
1100       * @param a the array into which the elements of the deque are to
1101 <     *          be stored, if it is big enough; otherwise, a new array of the
1102 <     *          same runtime type is allocated for this purpose
1103 <     * @return an array containing the elements of the deque
1104 <     * @throws ArrayStoreException if the runtime type of a is not a supertype
1105 <     *         of the runtime type of every element in this deque
1101 >     *          be stored, if it is big enough; otherwise, a new array of the
1102 >     *          same runtime type is allocated for this purpose
1103 >     * @return an array containing all of the elements in this deque
1104 >     * @throws ArrayStoreException if the runtime type of the specified array
1105 >     *         is not a supertype of the runtime type of every element in
1106 >     *         this deque
1107 >     * @throws NullPointerException if the specified array is null
1108       */
1109 +    @SuppressWarnings("unchecked")
1110      public <T> T[] toArray(T[] a) {
1111 <        int size = size();
1112 <        if (a.length < size)
1113 <            a = (T[])java.lang.reflect.Array.newInstance(
1114 <                    a.getClass().getComponentType(), size);
1115 <        copyElements(a);
1116 <        if (a.length > size)
1111 >        final int size;
1112 >        if ((size = this.size) > a.length)
1113 >            return toArray((Class<T[]>) a.getClass());
1114 >        final Object[] es = elements;
1115 >        final int head = this.head, end = head + size;
1116 >        final int front = (es.length - end >= 0) ? size : es.length - head;
1117 >        System.arraycopy(es, head, a, 0, front);
1118 >        if (front < size)
1119 >            System.arraycopy(es, 0, a, front, size - front);
1120 >        if (size < a.length)
1121              a[size] = null;
1122          return a;
1123      }
# Line 718 | Line 1130 | public class ArrayDeque<E> extends Abstr
1130       * @return a copy of this deque
1131       */
1132      public ArrayDeque<E> clone() {
1133 <        try {
1133 >        try {
1134 >            @SuppressWarnings("unchecked")
1135              ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1136 <            // These two lines are currently faster than cloning the array:
724 <            result.elements = (E[]) new Object[elements.length];
725 <            System.arraycopy(elements, 0, result.elements, 0, elements.length);
1136 >            result.elements = Arrays.copyOf(elements, elements.length);
1137              return result;
1138 <
728 <        } catch (CloneNotSupportedException e) {
1138 >        } catch (CloneNotSupportedException e) {
1139              throw new AssertionError();
1140          }
1141      }
1142  
733    /**
734     * Appease the serialization gods.
735     */
1143      private static final long serialVersionUID = 2340985798034038923L;
1144  
1145      /**
1146 <     * Serialize this deque.
1146 >     * Saves this deque to a stream (that is, serializes it).
1147       *
1148 <     * @serialData The current size (<tt>int</tt>) of the deque,
1148 >     * @param s the stream
1149 >     * @throws java.io.IOException if an I/O error occurs
1150 >     * @serialData The current size ({@code int}) of the deque,
1151       * followed by all of its elements (each an object reference) in
1152       * first-to-last order.
1153       */
1154 <    private void writeObject(ObjectOutputStream s) throws IOException {
1154 >    private void writeObject(java.io.ObjectOutputStream s)
1155 >            throws java.io.IOException {
1156          s.defaultWriteObject();
1157  
1158          // Write out size
749        int size = size();
1159          s.writeInt(size);
1160  
1161          // Write out elements in order.
1162 <        int i = head;
1163 <        int mask = elements.length - 1;
1164 <        for (int j = 0; j < size; j++) {
1165 <            s.writeObject(elements[i]);
1166 <            i = (i + 1) & mask;
1162 >        final Object[] es = elements;
1163 >        int i, end, to, todo;
1164 >        todo = (end = (i = head) + size)
1165 >            - (to = (es.length - end >= 0) ? end : es.length);
1166 >        for (;; to = todo, i = 0, todo = 0) {
1167 >            for (; i < to; i++)
1168 >                s.writeObject(es[i]);
1169 >            if (todo == 0) break;
1170          }
1171      }
1172  
1173      /**
1174 <     * Deserialize this deque.
1174 >     * Reconstitutes this deque from a stream (that is, deserializes it).
1175 >     * @param s the stream
1176 >     * @throws ClassNotFoundException if the class of a serialized object
1177 >     *         could not be found
1178 >     * @throws java.io.IOException if an I/O error occurs
1179       */
1180 <    private void readObject(ObjectInputStream s)
1181 <            throws IOException, ClassNotFoundException {
1180 >    private void readObject(java.io.ObjectInputStream s)
1181 >            throws java.io.IOException, ClassNotFoundException {
1182          s.defaultReadObject();
1183  
1184          // Read in size and allocate array
1185 <        int size = s.readInt();
770 <        allocateElements(size);
771 <        head = 0;
772 <        tail = size;
1185 >        elements = new Object[size = s.readInt()];
1186  
1187          // Read in all elements in the proper order.
1188          for (int i = 0; i < size; i++)
1189 <            elements[i] = (E)s.readObject();
1189 >            elements[i] = s.readObject();
1190 >    }
1191  
1192 +    /** debugging */
1193 +    void checkInvariants() {
1194 +        try {
1195 +            int capacity = elements.length;
1196 +            // assert size >= 0 && size <= capacity;
1197 +            // assert head >= 0;
1198 +            // assert capacity == 0 || head < capacity;
1199 +            // assert size == 0 || elements[head] != null;
1200 +            // assert size == 0 || elements[tail()] != null;
1201 +            // assert size == capacity || elements[dec(head, capacity)] == null;
1202 +            // assert size == capacity || elements[inc(tail(), capacity)] == null;
1203 +        } catch (Throwable t) {
1204 +            System.err.printf("head=%d size=%d capacity=%d%n",
1205 +                              head, size, elements.length);
1206 +            System.err.printf("elements=%s%n",
1207 +                              Arrays.toString(elements));
1208 +            throw t;
1209 +        }
1210      }
1211 +
1212   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines