ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.107
Committed: Sat Nov 5 05:12:14 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.106: +3 -3 lines
Log Message:
removeLastOccurrence: fix off-by-one

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 import java.util.function.UnaryOperator;
12
13 /**
14 * Resizable-array implementation of the {@link Deque} interface. Array
15 * deques have no capacity restrictions; they grow as necessary to support
16 * usage. They are not thread-safe; in the absence of external
17 * synchronization, they do not support concurrent access by multiple threads.
18 * Null elements are prohibited. This class is likely to be faster than
19 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20 * when used as a queue.
21 *
22 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 * Exceptions include
24 * {@link #remove(Object) remove},
25 * {@link #removeFirstOccurrence removeFirstOccurrence},
26 * {@link #removeLastOccurrence removeLastOccurrence},
27 * {@link #contains contains},
28 * {@link #iterator iterator.remove()},
29 * and the bulk operations, all of which run in linear time.
30 *
31 * <p>The iterators returned by this class's {@link #iterator() iterator}
32 * method are <em>fail-fast</em>: If the deque is modified at any time after
33 * the iterator is created, in any way except through the iterator's own
34 * {@code remove} method, the iterator will generally throw a {@link
35 * ConcurrentModificationException}. Thus, in the face of concurrent
36 * modification, the iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the
38 * future.
39 *
40 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41 * as it is, generally speaking, impossible to make any hard guarantees in the
42 * presence of unsynchronized concurrent modification. Fail-fast iterators
43 * throw {@code ConcurrentModificationException} on a best-effort basis.
44 * Therefore, it would be wrong to write a program that depended on this
45 * exception for its correctness: <i>the fail-fast behavior of iterators
46 * should be used only to detect bugs.</i>
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 * Java Collections Framework</a>.
55 *
56 * @author Josh Bloch and Doug Lea
57 * @param <E> the type of elements held in this deque
58 * @since 1.6
59 */
60 public class ArrayDeque<E> extends AbstractCollection<E>
61 implements Deque<E>, Cloneable, Serializable
62 {
63 /*
64 * VMs excel at optimizing simple array loops where indices are
65 * incrementing or decrementing over a valid slice, e.g.
66 *
67 * for (int i = start; i < end; i++) ... elements[i]
68 *
69 * Because in a circular array, elements are in general stored in
70 * two disjoint such slices, we help the VM by writing unusual
71 * nested loops for all traversals over the elements.
72 */
73
74 /**
75 * The array in which the elements of the deque are stored.
76 * We guarantee that all array cells not holding deque elements
77 * are always null.
78 */
79 transient Object[] elements;
80
81 /**
82 * The index of the element at the head of the deque (which is the
83 * element that would be removed by remove() or pop()); or an
84 * arbitrary number 0 <= head < elements.length equal to tail if
85 * the deque is empty.
86 */
87 transient int head;
88
89 /**
90 * The index at which the next element would be added to the tail
91 * of the deque (via addLast(E), add(E), or push(E)).
92 */
93 transient int tail;
94
95 /**
96 * The maximum size of array to allocate.
97 * Some VMs reserve some header words in an array.
98 * Attempts to allocate larger arrays may result in
99 * OutOfMemoryError: Requested array size exceeds VM limit
100 */
101 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102
103 /**
104 * Increases the capacity of this deque by at least the given amount.
105 *
106 * @param needed the required minimum extra capacity; must be positive
107 */
108 private void grow(int needed) {
109 // overflow-conscious code
110 final int oldCapacity = elements.length;
111 int newCapacity;
112 // Double capacity if small; else grow by 50%
113 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 if (jump < needed
115 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 newCapacity = newCapacity(needed, jump);
117 elements = Arrays.copyOf(elements, newCapacity);
118 // Exceptionally, here tail == head needs to be disambiguated
119 if (tail < head || (tail == head && elements[head] != null)) {
120 // wrap around; slide first leg forward to end of array
121 int newSpace = newCapacity - oldCapacity;
122 System.arraycopy(elements, head,
123 elements, head + newSpace,
124 oldCapacity - head);
125 Arrays.fill(elements, head, head + newSpace, null);
126 head += newSpace;
127 }
128 // checkInvariants();
129 }
130
131 /** Capacity calculation for edge conditions, especially overflow. */
132 private int newCapacity(int needed, int jump) {
133 final int oldCapacity = elements.length, minCapacity;
134 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 if (minCapacity < 0)
136 throw new IllegalStateException("Sorry, deque too big");
137 return Integer.MAX_VALUE;
138 }
139 if (needed > jump)
140 return minCapacity;
141 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 ? oldCapacity + jump
143 : MAX_ARRAY_SIZE;
144 }
145
146 /**
147 * Increases the internal storage of this collection, if necessary,
148 * to ensure that it can hold at least the given number of elements.
149 *
150 * @param minCapacity the desired minimum capacity
151 * @since TBD
152 */
153 /* public */ void ensureCapacity(int minCapacity) {
154 int needed;
155 if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 grow(needed);
157 // checkInvariants();
158 }
159
160 /**
161 * Minimizes the internal storage of this collection.
162 *
163 * @since TBD
164 */
165 /* public */ void trimToSize() {
166 int size;
167 if ((size = size()) + 1 < elements.length) {
168 elements = toArray(new Object[size + 1]);
169 head = 0;
170 tail = size;
171 }
172 // checkInvariants();
173 }
174
175 /**
176 * Constructs an empty array deque with an initial capacity
177 * sufficient to hold 16 elements.
178 */
179 public ArrayDeque() {
180 elements = new Object[16];
181 }
182
183 /**
184 * Constructs an empty array deque with an initial capacity
185 * sufficient to hold the specified number of elements.
186 *
187 * @param numElements lower bound on initial capacity of the deque
188 */
189 public ArrayDeque(int numElements) {
190 elements = new Object[Math.max(1, numElements + 1)];
191 }
192
193 /**
194 * Constructs a deque containing the elements of the specified
195 * collection, in the order they are returned by the collection's
196 * iterator. (The first element returned by the collection's
197 * iterator becomes the first element, or <i>front</i> of the
198 * deque.)
199 *
200 * @param c the collection whose elements are to be placed into the deque
201 * @throws NullPointerException if the specified collection is null
202 */
203 public ArrayDeque(Collection<? extends E> c) {
204 elements = new Object[c.size() + 1];
205 addAll(c);
206 }
207
208 /**
209 * Increments i, mod modulus.
210 * Precondition and postcondition: 0 <= i < modulus.
211 */
212 static final int inc(int i, int modulus) {
213 if (++i >= modulus) i = 0;
214 return i;
215 }
216
217 /**
218 * Decrements i, mod modulus.
219 * Precondition and postcondition: 0 <= i < modulus.
220 */
221 static final int dec(int i, int modulus) {
222 if (--i < 0) i = modulus - 1;
223 return i;
224 }
225
226 /**
227 * Adds i and j, mod modulus.
228 * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 */
230 static final int add(int i, int j, int modulus) {
231 if ((i += j) - modulus >= 0) i -= modulus;
232 return i;
233 }
234
235 /**
236 * Subtracts j from i, mod modulus.
237 * Index i must be logically ahead of j.
238 * Returns the "circular distance" from j to i.
239 * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 */
241 static final int sub(int i, int j, int modulus) {
242 if ((i -= j) < 0) i += modulus;
243 return i;
244 }
245
246 /**
247 * Returns the array index of the last element.
248 * May return invalid index -1 if there are no elements.
249 */
250 final int last() {
251 return dec(tail, elements.length);
252 }
253
254 /**
255 * Returns element at array index i.
256 * This is a slight abuse of generics, accepted by javac.
257 */
258 @SuppressWarnings("unchecked")
259 static final <E> E elementAt(Object[] es, int i) {
260 return (E) es[i];
261 }
262
263 /**
264 * A version of elementAt that checks for null elements.
265 * This check doesn't catch all possible comodifications,
266 * but does catch ones that corrupt traversal.
267 */
268 static final <E> E nonNullElementAt(Object[] es, int i) {
269 @SuppressWarnings("unchecked") E e = (E) es[i];
270 if (e == null)
271 throw new ConcurrentModificationException();
272 return e;
273 }
274
275 // The main insertion and extraction methods are addFirst,
276 // addLast, pollFirst, pollLast. The other methods are defined in
277 // terms of these.
278
279 /**
280 * Inserts the specified element at the front of this deque.
281 *
282 * @param e the element to add
283 * @throws NullPointerException if the specified element is null
284 */
285 public void addFirst(E e) {
286 if (e == null)
287 throw new NullPointerException();
288 final Object[] es = elements;
289 es[head = dec(head, es.length)] = e;
290 if (head == tail)
291 grow(1);
292 // checkInvariants();
293 }
294
295 /**
296 * Inserts the specified element at the end of this deque.
297 *
298 * <p>This method is equivalent to {@link #add}.
299 *
300 * @param e the element to add
301 * @throws NullPointerException if the specified element is null
302 */
303 public void addLast(E e) {
304 if (e == null)
305 throw new NullPointerException();
306 final Object[] es = elements;
307 es[tail] = e;
308 if (head == (tail = inc(tail, es.length)))
309 grow(1);
310 // checkInvariants();
311 }
312
313 /**
314 * Adds all of the elements in the specified collection at the end
315 * of this deque, as if by calling {@link #addLast} on each one,
316 * in the order that they are returned by the collection's
317 * iterator.
318 *
319 * @param c the elements to be inserted into this deque
320 * @return {@code true} if this deque changed as a result of the call
321 * @throws NullPointerException if the specified collection or any
322 * of its elements are null
323 */
324 public boolean addAll(Collection<? extends E> c) {
325 final int s = size(), needed;
326 if ((needed = s + c.size() - elements.length + 1) > 0)
327 grow(needed);
328 c.forEach((e) -> addLast(e));
329 // checkInvariants();
330 return size() > s;
331 }
332
333 /**
334 * Inserts the specified element at the front of this deque.
335 *
336 * @param e the element to add
337 * @return {@code true} (as specified by {@link Deque#offerFirst})
338 * @throws NullPointerException if the specified element is null
339 */
340 public boolean offerFirst(E e) {
341 addFirst(e);
342 return true;
343 }
344
345 /**
346 * Inserts the specified element at the end of this deque.
347 *
348 * @param e the element to add
349 * @return {@code true} (as specified by {@link Deque#offerLast})
350 * @throws NullPointerException if the specified element is null
351 */
352 public boolean offerLast(E e) {
353 addLast(e);
354 return true;
355 }
356
357 /**
358 * @throws NoSuchElementException {@inheritDoc}
359 */
360 public E removeFirst() {
361 E e = pollFirst();
362 if (e == null)
363 throw new NoSuchElementException();
364 // checkInvariants();
365 return e;
366 }
367
368 /**
369 * @throws NoSuchElementException {@inheritDoc}
370 */
371 public E removeLast() {
372 E e = pollLast();
373 if (e == null)
374 throw new NoSuchElementException();
375 // checkInvariants();
376 return e;
377 }
378
379 public E pollFirst() {
380 final Object[] es;
381 final int h;
382 E e = elementAt(es = elements, h = head);
383 if (e != null) {
384 es[h] = null;
385 head = inc(h, es.length);
386 }
387 // checkInvariants();
388 return e;
389 }
390
391 public E pollLast() {
392 final Object[] es;
393 final int t;
394 E e = elementAt(es = elements, t = dec(tail, es.length));
395 if (e != null)
396 es[tail = t] = null;
397 // checkInvariants();
398 return e;
399 }
400
401 /**
402 * @throws NoSuchElementException {@inheritDoc}
403 */
404 public E getFirst() {
405 E e = elementAt(elements, head);
406 if (e == null)
407 throw new NoSuchElementException();
408 // checkInvariants();
409 return e;
410 }
411
412 /**
413 * @throws NoSuchElementException {@inheritDoc}
414 */
415 public E getLast() {
416 final Object[] es = elements;
417 E e = elementAt(es, dec(tail, es.length));
418 if (e == null)
419 throw new NoSuchElementException();
420 // checkInvariants();
421 return e;
422 }
423
424 public E peekFirst() {
425 // checkInvariants();
426 return elementAt(elements, head);
427 }
428
429 public E peekLast() {
430 // checkInvariants();
431 final Object[] es;
432 return elementAt(es = elements, dec(tail, es.length));
433 }
434
435 /**
436 * Removes the first occurrence of the specified element in this
437 * deque (when traversing the deque from head to tail).
438 * If the deque does not contain the element, it is unchanged.
439 * More formally, removes the first element {@code e} such that
440 * {@code o.equals(e)} (if such an element exists).
441 * Returns {@code true} if this deque contained the specified element
442 * (or equivalently, if this deque changed as a result of the call).
443 *
444 * @param o element to be removed from this deque, if present
445 * @return {@code true} if the deque contained the specified element
446 */
447 public boolean removeFirstOccurrence(Object o) {
448 if (o != null) {
449 final Object[] es = elements;
450 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
451 ; i = 0, to = end) {
452 for (; i < to; i++)
453 if (o.equals(es[i])) {
454 delete(i);
455 return true;
456 }
457 if (to == end) break;
458 }
459 }
460 return false;
461 }
462
463 /**
464 * Removes the last occurrence of the specified element in this
465 * deque (when traversing the deque from head to tail).
466 * If the deque does not contain the element, it is unchanged.
467 * More formally, removes the last element {@code e} such that
468 * {@code o.equals(e)} (if such an element exists).
469 * Returns {@code true} if this deque contained the specified element
470 * (or equivalently, if this deque changed as a result of the call).
471 *
472 * @param o element to be removed from this deque, if present
473 * @return {@code true} if the deque contained the specified element
474 */
475 public boolean removeLastOccurrence(Object o) {
476 if (o != null) {
477 final Object[] es = elements;
478 for (int i = tail, end = head, to = (i >= end) ? end : 0;
479 ; i = es.length, to = end) {
480 while (--i >= to)
481 if (o.equals(es[i])) {
482 delete(i);
483 return true;
484 }
485 if (to == end) break;
486 }
487 }
488 return false;
489 }
490
491 // *** Queue methods ***
492
493 /**
494 * Inserts the specified element at the end of this deque.
495 *
496 * <p>This method is equivalent to {@link #addLast}.
497 *
498 * @param e the element to add
499 * @return {@code true} (as specified by {@link Collection#add})
500 * @throws NullPointerException if the specified element is null
501 */
502 public boolean add(E e) {
503 addLast(e);
504 return true;
505 }
506
507 /**
508 * Inserts the specified element at the end of this deque.
509 *
510 * <p>This method is equivalent to {@link #offerLast}.
511 *
512 * @param e the element to add
513 * @return {@code true} (as specified by {@link Queue#offer})
514 * @throws NullPointerException if the specified element is null
515 */
516 public boolean offer(E e) {
517 return offerLast(e);
518 }
519
520 /**
521 * Retrieves and removes the head of the queue represented by this deque.
522 *
523 * This method differs from {@link #poll poll} only in that it throws an
524 * exception if this deque is empty.
525 *
526 * <p>This method is equivalent to {@link #removeFirst}.
527 *
528 * @return the head of the queue represented by this deque
529 * @throws NoSuchElementException {@inheritDoc}
530 */
531 public E remove() {
532 return removeFirst();
533 }
534
535 /**
536 * Retrieves and removes the head of the queue represented by this deque
537 * (in other words, the first element of this deque), or returns
538 * {@code null} if this deque is empty.
539 *
540 * <p>This method is equivalent to {@link #pollFirst}.
541 *
542 * @return the head of the queue represented by this deque, or
543 * {@code null} if this deque is empty
544 */
545 public E poll() {
546 return pollFirst();
547 }
548
549 /**
550 * Retrieves, but does not remove, the head of the queue represented by
551 * this deque. This method differs from {@link #peek peek} only in
552 * that it throws an exception if this deque is empty.
553 *
554 * <p>This method is equivalent to {@link #getFirst}.
555 *
556 * @return the head of the queue represented by this deque
557 * @throws NoSuchElementException {@inheritDoc}
558 */
559 public E element() {
560 return getFirst();
561 }
562
563 /**
564 * Retrieves, but does not remove, the head of the queue represented by
565 * this deque, or returns {@code null} if this deque is empty.
566 *
567 * <p>This method is equivalent to {@link #peekFirst}.
568 *
569 * @return the head of the queue represented by this deque, or
570 * {@code null} if this deque is empty
571 */
572 public E peek() {
573 return peekFirst();
574 }
575
576 // *** Stack methods ***
577
578 /**
579 * Pushes an element onto the stack represented by this deque. In other
580 * words, inserts the element at the front of this deque.
581 *
582 * <p>This method is equivalent to {@link #addFirst}.
583 *
584 * @param e the element to push
585 * @throws NullPointerException if the specified element is null
586 */
587 public void push(E e) {
588 addFirst(e);
589 }
590
591 /**
592 * Pops an element from the stack represented by this deque. In other
593 * words, removes and returns the first element of this deque.
594 *
595 * <p>This method is equivalent to {@link #removeFirst()}.
596 *
597 * @return the element at the front of this deque (which is the top
598 * of the stack represented by this deque)
599 * @throws NoSuchElementException {@inheritDoc}
600 */
601 public E pop() {
602 return removeFirst();
603 }
604
605 /**
606 * Removes the element at the specified position in the elements array.
607 * This can result in forward or backwards motion of array elements.
608 * We optimize for least element motion.
609 *
610 * <p>This method is called delete rather than remove to emphasize
611 * that its semantics differ from those of {@link List#remove(int)}.
612 *
613 * @return true if elements near tail moved backwards
614 */
615 boolean delete(int i) {
616 // checkInvariants();
617 final Object[] es = elements;
618 final int capacity = es.length;
619 final int h = head;
620 // number of elements before to-be-deleted elt
621 final int front = sub(i, h, capacity);
622 final int back = size() - front - 1; // number of elements after
623 if (front < back) {
624 // move front elements forwards
625 if (h <= i) {
626 System.arraycopy(es, h, es, h + 1, front);
627 } else { // Wrap around
628 System.arraycopy(es, 0, es, 1, i);
629 es[0] = es[capacity - 1];
630 System.arraycopy(es, h, es, h + 1, front - (i + 1));
631 }
632 es[h] = null;
633 head = inc(h, capacity);
634 // checkInvariants();
635 return false;
636 } else {
637 // move back elements backwards
638 tail = dec(tail, capacity);
639 if (i <= tail) {
640 System.arraycopy(es, i + 1, es, i, back);
641 } else { // Wrap around
642 int firstLeg = capacity - (i + 1);
643 System.arraycopy(es, i + 1, es, i, firstLeg);
644 es[capacity - 1] = es[0];
645 System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
646 }
647 es[tail] = null;
648 // checkInvariants();
649 return true;
650 }
651 }
652
653 // *** Collection Methods ***
654
655 /**
656 * Returns the number of elements in this deque.
657 *
658 * @return the number of elements in this deque
659 */
660 public int size() {
661 return sub(tail, head, elements.length);
662 }
663
664 /**
665 * Returns {@code true} if this deque contains no elements.
666 *
667 * @return {@code true} if this deque contains no elements
668 */
669 public boolean isEmpty() {
670 return head == tail;
671 }
672
673 /**
674 * Returns an iterator over the elements in this deque. The elements
675 * will be ordered from first (head) to last (tail). This is the same
676 * order that elements would be dequeued (via successive calls to
677 * {@link #remove} or popped (via successive calls to {@link #pop}).
678 *
679 * @return an iterator over the elements in this deque
680 */
681 public Iterator<E> iterator() {
682 return new DeqIterator();
683 }
684
685 public Iterator<E> descendingIterator() {
686 return new DescendingIterator();
687 }
688
689 private class DeqIterator implements Iterator<E> {
690 /** Index of element to be returned by subsequent call to next. */
691 int cursor;
692
693 /** Number of elements yet to be returned. */
694 int remaining = size();
695
696 /**
697 * Index of element returned by most recent call to next.
698 * Reset to -1 if element is deleted by a call to remove.
699 */
700 int lastRet = -1;
701
702 DeqIterator() { cursor = head; }
703
704 public final boolean hasNext() {
705 return remaining > 0;
706 }
707
708 public E next() {
709 if (remaining <= 0)
710 throw new NoSuchElementException();
711 final Object[] es = elements;
712 E e = nonNullElementAt(es, cursor);
713 lastRet = cursor;
714 cursor = inc(cursor, es.length);
715 remaining--;
716 return e;
717 }
718
719 void postDelete(boolean leftShifted) {
720 if (leftShifted)
721 cursor = dec(cursor, elements.length);
722 }
723
724 public final void remove() {
725 if (lastRet < 0)
726 throw new IllegalStateException();
727 postDelete(delete(lastRet));
728 lastRet = -1;
729 }
730
731 public void forEachRemaining(Consumer<? super E> action) {
732 Objects.requireNonNull(action);
733 int r;
734 if ((r = remaining) <= 0)
735 return;
736 remaining = 0;
737 final Object[] es = elements;
738 if (es[cursor] == null || sub(tail, cursor, es.length) != r)
739 throw new ConcurrentModificationException();
740 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
741 ; i = 0, to = end) {
742 for (; i < to; i++)
743 action.accept(elementAt(es, i));
744 if (to == end) {
745 if (end != tail)
746 throw new ConcurrentModificationException();
747 lastRet = dec(end, es.length);
748 break;
749 }
750 }
751 }
752 }
753
754 private class DescendingIterator extends DeqIterator {
755 DescendingIterator() { cursor = last(); }
756
757 public final E next() {
758 if (remaining <= 0)
759 throw new NoSuchElementException();
760 final Object[] es = elements;
761 E e = nonNullElementAt(es, cursor);
762 lastRet = cursor;
763 cursor = dec(cursor, es.length);
764 remaining--;
765 return e;
766 }
767
768 void postDelete(boolean leftShifted) {
769 if (!leftShifted)
770 cursor = inc(cursor, elements.length);
771 }
772
773 public final void forEachRemaining(Consumer<? super E> action) {
774 Objects.requireNonNull(action);
775 int r;
776 if ((r = remaining) <= 0)
777 return;
778 remaining = 0;
779 final Object[] es = elements;
780 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
781 throw new ConcurrentModificationException();
782 for (int i = cursor, end = head - 1, to = (i >= end) ? end : -1;
783 ; i = es.length - 1, to = end) {
784 for (; i > to; i--)
785 action.accept(elementAt(es, i));
786 if (to == end) {
787 if (end != head - 1)
788 throw new ConcurrentModificationException();
789 lastRet = head;
790 break;
791 }
792 }
793 }
794 }
795
796 /**
797 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
798 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
799 * deque.
800 *
801 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
802 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
803 * {@link Spliterator#NONNULL}. Overriding implementations should document
804 * the reporting of additional characteristic values.
805 *
806 * @return a {@code Spliterator} over the elements in this deque
807 * @since 1.8
808 */
809 public Spliterator<E> spliterator() {
810 return new DeqSpliterator();
811 }
812
813 final class DeqSpliterator implements Spliterator<E> {
814 private int fence; // -1 until first use
815 private int cursor; // current index, modified on traverse/split
816
817 /** Constructs late-binding spliterator over all elements. */
818 DeqSpliterator() {
819 this.fence = -1;
820 }
821
822 /** Constructs spliterator over the given range. */
823 DeqSpliterator(int origin, int fence) {
824 this.cursor = origin;
825 this.fence = fence;
826 }
827
828 /** Ensures late-binding initialization; then returns fence. */
829 private int getFence() { // force initialization
830 int t;
831 if ((t = fence) < 0) {
832 t = fence = tail;
833 cursor = head;
834 }
835 return t;
836 }
837
838 public DeqSpliterator trySplit() {
839 final Object[] es = elements;
840 final int i, n;
841 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 ? null
843 : new DeqSpliterator(i, cursor = add(i, n, es.length));
844 }
845
846 public void forEachRemaining(Consumer<? super E> action) {
847 if (action == null)
848 throw new NullPointerException();
849 final int end = getFence(), cursor = this.cursor;
850 final Object[] es = elements;
851 if (cursor != end) {
852 this.cursor = end;
853 // null check at both ends of range is sufficient
854 if (es[cursor] == null || es[dec(end, es.length)] == null)
855 throw new ConcurrentModificationException();
856 for (int i = cursor, to = (i <= end) ? end : es.length;
857 ; i = 0, to = end) {
858 for (; i < to; i++)
859 action.accept(elementAt(es, i));
860 if (to == end) break;
861 }
862 }
863 }
864
865 public boolean tryAdvance(Consumer<? super E> action) {
866 if (action == null)
867 throw new NullPointerException();
868 int t, i;
869 if ((t = fence) < 0) t = getFence();
870 if (t == (i = cursor))
871 return false;
872 final Object[] es;
873 action.accept(nonNullElementAt(es = elements, i));
874 cursor = inc(i, es.length);
875 return true;
876 }
877
878 public long estimateSize() {
879 return sub(getFence(), cursor, elements.length);
880 }
881
882 public int characteristics() {
883 return Spliterator.NONNULL
884 | Spliterator.ORDERED
885 | Spliterator.SIZED
886 | Spliterator.SUBSIZED;
887 }
888 }
889
890 public void forEach(Consumer<? super E> action) {
891 Objects.requireNonNull(action);
892 final Object[] es = elements;
893 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
894 ; i = 0, to = end) {
895 for (; i < to; i++)
896 action.accept(elementAt(es, i));
897 if (to == end) {
898 if (end != tail) throw new ConcurrentModificationException();
899 break;
900 }
901 }
902 // checkInvariants();
903 }
904
905 /**
906 * Replaces each element of this deque with the result of applying the
907 * operator to that element, as specified by {@link List#replaceAll}.
908 *
909 * @param operator the operator to apply to each element
910 * @since TBD
911 */
912 /* public */ void replaceAll(UnaryOperator<E> operator) {
913 Objects.requireNonNull(operator);
914 final Object[] es = elements;
915 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
916 ; i = 0, to = end) {
917 for (; i < to; i++)
918 es[i] = operator.apply(elementAt(es, i));
919 if (to == end) {
920 if (end != tail) throw new ConcurrentModificationException();
921 break;
922 }
923 }
924 // checkInvariants();
925 }
926
927 /**
928 * @throws NullPointerException {@inheritDoc}
929 */
930 public boolean removeIf(Predicate<? super E> filter) {
931 Objects.requireNonNull(filter);
932 return bulkRemove(filter);
933 }
934
935 /**
936 * @throws NullPointerException {@inheritDoc}
937 */
938 public boolean removeAll(Collection<?> c) {
939 Objects.requireNonNull(c);
940 return bulkRemove(e -> c.contains(e));
941 }
942
943 /**
944 * @throws NullPointerException {@inheritDoc}
945 */
946 public boolean retainAll(Collection<?> c) {
947 Objects.requireNonNull(c);
948 return bulkRemove(e -> !c.contains(e));
949 }
950
951 /** Implementation of bulk remove methods. */
952 private boolean bulkRemove(Predicate<? super E> filter) {
953 // checkInvariants();
954 final Object[] es = elements;
955 // Optimize for initial run of survivors
956 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
957 ; i = 0, to = end) {
958 for (; i < to; i++)
959 if (filter.test(elementAt(es, i)))
960 return bulkRemoveModified(filter, i, to);
961 if (to == end) {
962 if (end != tail) throw new ConcurrentModificationException();
963 break;
964 }
965 }
966 return false;
967 }
968
969 /**
970 * Helper for bulkRemove, in case of at least one deletion.
971 * @param i valid index of first element to be deleted
972 */
973 private boolean bulkRemoveModified(
974 Predicate<? super E> filter, int i, int to) {
975 final Object[] es = elements;
976 final int capacity = es.length;
977 // a two-finger algorithm, with hare i reading, tortoise j writing
978 int j = i++;
979 final int end = tail;
980 try {
981 for (;; j = 0) { // j rejoins i on second leg
982 E e;
983 // In this loop, i and j are on the same leg, with i > j
984 for (; i < to; i++)
985 if (!filter.test(e = elementAt(es, i)))
986 es[j++] = e;
987 if (to == end) break;
988 // In this loop, j is on the first leg, i on the second
989 for (i = 0, to = end; i < to && j < capacity; i++)
990 if (!filter.test(e = elementAt(es, i)))
991 es[j++] = e;
992 if (i >= to) {
993 if (j == capacity) j = 0; // "corner" case
994 break;
995 }
996 }
997 return true;
998 } catch (Throwable ex) {
999 // copy remaining elements
1000 for (; i != end; i = inc(i, capacity), j = inc(j, capacity))
1001 es[j] = es[i];
1002 throw ex;
1003 } finally {
1004 if (end != tail) throw new ConcurrentModificationException();
1005 circularClear(es, tail = j, end);
1006 // checkInvariants();
1007 }
1008 }
1009
1010 /**
1011 * Returns {@code true} if this deque contains the specified element.
1012 * More formally, returns {@code true} if and only if this deque contains
1013 * at least one element {@code e} such that {@code o.equals(e)}.
1014 *
1015 * @param o object to be checked for containment in this deque
1016 * @return {@code true} if this deque contains the specified element
1017 */
1018 public boolean contains(Object o) {
1019 if (o != null) {
1020 final Object[] es = elements;
1021 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1022 ; i = 0, to = end) {
1023 for (; i < to; i++)
1024 if (o.equals(es[i]))
1025 return true;
1026 if (to == end) break;
1027 }
1028 }
1029 return false;
1030 }
1031
1032 /**
1033 * Removes a single instance of the specified element from this deque.
1034 * If the deque does not contain the element, it is unchanged.
1035 * More formally, removes the first element {@code e} such that
1036 * {@code o.equals(e)} (if such an element exists).
1037 * Returns {@code true} if this deque contained the specified element
1038 * (or equivalently, if this deque changed as a result of the call).
1039 *
1040 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1041 *
1042 * @param o element to be removed from this deque, if present
1043 * @return {@code true} if this deque contained the specified element
1044 */
1045 public boolean remove(Object o) {
1046 return removeFirstOccurrence(o);
1047 }
1048
1049 /**
1050 * Removes all of the elements from this deque.
1051 * The deque will be empty after this call returns.
1052 */
1053 public void clear() {
1054 circularClear(elements, head, tail);
1055 head = tail = 0;
1056 // checkInvariants();
1057 }
1058
1059 /**
1060 * Nulls out slots starting at array index i, upto index end.
1061 */
1062 private static void circularClear(Object[] es, int i, int end) {
1063 for (int to = (i <= end) ? end : es.length;
1064 ; i = 0, to = end) {
1065 Arrays.fill(es, i, to, null);
1066 if (to == end) break;
1067 }
1068 }
1069
1070 /**
1071 * Returns an array containing all of the elements in this deque
1072 * in proper sequence (from first to last element).
1073 *
1074 * <p>The returned array will be "safe" in that no references to it are
1075 * maintained by this deque. (In other words, this method must allocate
1076 * a new array). The caller is thus free to modify the returned array.
1077 *
1078 * <p>This method acts as bridge between array-based and collection-based
1079 * APIs.
1080 *
1081 * @return an array containing all of the elements in this deque
1082 */
1083 public Object[] toArray() {
1084 return toArray(Object[].class);
1085 }
1086
1087 private <T> T[] toArray(Class<T[]> klazz) {
1088 final Object[] es = elements;
1089 final T[] a;
1090 final int size = size(), head = this.head, end;
1091 final int len = Math.min(size, es.length - head);
1092 if ((end = head + size) >= 0) {
1093 a = Arrays.copyOfRange(es, head, end, klazz);
1094 } else {
1095 // integer overflow!
1096 a = Arrays.copyOfRange(es, 0, size, klazz);
1097 System.arraycopy(es, head, a, 0, len);
1098 }
1099 if (tail < head)
1100 System.arraycopy(es, 0, a, len, tail);
1101 return a;
1102 }
1103
1104 /**
1105 * Returns an array containing all of the elements in this deque in
1106 * proper sequence (from first to last element); the runtime type of the
1107 * returned array is that of the specified array. If the deque fits in
1108 * the specified array, it is returned therein. Otherwise, a new array
1109 * is allocated with the runtime type of the specified array and the
1110 * size of this deque.
1111 *
1112 * <p>If this deque fits in the specified array with room to spare
1113 * (i.e., the array has more elements than this deque), the element in
1114 * the array immediately following the end of the deque is set to
1115 * {@code null}.
1116 *
1117 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1118 * array-based and collection-based APIs. Further, this method allows
1119 * precise control over the runtime type of the output array, and may,
1120 * under certain circumstances, be used to save allocation costs.
1121 *
1122 * <p>Suppose {@code x} is a deque known to contain only strings.
1123 * The following code can be used to dump the deque into a newly
1124 * allocated array of {@code String}:
1125 *
1126 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1127 *
1128 * Note that {@code toArray(new Object[0])} is identical in function to
1129 * {@code toArray()}.
1130 *
1131 * @param a the array into which the elements of the deque are to
1132 * be stored, if it is big enough; otherwise, a new array of the
1133 * same runtime type is allocated for this purpose
1134 * @return an array containing all of the elements in this deque
1135 * @throws ArrayStoreException if the runtime type of the specified array
1136 * is not a supertype of the runtime type of every element in
1137 * this deque
1138 * @throws NullPointerException if the specified array is null
1139 */
1140 @SuppressWarnings("unchecked")
1141 public <T> T[] toArray(T[] a) {
1142 final int size;
1143 if ((size = size()) > a.length)
1144 return toArray((Class<T[]>) a.getClass());
1145 final Object[] es = elements;
1146 for (int i = head, j = 0, len = Math.min(size, es.length - i);
1147 ; i = 0, len = tail) {
1148 System.arraycopy(es, i, a, j, len);
1149 if ((j += len) == size) break;
1150 }
1151 if (size < a.length)
1152 a[size] = null;
1153 return a;
1154 }
1155
1156 // *** Object methods ***
1157
1158 /**
1159 * Returns a copy of this deque.
1160 *
1161 * @return a copy of this deque
1162 */
1163 public ArrayDeque<E> clone() {
1164 try {
1165 @SuppressWarnings("unchecked")
1166 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1167 result.elements = Arrays.copyOf(elements, elements.length);
1168 return result;
1169 } catch (CloneNotSupportedException e) {
1170 throw new AssertionError();
1171 }
1172 }
1173
1174 private static final long serialVersionUID = 2340985798034038923L;
1175
1176 /**
1177 * Saves this deque to a stream (that is, serializes it).
1178 *
1179 * @param s the stream
1180 * @throws java.io.IOException if an I/O error occurs
1181 * @serialData The current size ({@code int}) of the deque,
1182 * followed by all of its elements (each an object reference) in
1183 * first-to-last order.
1184 */
1185 private void writeObject(java.io.ObjectOutputStream s)
1186 throws java.io.IOException {
1187 s.defaultWriteObject();
1188
1189 // Write out size
1190 s.writeInt(size());
1191
1192 // Write out elements in order.
1193 final Object[] es = elements;
1194 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1195 ; i = 0, to = end) {
1196 for (; i < to; i++)
1197 s.writeObject(es[i]);
1198 if (to == end) break;
1199 }
1200 }
1201
1202 /**
1203 * Reconstitutes this deque from a stream (that is, deserializes it).
1204 * @param s the stream
1205 * @throws ClassNotFoundException if the class of a serialized object
1206 * could not be found
1207 * @throws java.io.IOException if an I/O error occurs
1208 */
1209 private void readObject(java.io.ObjectInputStream s)
1210 throws java.io.IOException, ClassNotFoundException {
1211 s.defaultReadObject();
1212
1213 // Read in size and allocate array
1214 int size = s.readInt();
1215 elements = new Object[size + 1];
1216 this.tail = size;
1217
1218 // Read in all elements in the proper order.
1219 for (int i = 0; i < size; i++)
1220 elements[i] = s.readObject();
1221 }
1222
1223 /** debugging */
1224 void checkInvariants() {
1225 try {
1226 int capacity = elements.length;
1227 // assert head >= 0 && head < capacity;
1228 // assert tail >= 0 && tail < capacity;
1229 // assert capacity > 0;
1230 // assert size() < capacity;
1231 // assert head == tail || elements[head] != null;
1232 // assert elements[tail] == null;
1233 // assert head == tail || elements[dec(tail, capacity)] != null;
1234 } catch (Throwable t) {
1235 System.err.printf("head=%d tail=%d capacity=%d%n",
1236 head, tail, elements.length);
1237 System.err.printf("elements=%s%n",
1238 Arrays.toString(elements));
1239 throw t;
1240 }
1241 }
1242
1243 }