ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.111
Committed: Sun Nov 6 22:15:01 2016 UTC (7 years, 6 months ago) by jsr166
Branch: MAIN
Changes since 1.110: +1 -1 lines
Log Message:
elide parens in unary lambdas

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 import java.util.function.UnaryOperator;
12
13 /**
14 * Resizable-array implementation of the {@link Deque} interface. Array
15 * deques have no capacity restrictions; they grow as necessary to support
16 * usage. They are not thread-safe; in the absence of external
17 * synchronization, they do not support concurrent access by multiple threads.
18 * Null elements are prohibited. This class is likely to be faster than
19 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20 * when used as a queue.
21 *
22 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 * Exceptions include
24 * {@link #remove(Object) remove},
25 * {@link #removeFirstOccurrence removeFirstOccurrence},
26 * {@link #removeLastOccurrence removeLastOccurrence},
27 * {@link #contains contains},
28 * {@link #iterator iterator.remove()},
29 * and the bulk operations, all of which run in linear time.
30 *
31 * <p>The iterators returned by this class's {@link #iterator() iterator}
32 * method are <em>fail-fast</em>: If the deque is modified at any time after
33 * the iterator is created, in any way except through the iterator's own
34 * {@code remove} method, the iterator will generally throw a {@link
35 * ConcurrentModificationException}. Thus, in the face of concurrent
36 * modification, the iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the
38 * future.
39 *
40 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41 * as it is, generally speaking, impossible to make any hard guarantees in the
42 * presence of unsynchronized concurrent modification. Fail-fast iterators
43 * throw {@code ConcurrentModificationException} on a best-effort basis.
44 * Therefore, it would be wrong to write a program that depended on this
45 * exception for its correctness: <i>the fail-fast behavior of iterators
46 * should be used only to detect bugs.</i>
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/../technotes/guides/collections/index.html">
54 * Java Collections Framework</a>.
55 *
56 * @author Josh Bloch and Doug Lea
57 * @param <E> the type of elements held in this deque
58 * @since 1.6
59 */
60 public class ArrayDeque<E> extends AbstractCollection<E>
61 implements Deque<E>, Cloneable, Serializable
62 {
63 /*
64 * VMs excel at optimizing simple array loops where indices are
65 * incrementing or decrementing over a valid slice, e.g.
66 *
67 * for (int i = start; i < end; i++) ... elements[i]
68 *
69 * Because in a circular array, elements are in general stored in
70 * two disjoint such slices, we help the VM by writing unusual
71 * nested loops for all traversals over the elements.
72 */
73
74 /**
75 * The array in which the elements of the deque are stored.
76 * We guarantee that all array cells not holding deque elements
77 * are always null.
78 */
79 transient Object[] elements;
80
81 /**
82 * The index of the element at the head of the deque (which is the
83 * element that would be removed by remove() or pop()); or an
84 * arbitrary number 0 <= head < elements.length equal to tail if
85 * the deque is empty.
86 */
87 transient int head;
88
89 /**
90 * The index at which the next element would be added to the tail
91 * of the deque (via addLast(E), add(E), or push(E)).
92 */
93 transient int tail;
94
95 /**
96 * The maximum size of array to allocate.
97 * Some VMs reserve some header words in an array.
98 * Attempts to allocate larger arrays may result in
99 * OutOfMemoryError: Requested array size exceeds VM limit
100 */
101 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
102
103 /**
104 * Increases the capacity of this deque by at least the given amount.
105 *
106 * @param needed the required minimum extra capacity; must be positive
107 */
108 private void grow(int needed) {
109 // overflow-conscious code
110 final int oldCapacity = elements.length;
111 int newCapacity;
112 // Double capacity if small; else grow by 50%
113 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
114 if (jump < needed
115 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
116 newCapacity = newCapacity(needed, jump);
117 elements = Arrays.copyOf(elements, newCapacity);
118 // Exceptionally, here tail == head needs to be disambiguated
119 if (tail < head || (tail == head && elements[head] != null)) {
120 // wrap around; slide first leg forward to end of array
121 int newSpace = newCapacity - oldCapacity;
122 System.arraycopy(elements, head,
123 elements, head + newSpace,
124 oldCapacity - head);
125 Arrays.fill(elements, head, head + newSpace, null);
126 head += newSpace;
127 }
128 // checkInvariants();
129 }
130
131 /** Capacity calculation for edge conditions, especially overflow. */
132 private int newCapacity(int needed, int jump) {
133 final int oldCapacity = elements.length, minCapacity;
134 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
135 if (minCapacity < 0)
136 throw new IllegalStateException("Sorry, deque too big");
137 return Integer.MAX_VALUE;
138 }
139 if (needed > jump)
140 return minCapacity;
141 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
142 ? oldCapacity + jump
143 : MAX_ARRAY_SIZE;
144 }
145
146 /**
147 * Increases the internal storage of this collection, if necessary,
148 * to ensure that it can hold at least the given number of elements.
149 *
150 * @param minCapacity the desired minimum capacity
151 * @since TBD
152 */
153 /* public */ void ensureCapacity(int minCapacity) {
154 int needed;
155 if ((needed = (minCapacity + 1 - elements.length)) > 0)
156 grow(needed);
157 // checkInvariants();
158 }
159
160 /**
161 * Minimizes the internal storage of this collection.
162 *
163 * @since TBD
164 */
165 /* public */ void trimToSize() {
166 int size;
167 if ((size = size()) + 1 < elements.length) {
168 elements = toArray(new Object[size + 1]);
169 head = 0;
170 tail = size;
171 }
172 // checkInvariants();
173 }
174
175 /**
176 * Constructs an empty array deque with an initial capacity
177 * sufficient to hold 16 elements.
178 */
179 public ArrayDeque() {
180 elements = new Object[16];
181 }
182
183 /**
184 * Constructs an empty array deque with an initial capacity
185 * sufficient to hold the specified number of elements.
186 *
187 * @param numElements lower bound on initial capacity of the deque
188 */
189 public ArrayDeque(int numElements) {
190 elements = new Object[Math.max(1, numElements + 1)];
191 }
192
193 /**
194 * Constructs a deque containing the elements of the specified
195 * collection, in the order they are returned by the collection's
196 * iterator. (The first element returned by the collection's
197 * iterator becomes the first element, or <i>front</i> of the
198 * deque.)
199 *
200 * @param c the collection whose elements are to be placed into the deque
201 * @throws NullPointerException if the specified collection is null
202 */
203 public ArrayDeque(Collection<? extends E> c) {
204 elements = new Object[c.size() + 1];
205 addAll(c);
206 }
207
208 /**
209 * Increments i, mod modulus.
210 * Precondition and postcondition: 0 <= i < modulus.
211 */
212 static final int inc(int i, int modulus) {
213 if (++i >= modulus) i = 0;
214 return i;
215 }
216
217 /**
218 * Decrements i, mod modulus.
219 * Precondition and postcondition: 0 <= i < modulus.
220 */
221 static final int dec(int i, int modulus) {
222 if (--i < 0) i = modulus - 1;
223 return i;
224 }
225
226 /**
227 * Adds i and j, mod modulus.
228 * Precondition and postcondition: 0 <= i < modulus, 0 <= j <= modulus.
229 */
230 static final int add(int i, int j, int modulus) {
231 if ((i += j) - modulus >= 0) i -= modulus;
232 return i;
233 }
234
235 /**
236 * Subtracts j from i, mod modulus.
237 * Index i must be logically ahead of j.
238 * Returns the "circular distance" from j to i.
239 * Precondition and postcondition: 0 <= i < modulus, 0 <= j < modulus.
240 */
241 static final int sub(int i, int j, int modulus) {
242 if ((i -= j) < 0) i += modulus;
243 return i;
244 }
245
246 /**
247 * Returns element at array index i.
248 * This is a slight abuse of generics, accepted by javac.
249 */
250 @SuppressWarnings("unchecked")
251 static final <E> E elementAt(Object[] es, int i) {
252 return (E) es[i];
253 }
254
255 /**
256 * A version of elementAt that checks for null elements.
257 * This check doesn't catch all possible comodifications,
258 * but does catch ones that corrupt traversal.
259 */
260 static final <E> E nonNullElementAt(Object[] es, int i) {
261 @SuppressWarnings("unchecked") E e = (E) es[i];
262 if (e == null)
263 throw new ConcurrentModificationException();
264 return e;
265 }
266
267 // The main insertion and extraction methods are addFirst,
268 // addLast, pollFirst, pollLast. The other methods are defined in
269 // terms of these.
270
271 /**
272 * Inserts the specified element at the front of this deque.
273 *
274 * @param e the element to add
275 * @throws NullPointerException if the specified element is null
276 */
277 public void addFirst(E e) {
278 if (e == null)
279 throw new NullPointerException();
280 final Object[] es = elements;
281 es[head = dec(head, es.length)] = e;
282 if (head == tail)
283 grow(1);
284 // checkInvariants();
285 }
286
287 /**
288 * Inserts the specified element at the end of this deque.
289 *
290 * <p>This method is equivalent to {@link #add}.
291 *
292 * @param e the element to add
293 * @throws NullPointerException if the specified element is null
294 */
295 public void addLast(E e) {
296 if (e == null)
297 throw new NullPointerException();
298 final Object[] es = elements;
299 es[tail] = e;
300 if (head == (tail = inc(tail, es.length)))
301 grow(1);
302 // checkInvariants();
303 }
304
305 /**
306 * Adds all of the elements in the specified collection at the end
307 * of this deque, as if by calling {@link #addLast} on each one,
308 * in the order that they are returned by the collection's
309 * iterator.
310 *
311 * @param c the elements to be inserted into this deque
312 * @return {@code true} if this deque changed as a result of the call
313 * @throws NullPointerException if the specified collection or any
314 * of its elements are null
315 */
316 public boolean addAll(Collection<? extends E> c) {
317 final int s = size(), needed;
318 if ((needed = s + c.size() - elements.length + 1) > 0)
319 grow(needed);
320 c.forEach(e -> addLast(e));
321 // checkInvariants();
322 return size() > s;
323 }
324
325 /**
326 * Inserts the specified element at the front of this deque.
327 *
328 * @param e the element to add
329 * @return {@code true} (as specified by {@link Deque#offerFirst})
330 * @throws NullPointerException if the specified element is null
331 */
332 public boolean offerFirst(E e) {
333 addFirst(e);
334 return true;
335 }
336
337 /**
338 * Inserts the specified element at the end of this deque.
339 *
340 * @param e the element to add
341 * @return {@code true} (as specified by {@link Deque#offerLast})
342 * @throws NullPointerException if the specified element is null
343 */
344 public boolean offerLast(E e) {
345 addLast(e);
346 return true;
347 }
348
349 /**
350 * @throws NoSuchElementException {@inheritDoc}
351 */
352 public E removeFirst() {
353 E e = pollFirst();
354 if (e == null)
355 throw new NoSuchElementException();
356 // checkInvariants();
357 return e;
358 }
359
360 /**
361 * @throws NoSuchElementException {@inheritDoc}
362 */
363 public E removeLast() {
364 E e = pollLast();
365 if (e == null)
366 throw new NoSuchElementException();
367 // checkInvariants();
368 return e;
369 }
370
371 public E pollFirst() {
372 final Object[] es;
373 final int h;
374 E e = elementAt(es = elements, h = head);
375 if (e != null) {
376 es[h] = null;
377 head = inc(h, es.length);
378 }
379 // checkInvariants();
380 return e;
381 }
382
383 public E pollLast() {
384 final Object[] es;
385 final int t;
386 E e = elementAt(es = elements, t = dec(tail, es.length));
387 if (e != null)
388 es[tail = t] = null;
389 // checkInvariants();
390 return e;
391 }
392
393 /**
394 * @throws NoSuchElementException {@inheritDoc}
395 */
396 public E getFirst() {
397 E e = elementAt(elements, head);
398 if (e == null)
399 throw new NoSuchElementException();
400 // checkInvariants();
401 return e;
402 }
403
404 /**
405 * @throws NoSuchElementException {@inheritDoc}
406 */
407 public E getLast() {
408 final Object[] es = elements;
409 E e = elementAt(es, dec(tail, es.length));
410 if (e == null)
411 throw new NoSuchElementException();
412 // checkInvariants();
413 return e;
414 }
415
416 public E peekFirst() {
417 // checkInvariants();
418 return elementAt(elements, head);
419 }
420
421 public E peekLast() {
422 // checkInvariants();
423 final Object[] es;
424 return elementAt(es = elements, dec(tail, es.length));
425 }
426
427 /**
428 * Removes the first occurrence of the specified element in this
429 * deque (when traversing the deque from head to tail).
430 * If the deque does not contain the element, it is unchanged.
431 * More formally, removes the first element {@code e} such that
432 * {@code o.equals(e)} (if such an element exists).
433 * Returns {@code true} if this deque contained the specified element
434 * (or equivalently, if this deque changed as a result of the call).
435 *
436 * @param o element to be removed from this deque, if present
437 * @return {@code true} if the deque contained the specified element
438 */
439 public boolean removeFirstOccurrence(Object o) {
440 if (o != null) {
441 final Object[] es = elements;
442 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
443 ; i = 0, to = end) {
444 for (; i < to; i++)
445 if (o.equals(es[i])) {
446 delete(i);
447 return true;
448 }
449 if (to == end) break;
450 }
451 }
452 return false;
453 }
454
455 /**
456 * Removes the last occurrence of the specified element in this
457 * deque (when traversing the deque from head to tail).
458 * If the deque does not contain the element, it is unchanged.
459 * More formally, removes the last element {@code e} such that
460 * {@code o.equals(e)} (if such an element exists).
461 * Returns {@code true} if this deque contained the specified element
462 * (or equivalently, if this deque changed as a result of the call).
463 *
464 * @param o element to be removed from this deque, if present
465 * @return {@code true} if the deque contained the specified element
466 */
467 public boolean removeLastOccurrence(Object o) {
468 if (o != null) {
469 final Object[] es = elements;
470 for (int i = tail, end = head, to = (i >= end) ? end : 0;
471 ; i = es.length, to = end) {
472 for (i--; i > to - 1; i--)
473 if (o.equals(es[i])) {
474 delete(i);
475 return true;
476 }
477 if (to == end) break;
478 }
479 }
480 return false;
481 }
482
483 // *** Queue methods ***
484
485 /**
486 * Inserts the specified element at the end of this deque.
487 *
488 * <p>This method is equivalent to {@link #addLast}.
489 *
490 * @param e the element to add
491 * @return {@code true} (as specified by {@link Collection#add})
492 * @throws NullPointerException if the specified element is null
493 */
494 public boolean add(E e) {
495 addLast(e);
496 return true;
497 }
498
499 /**
500 * Inserts the specified element at the end of this deque.
501 *
502 * <p>This method is equivalent to {@link #offerLast}.
503 *
504 * @param e the element to add
505 * @return {@code true} (as specified by {@link Queue#offer})
506 * @throws NullPointerException if the specified element is null
507 */
508 public boolean offer(E e) {
509 return offerLast(e);
510 }
511
512 /**
513 * Retrieves and removes the head of the queue represented by this deque.
514 *
515 * This method differs from {@link #poll poll} only in that it throws an
516 * exception if this deque is empty.
517 *
518 * <p>This method is equivalent to {@link #removeFirst}.
519 *
520 * @return the head of the queue represented by this deque
521 * @throws NoSuchElementException {@inheritDoc}
522 */
523 public E remove() {
524 return removeFirst();
525 }
526
527 /**
528 * Retrieves and removes the head of the queue represented by this deque
529 * (in other words, the first element of this deque), or returns
530 * {@code null} if this deque is empty.
531 *
532 * <p>This method is equivalent to {@link #pollFirst}.
533 *
534 * @return the head of the queue represented by this deque, or
535 * {@code null} if this deque is empty
536 */
537 public E poll() {
538 return pollFirst();
539 }
540
541 /**
542 * Retrieves, but does not remove, the head of the queue represented by
543 * this deque. This method differs from {@link #peek peek} only in
544 * that it throws an exception if this deque is empty.
545 *
546 * <p>This method is equivalent to {@link #getFirst}.
547 *
548 * @return the head of the queue represented by this deque
549 * @throws NoSuchElementException {@inheritDoc}
550 */
551 public E element() {
552 return getFirst();
553 }
554
555 /**
556 * Retrieves, but does not remove, the head of the queue represented by
557 * this deque, or returns {@code null} if this deque is empty.
558 *
559 * <p>This method is equivalent to {@link #peekFirst}.
560 *
561 * @return the head of the queue represented by this deque, or
562 * {@code null} if this deque is empty
563 */
564 public E peek() {
565 return peekFirst();
566 }
567
568 // *** Stack methods ***
569
570 /**
571 * Pushes an element onto the stack represented by this deque. In other
572 * words, inserts the element at the front of this deque.
573 *
574 * <p>This method is equivalent to {@link #addFirst}.
575 *
576 * @param e the element to push
577 * @throws NullPointerException if the specified element is null
578 */
579 public void push(E e) {
580 addFirst(e);
581 }
582
583 /**
584 * Pops an element from the stack represented by this deque. In other
585 * words, removes and returns the first element of this deque.
586 *
587 * <p>This method is equivalent to {@link #removeFirst()}.
588 *
589 * @return the element at the front of this deque (which is the top
590 * of the stack represented by this deque)
591 * @throws NoSuchElementException {@inheritDoc}
592 */
593 public E pop() {
594 return removeFirst();
595 }
596
597 /**
598 * Removes the element at the specified position in the elements array.
599 * This can result in forward or backwards motion of array elements.
600 * We optimize for least element motion.
601 *
602 * <p>This method is called delete rather than remove to emphasize
603 * that its semantics differ from those of {@link List#remove(int)}.
604 *
605 * @return true if elements near tail moved backwards
606 */
607 boolean delete(int i) {
608 // checkInvariants();
609 final Object[] es = elements;
610 final int capacity = es.length;
611 final int h = head;
612 // number of elements before to-be-deleted elt
613 final int front = sub(i, h, capacity);
614 final int back = size() - front - 1; // number of elements after
615 if (front < back) {
616 // move front elements forwards
617 if (h <= i) {
618 System.arraycopy(es, h, es, h + 1, front);
619 } else { // Wrap around
620 System.arraycopy(es, 0, es, 1, i);
621 es[0] = es[capacity - 1];
622 System.arraycopy(es, h, es, h + 1, front - (i + 1));
623 }
624 es[h] = null;
625 head = inc(h, capacity);
626 // checkInvariants();
627 return false;
628 } else {
629 // move back elements backwards
630 tail = dec(tail, capacity);
631 if (i <= tail) {
632 System.arraycopy(es, i + 1, es, i, back);
633 } else { // Wrap around
634 int firstLeg = capacity - (i + 1);
635 System.arraycopy(es, i + 1, es, i, firstLeg);
636 es[capacity - 1] = es[0];
637 System.arraycopy(es, 1, es, 0, back - firstLeg - 1);
638 }
639 es[tail] = null;
640 // checkInvariants();
641 return true;
642 }
643 }
644
645 // *** Collection Methods ***
646
647 /**
648 * Returns the number of elements in this deque.
649 *
650 * @return the number of elements in this deque
651 */
652 public int size() {
653 return sub(tail, head, elements.length);
654 }
655
656 /**
657 * Returns {@code true} if this deque contains no elements.
658 *
659 * @return {@code true} if this deque contains no elements
660 */
661 public boolean isEmpty() {
662 return head == tail;
663 }
664
665 /**
666 * Returns an iterator over the elements in this deque. The elements
667 * will be ordered from first (head) to last (tail). This is the same
668 * order that elements would be dequeued (via successive calls to
669 * {@link #remove} or popped (via successive calls to {@link #pop}).
670 *
671 * @return an iterator over the elements in this deque
672 */
673 public Iterator<E> iterator() {
674 return new DeqIterator();
675 }
676
677 public Iterator<E> descendingIterator() {
678 return new DescendingIterator();
679 }
680
681 private class DeqIterator implements Iterator<E> {
682 /** Index of element to be returned by subsequent call to next. */
683 int cursor;
684
685 /** Number of elements yet to be returned. */
686 int remaining = size();
687
688 /**
689 * Index of element returned by most recent call to next.
690 * Reset to -1 if element is deleted by a call to remove.
691 */
692 int lastRet = -1;
693
694 DeqIterator() { cursor = head; }
695
696 public final boolean hasNext() {
697 return remaining > 0;
698 }
699
700 public E next() {
701 if (remaining <= 0)
702 throw new NoSuchElementException();
703 final Object[] es = elements;
704 E e = nonNullElementAt(es, cursor);
705 lastRet = cursor;
706 cursor = inc(cursor, es.length);
707 remaining--;
708 return e;
709 }
710
711 void postDelete(boolean leftShifted) {
712 if (leftShifted)
713 cursor = dec(cursor, elements.length);
714 }
715
716 public final void remove() {
717 if (lastRet < 0)
718 throw new IllegalStateException();
719 postDelete(delete(lastRet));
720 lastRet = -1;
721 }
722
723 public void forEachRemaining(Consumer<? super E> action) {
724 Objects.requireNonNull(action);
725 int r;
726 if ((r = remaining) <= 0)
727 return;
728 remaining = 0;
729 final Object[] es = elements;
730 if (es[cursor] == null || sub(tail, cursor, es.length) != r)
731 throw new ConcurrentModificationException();
732 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
733 ; i = 0, to = end) {
734 for (; i < to; i++)
735 action.accept(elementAt(es, i));
736 if (to == end) {
737 if (end != tail)
738 throw new ConcurrentModificationException();
739 lastRet = dec(end, es.length);
740 break;
741 }
742 }
743 }
744 }
745
746 private class DescendingIterator extends DeqIterator {
747 DescendingIterator() { cursor = dec(tail, elements.length); }
748
749 public final E next() {
750 if (remaining <= 0)
751 throw new NoSuchElementException();
752 final Object[] es = elements;
753 E e = nonNullElementAt(es, cursor);
754 lastRet = cursor;
755 cursor = dec(cursor, es.length);
756 remaining--;
757 return e;
758 }
759
760 void postDelete(boolean leftShifted) {
761 if (!leftShifted)
762 cursor = inc(cursor, elements.length);
763 }
764
765 public final void forEachRemaining(Consumer<? super E> action) {
766 Objects.requireNonNull(action);
767 int r;
768 if ((r = remaining) <= 0)
769 return;
770 remaining = 0;
771 final Object[] es = elements;
772 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
773 throw new ConcurrentModificationException();
774 for (int i = cursor, end = head, to = (i >= end) ? end : 0;
775 ; i = es.length - 1, to = end) {
776 // hotspot generates faster code than for: i >= to !
777 for (; i > to - 1; i--)
778 action.accept(elementAt(es, i));
779 if (to == end) {
780 if (end != head)
781 throw new ConcurrentModificationException();
782 lastRet = head;
783 break;
784 }
785 }
786 }
787 }
788
789 /**
790 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
791 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
792 * deque.
793 *
794 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
795 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
796 * {@link Spliterator#NONNULL}. Overriding implementations should document
797 * the reporting of additional characteristic values.
798 *
799 * @return a {@code Spliterator} over the elements in this deque
800 * @since 1.8
801 */
802 public Spliterator<E> spliterator() {
803 return new DeqSpliterator();
804 }
805
806 final class DeqSpliterator implements Spliterator<E> {
807 private int fence; // -1 until first use
808 private int cursor; // current index, modified on traverse/split
809
810 /** Constructs late-binding spliterator over all elements. */
811 DeqSpliterator() {
812 this.fence = -1;
813 }
814
815 /** Constructs spliterator over the given range. */
816 DeqSpliterator(int origin, int fence) {
817 this.cursor = origin;
818 this.fence = fence;
819 }
820
821 /** Ensures late-binding initialization; then returns fence. */
822 private int getFence() { // force initialization
823 int t;
824 if ((t = fence) < 0) {
825 t = fence = tail;
826 cursor = head;
827 }
828 return t;
829 }
830
831 public DeqSpliterator trySplit() {
832 final Object[] es = elements;
833 final int i, n;
834 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
835 ? null
836 : new DeqSpliterator(i, cursor = add(i, n, es.length));
837 }
838
839 public void forEachRemaining(Consumer<? super E> action) {
840 if (action == null)
841 throw new NullPointerException();
842 final int end = getFence(), cursor = this.cursor;
843 final Object[] es = elements;
844 if (cursor != end) {
845 this.cursor = end;
846 // null check at both ends of range is sufficient
847 if (es[cursor] == null || es[dec(end, es.length)] == null)
848 throw new ConcurrentModificationException();
849 for (int i = cursor, to = (i <= end) ? end : es.length;
850 ; i = 0, to = end) {
851 for (; i < to; i++)
852 action.accept(elementAt(es, i));
853 if (to == end) break;
854 }
855 }
856 }
857
858 public boolean tryAdvance(Consumer<? super E> action) {
859 if (action == null)
860 throw new NullPointerException();
861 int t, i;
862 if ((t = fence) < 0) t = getFence();
863 if (t == (i = cursor))
864 return false;
865 final Object[] es;
866 action.accept(nonNullElementAt(es = elements, i));
867 cursor = inc(i, es.length);
868 return true;
869 }
870
871 public long estimateSize() {
872 return sub(getFence(), cursor, elements.length);
873 }
874
875 public int characteristics() {
876 return Spliterator.NONNULL
877 | Spliterator.ORDERED
878 | Spliterator.SIZED
879 | Spliterator.SUBSIZED;
880 }
881 }
882
883 public void forEach(Consumer<? super E> action) {
884 Objects.requireNonNull(action);
885 final Object[] es = elements;
886 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
887 ; i = 0, to = end) {
888 for (; i < to; i++)
889 action.accept(elementAt(es, i));
890 if (to == end) {
891 if (end != tail) throw new ConcurrentModificationException();
892 break;
893 }
894 }
895 // checkInvariants();
896 }
897
898 /**
899 * Replaces each element of this deque with the result of applying the
900 * operator to that element, as specified by {@link List#replaceAll}.
901 *
902 * @param operator the operator to apply to each element
903 * @since TBD
904 */
905 /* public */ void replaceAll(UnaryOperator<E> operator) {
906 Objects.requireNonNull(operator);
907 final Object[] es = elements;
908 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
909 ; i = 0, to = end) {
910 for (; i < to; i++)
911 es[i] = operator.apply(elementAt(es, i));
912 if (to == end) {
913 if (end != tail) throw new ConcurrentModificationException();
914 break;
915 }
916 }
917 // checkInvariants();
918 }
919
920 /**
921 * @throws NullPointerException {@inheritDoc}
922 */
923 public boolean removeIf(Predicate<? super E> filter) {
924 Objects.requireNonNull(filter);
925 return bulkRemove(filter);
926 }
927
928 /**
929 * @throws NullPointerException {@inheritDoc}
930 */
931 public boolean removeAll(Collection<?> c) {
932 Objects.requireNonNull(c);
933 return bulkRemove(e -> c.contains(e));
934 }
935
936 /**
937 * @throws NullPointerException {@inheritDoc}
938 */
939 public boolean retainAll(Collection<?> c) {
940 Objects.requireNonNull(c);
941 return bulkRemove(e -> !c.contains(e));
942 }
943
944 /** Implementation of bulk remove methods. */
945 private boolean bulkRemove(Predicate<? super E> filter) {
946 // checkInvariants();
947 final Object[] es = elements;
948 // Optimize for initial run of survivors
949 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
950 ; i = 0, to = end) {
951 for (; i < to; i++)
952 if (filter.test(elementAt(es, i)))
953 return bulkRemoveModified(filter, i, to);
954 if (to == end) {
955 if (end != tail) throw new ConcurrentModificationException();
956 break;
957 }
958 }
959 return false;
960 }
961
962 /**
963 * Helper for bulkRemove, in case of at least one deletion.
964 * @param i valid index of first element to be deleted
965 */
966 private boolean bulkRemoveModified(
967 Predicate<? super E> filter, int i, int to) {
968 final Object[] es = elements;
969 final int capacity = es.length;
970 // a two-finger algorithm, with hare i reading, tortoise j writing
971 int j = i++;
972 final int end = tail;
973 try {
974 for (;; j = 0) { // j rejoins i on second leg
975 E e;
976 // In this loop, i and j are on the same leg, with i > j
977 for (; i < to; i++)
978 if (!filter.test(e = elementAt(es, i)))
979 es[j++] = e;
980 if (to == end) break;
981 // In this loop, j is on the first leg, i on the second
982 for (i = 0, to = end; i < to && j < capacity; i++)
983 if (!filter.test(e = elementAt(es, i)))
984 es[j++] = e;
985 if (i >= to) {
986 if (j == capacity) j = 0; // "corner" case
987 break;
988 }
989 }
990 return true;
991 } catch (Throwable ex) {
992 // copy remaining elements
993 for (; i != end; i = inc(i, capacity), j = inc(j, capacity))
994 es[j] = es[i];
995 throw ex;
996 } finally {
997 if (end != tail) throw new ConcurrentModificationException();
998 circularClear(es, tail = j, end);
999 // checkInvariants();
1000 }
1001 }
1002
1003 /**
1004 * Returns {@code true} if this deque contains the specified element.
1005 * More formally, returns {@code true} if and only if this deque contains
1006 * at least one element {@code e} such that {@code o.equals(e)}.
1007 *
1008 * @param o object to be checked for containment in this deque
1009 * @return {@code true} if this deque contains the specified element
1010 */
1011 public boolean contains(Object o) {
1012 if (o != null) {
1013 final Object[] es = elements;
1014 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1015 ; i = 0, to = end) {
1016 for (; i < to; i++)
1017 if (o.equals(es[i]))
1018 return true;
1019 if (to == end) break;
1020 }
1021 }
1022 return false;
1023 }
1024
1025 /**
1026 * Removes a single instance of the specified element from this deque.
1027 * If the deque does not contain the element, it is unchanged.
1028 * More formally, removes the first element {@code e} such that
1029 * {@code o.equals(e)} (if such an element exists).
1030 * Returns {@code true} if this deque contained the specified element
1031 * (or equivalently, if this deque changed as a result of the call).
1032 *
1033 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1034 *
1035 * @param o element to be removed from this deque, if present
1036 * @return {@code true} if this deque contained the specified element
1037 */
1038 public boolean remove(Object o) {
1039 return removeFirstOccurrence(o);
1040 }
1041
1042 /**
1043 * Removes all of the elements from this deque.
1044 * The deque will be empty after this call returns.
1045 */
1046 public void clear() {
1047 circularClear(elements, head, tail);
1048 head = tail = 0;
1049 // checkInvariants();
1050 }
1051
1052 /**
1053 * Nulls out slots starting at array index i, upto index end.
1054 */
1055 private static void circularClear(Object[] es, int i, int end) {
1056 for (int to = (i <= end) ? end : es.length;
1057 ; i = 0, to = end) {
1058 Arrays.fill(es, i, to, null);
1059 if (to == end) break;
1060 }
1061 }
1062
1063 /**
1064 * Returns an array containing all of the elements in this deque
1065 * in proper sequence (from first to last element).
1066 *
1067 * <p>The returned array will be "safe" in that no references to it are
1068 * maintained by this deque. (In other words, this method must allocate
1069 * a new array). The caller is thus free to modify the returned array.
1070 *
1071 * <p>This method acts as bridge between array-based and collection-based
1072 * APIs.
1073 *
1074 * @return an array containing all of the elements in this deque
1075 */
1076 public Object[] toArray() {
1077 return toArray(Object[].class);
1078 }
1079
1080 private <T> T[] toArray(Class<T[]> klazz) {
1081 final Object[] es = elements;
1082 final T[] a;
1083 final int size = size(), head = this.head, end;
1084 final int len = Math.min(size, es.length - head);
1085 if ((end = head + size) >= 0) {
1086 a = Arrays.copyOfRange(es, head, end, klazz);
1087 } else {
1088 // integer overflow!
1089 a = Arrays.copyOfRange(es, 0, size, klazz);
1090 System.arraycopy(es, head, a, 0, len);
1091 }
1092 if (tail < head)
1093 System.arraycopy(es, 0, a, len, tail);
1094 return a;
1095 }
1096
1097 /**
1098 * Returns an array containing all of the elements in this deque in
1099 * proper sequence (from first to last element); the runtime type of the
1100 * returned array is that of the specified array. If the deque fits in
1101 * the specified array, it is returned therein. Otherwise, a new array
1102 * is allocated with the runtime type of the specified array and the
1103 * size of this deque.
1104 *
1105 * <p>If this deque fits in the specified array with room to spare
1106 * (i.e., the array has more elements than this deque), the element in
1107 * the array immediately following the end of the deque is set to
1108 * {@code null}.
1109 *
1110 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1111 * array-based and collection-based APIs. Further, this method allows
1112 * precise control over the runtime type of the output array, and may,
1113 * under certain circumstances, be used to save allocation costs.
1114 *
1115 * <p>Suppose {@code x} is a deque known to contain only strings.
1116 * The following code can be used to dump the deque into a newly
1117 * allocated array of {@code String}:
1118 *
1119 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1120 *
1121 * Note that {@code toArray(new Object[0])} is identical in function to
1122 * {@code toArray()}.
1123 *
1124 * @param a the array into which the elements of the deque are to
1125 * be stored, if it is big enough; otherwise, a new array of the
1126 * same runtime type is allocated for this purpose
1127 * @return an array containing all of the elements in this deque
1128 * @throws ArrayStoreException if the runtime type of the specified array
1129 * is not a supertype of the runtime type of every element in
1130 * this deque
1131 * @throws NullPointerException if the specified array is null
1132 */
1133 @SuppressWarnings("unchecked")
1134 public <T> T[] toArray(T[] a) {
1135 final int size;
1136 if ((size = size()) > a.length)
1137 return toArray((Class<T[]>) a.getClass());
1138 final Object[] es = elements;
1139 for (int i = head, j = 0, len = Math.min(size, es.length - i);
1140 ; i = 0, len = tail) {
1141 System.arraycopy(es, i, a, j, len);
1142 if ((j += len) == size) break;
1143 }
1144 if (size < a.length)
1145 a[size] = null;
1146 return a;
1147 }
1148
1149 // *** Object methods ***
1150
1151 /**
1152 * Returns a copy of this deque.
1153 *
1154 * @return a copy of this deque
1155 */
1156 public ArrayDeque<E> clone() {
1157 try {
1158 @SuppressWarnings("unchecked")
1159 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1160 result.elements = Arrays.copyOf(elements, elements.length);
1161 return result;
1162 } catch (CloneNotSupportedException e) {
1163 throw new AssertionError();
1164 }
1165 }
1166
1167 private static final long serialVersionUID = 2340985798034038923L;
1168
1169 /**
1170 * Saves this deque to a stream (that is, serializes it).
1171 *
1172 * @param s the stream
1173 * @throws java.io.IOException if an I/O error occurs
1174 * @serialData The current size ({@code int}) of the deque,
1175 * followed by all of its elements (each an object reference) in
1176 * first-to-last order.
1177 */
1178 private void writeObject(java.io.ObjectOutputStream s)
1179 throws java.io.IOException {
1180 s.defaultWriteObject();
1181
1182 // Write out size
1183 s.writeInt(size());
1184
1185 // Write out elements in order.
1186 final Object[] es = elements;
1187 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1188 ; i = 0, to = end) {
1189 for (; i < to; i++)
1190 s.writeObject(es[i]);
1191 if (to == end) break;
1192 }
1193 }
1194
1195 /**
1196 * Reconstitutes this deque from a stream (that is, deserializes it).
1197 * @param s the stream
1198 * @throws ClassNotFoundException if the class of a serialized object
1199 * could not be found
1200 * @throws java.io.IOException if an I/O error occurs
1201 */
1202 private void readObject(java.io.ObjectInputStream s)
1203 throws java.io.IOException, ClassNotFoundException {
1204 s.defaultReadObject();
1205
1206 // Read in size and allocate array
1207 int size = s.readInt();
1208 elements = new Object[size + 1];
1209 this.tail = size;
1210
1211 // Read in all elements in the proper order.
1212 for (int i = 0; i < size; i++)
1213 elements[i] = s.readObject();
1214 }
1215
1216 /** debugging */
1217 void checkInvariants() {
1218 try {
1219 int capacity = elements.length;
1220 // assert head >= 0 && head < capacity;
1221 // assert tail >= 0 && tail < capacity;
1222 // assert capacity > 0;
1223 // assert size() < capacity;
1224 // assert head == tail || elements[head] != null;
1225 // assert elements[tail] == null;
1226 // assert head == tail || elements[dec(tail, capacity)] != null;
1227 } catch (Throwable t) {
1228 System.err.printf("head=%d tail=%d capacity=%d%n",
1229 head, tail, elements.length);
1230 System.err.printf("elements=%s%n",
1231 Arrays.toString(elements));
1232 throw t;
1233 }
1234 }
1235
1236 }