ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/main/java/util/ArrayDeque.java
Revision: 1.130
Committed: Wed May 31 22:54:47 2017 UTC (6 years, 11 months ago) by jsr166
Branch: MAIN
Changes since 1.129: +1 -1 lines
Log Message:
typo

File Contents

# Content
1 /*
2 * Written by Josh Bloch of Google Inc. and released to the public domain,
3 * as explained at http://creativecommons.org/publicdomain/zero/1.0/.
4 */
5
6 package java.util;
7
8 import java.io.Serializable;
9 import java.util.function.Consumer;
10 import java.util.function.Predicate;
11 import java.util.function.UnaryOperator;
12
13 /**
14 * Resizable-array implementation of the {@link Deque} interface. Array
15 * deques have no capacity restrictions; they grow as necessary to support
16 * usage. They are not thread-safe; in the absence of external
17 * synchronization, they do not support concurrent access by multiple threads.
18 * Null elements are prohibited. This class is likely to be faster than
19 * {@link Stack} when used as a stack, and faster than {@link LinkedList}
20 * when used as a queue.
21 *
22 * <p>Most {@code ArrayDeque} operations run in amortized constant time.
23 * Exceptions include
24 * {@link #remove(Object) remove},
25 * {@link #removeFirstOccurrence removeFirstOccurrence},
26 * {@link #removeLastOccurrence removeLastOccurrence},
27 * {@link #contains contains},
28 * {@link #iterator iterator.remove()},
29 * and the bulk operations, all of which run in linear time.
30 *
31 * <p>The iterators returned by this class's {@link #iterator() iterator}
32 * method are <em>fail-fast</em>: If the deque is modified at any time after
33 * the iterator is created, in any way except through the iterator's own
34 * {@code remove} method, the iterator will generally throw a {@link
35 * ConcurrentModificationException}. Thus, in the face of concurrent
36 * modification, the iterator fails quickly and cleanly, rather than risking
37 * arbitrary, non-deterministic behavior at an undetermined time in the
38 * future.
39 *
40 * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
41 * as it is, generally speaking, impossible to make any hard guarantees in the
42 * presence of unsynchronized concurrent modification. Fail-fast iterators
43 * throw {@code ConcurrentModificationException} on a best-effort basis.
44 * Therefore, it would be wrong to write a program that depended on this
45 * exception for its correctness: <i>the fail-fast behavior of iterators
46 * should be used only to detect bugs.</i>
47 *
48 * <p>This class and its iterator implement all of the
49 * <em>optional</em> methods of the {@link Collection} and {@link
50 * Iterator} interfaces.
51 *
52 * <p>This class is a member of the
53 * <a href="{@docRoot}/java/util/package-summary.html#CollectionsFramework">
54 * Java Collections Framework</a>.
55 *
56 * @author Josh Bloch and Doug Lea
57 * @param <E> the type of elements held in this deque
58 * @since 1.6
59 */
60 public class ArrayDeque<E> extends AbstractCollection<E>
61 implements Deque<E>, Cloneable, Serializable
62 {
63 /*
64 * VMs excel at optimizing simple array loops where indices are
65 * incrementing or decrementing over a valid slice, e.g.
66 *
67 * for (int i = start; i < end; i++) ... elements[i]
68 *
69 * Because in a circular array, elements are in general stored in
70 * two disjoint such slices, we help the VM by writing unusual
71 * nested loops for all traversals over the elements. Having only
72 * one hot inner loop body instead of two or three eases human
73 * maintenance and encourages VM loop inlining into the caller.
74 */
75
76 /**
77 * The array in which the elements of the deque are stored.
78 * All array cells not holding deque elements are always null.
79 * The array always has at least one null slot (at tail).
80 */
81 transient Object[] elements;
82
83 /**
84 * The index of the element at the head of the deque (which is the
85 * element that would be removed by remove() or pop()); or an
86 * arbitrary number 0 <= head < elements.length equal to tail if
87 * the deque is empty.
88 */
89 transient int head;
90
91 /**
92 * The index at which the next element would be added to the tail
93 * of the deque (via addLast(E), add(E), or push(E));
94 * elements[tail] is always null.
95 */
96 transient int tail;
97
98 /**
99 * The maximum size of array to allocate.
100 * Some VMs reserve some header words in an array.
101 * Attempts to allocate larger arrays may result in
102 * OutOfMemoryError: Requested array size exceeds VM limit
103 */
104 private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
105
106 /**
107 * Increases the capacity of this deque by at least the given amount.
108 *
109 * @param needed the required minimum extra capacity; must be positive
110 */
111 private void grow(int needed) {
112 // overflow-conscious code
113 final int oldCapacity = elements.length;
114 int newCapacity;
115 // Double capacity if small; else grow by 50%
116 int jump = (oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1);
117 if (jump < needed
118 || (newCapacity = (oldCapacity + jump)) - MAX_ARRAY_SIZE > 0)
119 newCapacity = newCapacity(needed, jump);
120 final Object[] es = elements = Arrays.copyOf(elements, newCapacity);
121 // Exceptionally, here tail == head needs to be disambiguated
122 if (tail < head || (tail == head && es[head] != null)) {
123 // wrap around; slide first leg forward to end of array
124 int newSpace = newCapacity - oldCapacity;
125 System.arraycopy(es, head,
126 es, head + newSpace,
127 oldCapacity - head);
128 for (int i = head, to = (head += newSpace); i < to; i++)
129 es[i] = null;
130 }
131 // checkInvariants();
132 }
133
134 /** Capacity calculation for edge conditions, especially overflow. */
135 private int newCapacity(int needed, int jump) {
136 final int oldCapacity = elements.length, minCapacity;
137 if ((minCapacity = oldCapacity + needed) - MAX_ARRAY_SIZE > 0) {
138 if (minCapacity < 0)
139 throw new IllegalStateException("Sorry, deque too big");
140 return Integer.MAX_VALUE;
141 }
142 if (needed > jump)
143 return minCapacity;
144 return (oldCapacity + jump - MAX_ARRAY_SIZE < 0)
145 ? oldCapacity + jump
146 : MAX_ARRAY_SIZE;
147 }
148
149 /**
150 * Increases the internal storage of this collection, if necessary,
151 * to ensure that it can hold at least the given number of elements.
152 *
153 * @param minCapacity the desired minimum capacity
154 * @since TBD
155 */
156 /* public */ void ensureCapacity(int minCapacity) {
157 int needed;
158 if ((needed = (minCapacity + 1 - elements.length)) > 0)
159 grow(needed);
160 // checkInvariants();
161 }
162
163 /**
164 * Minimizes the internal storage of this collection.
165 *
166 * @since TBD
167 */
168 /* public */ void trimToSize() {
169 int size;
170 if ((size = size()) + 1 < elements.length) {
171 elements = toArray(new Object[size + 1]);
172 head = 0;
173 tail = size;
174 }
175 // checkInvariants();
176 }
177
178 /**
179 * Constructs an empty array deque with an initial capacity
180 * sufficient to hold 16 elements.
181 */
182 public ArrayDeque() {
183 elements = new Object[16];
184 }
185
186 /**
187 * Constructs an empty array deque with an initial capacity
188 * sufficient to hold the specified number of elements.
189 *
190 * @param numElements lower bound on initial capacity of the deque
191 */
192 public ArrayDeque(int numElements) {
193 elements =
194 new Object[(numElements < 1) ? 1 :
195 (numElements == Integer.MAX_VALUE) ? Integer.MAX_VALUE :
196 numElements + 1];
197 }
198
199 /**
200 * Constructs a deque containing the elements of the specified
201 * collection, in the order they are returned by the collection's
202 * iterator. (The first element returned by the collection's
203 * iterator becomes the first element, or <i>front</i> of the
204 * deque.)
205 *
206 * @param c the collection whose elements are to be placed into the deque
207 * @throws NullPointerException if the specified collection is null
208 */
209 public ArrayDeque(Collection<? extends E> c) {
210 this(c.size());
211 addAll(c);
212 }
213
214 /**
215 * Increments i, mod modulus.
216 * Precondition and postcondition: 0 <= i < modulus.
217 */
218 static final int inc(int i, int modulus) {
219 if (++i >= modulus) i = 0;
220 return i;
221 }
222
223 /**
224 * Decrements i, mod modulus.
225 * Precondition and postcondition: 0 <= i < modulus.
226 */
227 static final int dec(int i, int modulus) {
228 if (--i < 0) i = modulus - 1;
229 return i;
230 }
231
232 /**
233 * Circularly adds the given distance to index i, mod modulus.
234 * Precondition: 0 <= i < modulus, 0 <= distance <= modulus.
235 * @return index 0 <= i < modulus
236 */
237 static final int add(int i, int distance, int modulus) {
238 if ((i += distance) - modulus >= 0) i -= modulus;
239 return i;
240 }
241
242 /**
243 * Subtracts j from i, mod modulus.
244 * Index i must be logically ahead of index j.
245 * Precondition: 0 <= i < modulus, 0 <= j < modulus.
246 * @return the "circular distance" from j to i; corner case i == j
247 * is disambiguated to "empty", returning 0.
248 */
249 static final int sub(int i, int j, int modulus) {
250 if ((i -= j) < 0) i += modulus;
251 return i;
252 }
253
254 /**
255 * Returns element at array index i.
256 * This is a slight abuse of generics, accepted by javac.
257 */
258 @SuppressWarnings("unchecked")
259 static final <E> E elementAt(Object[] es, int i) {
260 return (E) es[i];
261 }
262
263 /**
264 * A version of elementAt that checks for null elements.
265 * This check doesn't catch all possible comodifications,
266 * but does catch ones that corrupt traversal.
267 */
268 static final <E> E nonNullElementAt(Object[] es, int i) {
269 @SuppressWarnings("unchecked") E e = (E) es[i];
270 if (e == null)
271 throw new ConcurrentModificationException();
272 return e;
273 }
274
275 // The main insertion and extraction methods are addFirst,
276 // addLast, pollFirst, pollLast. The other methods are defined in
277 // terms of these.
278
279 /**
280 * Inserts the specified element at the front of this deque.
281 *
282 * @param e the element to add
283 * @throws NullPointerException if the specified element is null
284 */
285 public void addFirst(E e) {
286 if (e == null)
287 throw new NullPointerException();
288 final Object[] es = elements;
289 es[head = dec(head, es.length)] = e;
290 if (head == tail)
291 grow(1);
292 // checkInvariants();
293 }
294
295 /**
296 * Inserts the specified element at the end of this deque.
297 *
298 * <p>This method is equivalent to {@link #add}.
299 *
300 * @param e the element to add
301 * @throws NullPointerException if the specified element is null
302 */
303 public void addLast(E e) {
304 if (e == null)
305 throw new NullPointerException();
306 final Object[] es = elements;
307 es[tail] = e;
308 if (head == (tail = inc(tail, es.length)))
309 grow(1);
310 // checkInvariants();
311 }
312
313 /**
314 * Adds all of the elements in the specified collection at the end
315 * of this deque, as if by calling {@link #addLast} on each one,
316 * in the order that they are returned by the collection's iterator.
317 *
318 * @param c the elements to be inserted into this deque
319 * @return {@code true} if this deque changed as a result of the call
320 * @throws NullPointerException if the specified collection or any
321 * of its elements are null
322 */
323 public boolean addAll(Collection<? extends E> c) {
324 final int s, needed;
325 if ((needed = (s = size()) + c.size() + 1 - elements.length) > 0)
326 grow(needed);
327 c.forEach(this::addLast);
328 // checkInvariants();
329 return size() > s;
330 }
331
332 /**
333 * Inserts the specified element at the front of this deque.
334 *
335 * @param e the element to add
336 * @return {@code true} (as specified by {@link Deque#offerFirst})
337 * @throws NullPointerException if the specified element is null
338 */
339 public boolean offerFirst(E e) {
340 addFirst(e);
341 return true;
342 }
343
344 /**
345 * Inserts the specified element at the end of this deque.
346 *
347 * @param e the element to add
348 * @return {@code true} (as specified by {@link Deque#offerLast})
349 * @throws NullPointerException if the specified element is null
350 */
351 public boolean offerLast(E e) {
352 addLast(e);
353 return true;
354 }
355
356 /**
357 * @throws NoSuchElementException {@inheritDoc}
358 */
359 public E removeFirst() {
360 E e = pollFirst();
361 if (e == null)
362 throw new NoSuchElementException();
363 // checkInvariants();
364 return e;
365 }
366
367 /**
368 * @throws NoSuchElementException {@inheritDoc}
369 */
370 public E removeLast() {
371 E e = pollLast();
372 if (e == null)
373 throw new NoSuchElementException();
374 // checkInvariants();
375 return e;
376 }
377
378 public E pollFirst() {
379 final Object[] es;
380 final int h;
381 E e = elementAt(es = elements, h = head);
382 if (e != null) {
383 es[h] = null;
384 head = inc(h, es.length);
385 }
386 // checkInvariants();
387 return e;
388 }
389
390 public E pollLast() {
391 final Object[] es;
392 final int t;
393 E e = elementAt(es = elements, t = dec(tail, es.length));
394 if (e != null)
395 es[tail = t] = null;
396 // checkInvariants();
397 return e;
398 }
399
400 /**
401 * @throws NoSuchElementException {@inheritDoc}
402 */
403 public E getFirst() {
404 E e = elementAt(elements, head);
405 if (e == null)
406 throw new NoSuchElementException();
407 // checkInvariants();
408 return e;
409 }
410
411 /**
412 * @throws NoSuchElementException {@inheritDoc}
413 */
414 public E getLast() {
415 final Object[] es = elements;
416 E e = elementAt(es, dec(tail, es.length));
417 if (e == null)
418 throw new NoSuchElementException();
419 // checkInvariants();
420 return e;
421 }
422
423 public E peekFirst() {
424 // checkInvariants();
425 return elementAt(elements, head);
426 }
427
428 public E peekLast() {
429 // checkInvariants();
430 final Object[] es;
431 return elementAt(es = elements, dec(tail, es.length));
432 }
433
434 /**
435 * Removes the first occurrence of the specified element in this
436 * deque (when traversing the deque from head to tail).
437 * If the deque does not contain the element, it is unchanged.
438 * More formally, removes the first element {@code e} such that
439 * {@code o.equals(e)} (if such an element exists).
440 * Returns {@code true} if this deque contained the specified element
441 * (or equivalently, if this deque changed as a result of the call).
442 *
443 * @param o element to be removed from this deque, if present
444 * @return {@code true} if the deque contained the specified element
445 */
446 public boolean removeFirstOccurrence(Object o) {
447 if (o != null) {
448 final Object[] es = elements;
449 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
450 ; i = 0, to = end) {
451 for (; i < to; i++)
452 if (o.equals(es[i])) {
453 delete(i);
454 return true;
455 }
456 if (to == end) break;
457 }
458 }
459 return false;
460 }
461
462 /**
463 * Removes the last occurrence of the specified element in this
464 * deque (when traversing the deque from head to tail).
465 * If the deque does not contain the element, it is unchanged.
466 * More formally, removes the last element {@code e} such that
467 * {@code o.equals(e)} (if such an element exists).
468 * Returns {@code true} if this deque contained the specified element
469 * (or equivalently, if this deque changed as a result of the call).
470 *
471 * @param o element to be removed from this deque, if present
472 * @return {@code true} if the deque contained the specified element
473 */
474 public boolean removeLastOccurrence(Object o) {
475 if (o != null) {
476 final Object[] es = elements;
477 for (int i = tail, end = head, to = (i >= end) ? end : 0;
478 ; i = es.length, to = end) {
479 for (i--; i > to - 1; i--)
480 if (o.equals(es[i])) {
481 delete(i);
482 return true;
483 }
484 if (to == end) break;
485 }
486 }
487 return false;
488 }
489
490 // *** Queue methods ***
491
492 /**
493 * Inserts the specified element at the end of this deque.
494 *
495 * <p>This method is equivalent to {@link #addLast}.
496 *
497 * @param e the element to add
498 * @return {@code true} (as specified by {@link Collection#add})
499 * @throws NullPointerException if the specified element is null
500 */
501 public boolean add(E e) {
502 addLast(e);
503 return true;
504 }
505
506 /**
507 * Inserts the specified element at the end of this deque.
508 *
509 * <p>This method is equivalent to {@link #offerLast}.
510 *
511 * @param e the element to add
512 * @return {@code true} (as specified by {@link Queue#offer})
513 * @throws NullPointerException if the specified element is null
514 */
515 public boolean offer(E e) {
516 return offerLast(e);
517 }
518
519 /**
520 * Retrieves and removes the head of the queue represented by this deque.
521 *
522 * This method differs from {@link #poll() poll()} only in that it
523 * throws an exception if this deque is empty.
524 *
525 * <p>This method is equivalent to {@link #removeFirst}.
526 *
527 * @return the head of the queue represented by this deque
528 * @throws NoSuchElementException {@inheritDoc}
529 */
530 public E remove() {
531 return removeFirst();
532 }
533
534 /**
535 * Retrieves and removes the head of the queue represented by this deque
536 * (in other words, the first element of this deque), or returns
537 * {@code null} if this deque is empty.
538 *
539 * <p>This method is equivalent to {@link #pollFirst}.
540 *
541 * @return the head of the queue represented by this deque, or
542 * {@code null} if this deque is empty
543 */
544 public E poll() {
545 return pollFirst();
546 }
547
548 /**
549 * Retrieves, but does not remove, the head of the queue represented by
550 * this deque. This method differs from {@link #peek peek} only in
551 * that it throws an exception if this deque is empty.
552 *
553 * <p>This method is equivalent to {@link #getFirst}.
554 *
555 * @return the head of the queue represented by this deque
556 * @throws NoSuchElementException {@inheritDoc}
557 */
558 public E element() {
559 return getFirst();
560 }
561
562 /**
563 * Retrieves, but does not remove, the head of the queue represented by
564 * this deque, or returns {@code null} if this deque is empty.
565 *
566 * <p>This method is equivalent to {@link #peekFirst}.
567 *
568 * @return the head of the queue represented by this deque, or
569 * {@code null} if this deque is empty
570 */
571 public E peek() {
572 return peekFirst();
573 }
574
575 // *** Stack methods ***
576
577 /**
578 * Pushes an element onto the stack represented by this deque. In other
579 * words, inserts the element at the front of this deque.
580 *
581 * <p>This method is equivalent to {@link #addFirst}.
582 *
583 * @param e the element to push
584 * @throws NullPointerException if the specified element is null
585 */
586 public void push(E e) {
587 addFirst(e);
588 }
589
590 /**
591 * Pops an element from the stack represented by this deque. In other
592 * words, removes and returns the first element of this deque.
593 *
594 * <p>This method is equivalent to {@link #removeFirst()}.
595 *
596 * @return the element at the front of this deque (which is the top
597 * of the stack represented by this deque)
598 * @throws NoSuchElementException {@inheritDoc}
599 */
600 public E pop() {
601 return removeFirst();
602 }
603
604 /**
605 * Removes the element at the specified position in the elements array.
606 * This can result in forward or backwards motion of array elements.
607 * We optimize for least element motion.
608 *
609 * <p>This method is called delete rather than remove to emphasize
610 * that its semantics differ from those of {@link List#remove(int)}.
611 *
612 * @return true if elements near tail moved backwards
613 */
614 boolean delete(int i) {
615 // checkInvariants();
616 final Object[] es = elements;
617 final int capacity = es.length;
618 final int h, t;
619 // number of elements before to-be-deleted elt
620 final int front = sub(i, h = head, capacity);
621 // number of elements after to-be-deleted elt
622 final int back = sub(t = tail, i, capacity) - 1;
623 if (front < back) {
624 // move front elements forwards
625 if (h <= i) {
626 System.arraycopy(es, h, es, h + 1, front);
627 } else { // Wrap around
628 System.arraycopy(es, 0, es, 1, i);
629 es[0] = es[capacity - 1];
630 System.arraycopy(es, h, es, h + 1, front - (i + 1));
631 }
632 es[h] = null;
633 head = inc(h, capacity);
634 // checkInvariants();
635 return false;
636 } else {
637 // move back elements backwards
638 tail = dec(t, capacity);
639 if (i <= tail) {
640 System.arraycopy(es, i + 1, es, i, back);
641 } else { // Wrap around
642 System.arraycopy(es, i + 1, es, i, capacity - (i + 1));
643 es[capacity - 1] = es[0];
644 System.arraycopy(es, 1, es, 0, t - 1);
645 }
646 es[tail] = null;
647 // checkInvariants();
648 return true;
649 }
650 }
651
652 // *** Collection Methods ***
653
654 /**
655 * Returns the number of elements in this deque.
656 *
657 * @return the number of elements in this deque
658 */
659 public int size() {
660 return sub(tail, head, elements.length);
661 }
662
663 /**
664 * Returns {@code true} if this deque contains no elements.
665 *
666 * @return {@code true} if this deque contains no elements
667 */
668 public boolean isEmpty() {
669 return head == tail;
670 }
671
672 /**
673 * Returns an iterator over the elements in this deque. The elements
674 * will be ordered from first (head) to last (tail). This is the same
675 * order that elements would be dequeued (via successive calls to
676 * {@link #remove} or popped (via successive calls to {@link #pop}).
677 *
678 * @return an iterator over the elements in this deque
679 */
680 public Iterator<E> iterator() {
681 return new DeqIterator();
682 }
683
684 public Iterator<E> descendingIterator() {
685 return new DescendingIterator();
686 }
687
688 private class DeqIterator implements Iterator<E> {
689 /** Index of element to be returned by subsequent call to next. */
690 int cursor;
691
692 /** Number of elements yet to be returned. */
693 int remaining = size();
694
695 /**
696 * Index of element returned by most recent call to next.
697 * Reset to -1 if element is deleted by a call to remove.
698 */
699 int lastRet = -1;
700
701 DeqIterator() { cursor = head; }
702
703 public final boolean hasNext() {
704 return remaining > 0;
705 }
706
707 public E next() {
708 if (remaining <= 0)
709 throw new NoSuchElementException();
710 final Object[] es = elements;
711 E e = nonNullElementAt(es, cursor);
712 cursor = inc(lastRet = cursor, es.length);
713 remaining--;
714 return e;
715 }
716
717 void postDelete(boolean leftShifted) {
718 if (leftShifted)
719 cursor = dec(cursor, elements.length);
720 }
721
722 public final void remove() {
723 if (lastRet < 0)
724 throw new IllegalStateException();
725 postDelete(delete(lastRet));
726 lastRet = -1;
727 }
728
729 public void forEachRemaining(Consumer<? super E> action) {
730 Objects.requireNonNull(action);
731 int r;
732 if ((r = remaining) <= 0)
733 return;
734 remaining = 0;
735 final Object[] es = elements;
736 if (es[cursor] == null || sub(tail, cursor, es.length) != r)
737 throw new ConcurrentModificationException();
738 for (int i = cursor, end = tail, to = (i <= end) ? end : es.length;
739 ; i = 0, to = end) {
740 for (; i < to; i++)
741 action.accept(elementAt(es, i));
742 if (to == end) {
743 if (end != tail)
744 throw new ConcurrentModificationException();
745 lastRet = dec(end, es.length);
746 break;
747 }
748 }
749 }
750 }
751
752 private class DescendingIterator extends DeqIterator {
753 DescendingIterator() { cursor = dec(tail, elements.length); }
754
755 public final E next() {
756 if (remaining <= 0)
757 throw new NoSuchElementException();
758 final Object[] es = elements;
759 E e = nonNullElementAt(es, cursor);
760 cursor = dec(lastRet = cursor, es.length);
761 remaining--;
762 return e;
763 }
764
765 void postDelete(boolean leftShifted) {
766 if (!leftShifted)
767 cursor = inc(cursor, elements.length);
768 }
769
770 public final void forEachRemaining(Consumer<? super E> action) {
771 Objects.requireNonNull(action);
772 int r;
773 if ((r = remaining) <= 0)
774 return;
775 remaining = 0;
776 final Object[] es = elements;
777 if (es[cursor] == null || sub(cursor, head, es.length) + 1 != r)
778 throw new ConcurrentModificationException();
779 for (int i = cursor, end = head, to = (i >= end) ? end : 0;
780 ; i = es.length - 1, to = end) {
781 // hotspot generates faster code than for: i >= to !
782 for (; i > to - 1; i--)
783 action.accept(elementAt(es, i));
784 if (to == end) {
785 if (end != head)
786 throw new ConcurrentModificationException();
787 lastRet = end;
788 break;
789 }
790 }
791 }
792 }
793
794 /**
795 * Creates a <em><a href="Spliterator.html#binding">late-binding</a></em>
796 * and <em>fail-fast</em> {@link Spliterator} over the elements in this
797 * deque.
798 *
799 * <p>The {@code Spliterator} reports {@link Spliterator#SIZED},
800 * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
801 * {@link Spliterator#NONNULL}. Overriding implementations should document
802 * the reporting of additional characteristic values.
803 *
804 * @return a {@code Spliterator} over the elements in this deque
805 * @since 1.8
806 */
807 public Spliterator<E> spliterator() {
808 return new DeqSpliterator();
809 }
810
811 final class DeqSpliterator implements Spliterator<E> {
812 private int fence; // -1 until first use
813 private int cursor; // current index, modified on traverse/split
814
815 /** Constructs late-binding spliterator over all elements. */
816 DeqSpliterator() {
817 this.fence = -1;
818 }
819
820 /** Constructs spliterator over the given range. */
821 DeqSpliterator(int origin, int fence) {
822 // assert 0 <= origin && origin < elements.length;
823 // assert 0 <= fence && fence < elements.length;
824 this.cursor = origin;
825 this.fence = fence;
826 }
827
828 /** Ensures late-binding initialization; then returns fence. */
829 private int getFence() { // force initialization
830 int t;
831 if ((t = fence) < 0) {
832 t = fence = tail;
833 cursor = head;
834 }
835 return t;
836 }
837
838 public DeqSpliterator trySplit() {
839 final Object[] es = elements;
840 final int i, n;
841 return ((n = sub(getFence(), i = cursor, es.length) >> 1) <= 0)
842 ? null
843 : new DeqSpliterator(i, cursor = add(i, n, es.length));
844 }
845
846 public void forEachRemaining(Consumer<? super E> action) {
847 if (action == null)
848 throw new NullPointerException();
849 final int end = getFence(), cursor = this.cursor;
850 final Object[] es = elements;
851 if (cursor != end) {
852 this.cursor = end;
853 // null check at both ends of range is sufficient
854 if (es[cursor] == null || es[dec(end, es.length)] == null)
855 throw new ConcurrentModificationException();
856 for (int i = cursor, to = (i <= end) ? end : es.length;
857 ; i = 0, to = end) {
858 for (; i < to; i++)
859 action.accept(elementAt(es, i));
860 if (to == end) break;
861 }
862 }
863 }
864
865 public boolean tryAdvance(Consumer<? super E> action) {
866 Objects.requireNonNull(action);
867 final Object[] es = elements;
868 if (fence < 0) { fence = tail; cursor = head; } // late-binding
869 final int i;
870 if ((i = cursor) == fence)
871 return false;
872 E e = nonNullElementAt(es, i);
873 cursor = inc(i, es.length);
874 action.accept(e);
875 return true;
876 }
877
878 public long estimateSize() {
879 return sub(getFence(), cursor, elements.length);
880 }
881
882 public int characteristics() {
883 return Spliterator.NONNULL
884 | Spliterator.ORDERED
885 | Spliterator.SIZED
886 | Spliterator.SUBSIZED;
887 }
888 }
889
890 /**
891 * @throws NullPointerException {@inheritDoc}
892 */
893 public void forEach(Consumer<? super E> action) {
894 Objects.requireNonNull(action);
895 final Object[] es = elements;
896 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
897 ; i = 0, to = end) {
898 for (; i < to; i++)
899 action.accept(elementAt(es, i));
900 if (to == end) {
901 if (end != tail) throw new ConcurrentModificationException();
902 break;
903 }
904 }
905 // checkInvariants();
906 }
907
908 /**
909 * Replaces each element of this deque with the result of applying the
910 * operator to that element, as specified by {@link List#replaceAll}.
911 *
912 * @param operator the operator to apply to each element
913 * @since TBD
914 */
915 /* public */ void replaceAll(UnaryOperator<E> operator) {
916 Objects.requireNonNull(operator);
917 final Object[] es = elements;
918 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
919 ; i = 0, to = end) {
920 for (; i < to; i++)
921 es[i] = operator.apply(elementAt(es, i));
922 if (to == end) {
923 if (end != tail) throw new ConcurrentModificationException();
924 break;
925 }
926 }
927 // checkInvariants();
928 }
929
930 /**
931 * @throws NullPointerException {@inheritDoc}
932 */
933 public boolean removeIf(Predicate<? super E> filter) {
934 Objects.requireNonNull(filter);
935 return bulkRemove(filter);
936 }
937
938 /**
939 * @throws NullPointerException {@inheritDoc}
940 */
941 public boolean removeAll(Collection<?> c) {
942 Objects.requireNonNull(c);
943 return bulkRemove(e -> c.contains(e));
944 }
945
946 /**
947 * @throws NullPointerException {@inheritDoc}
948 */
949 public boolean retainAll(Collection<?> c) {
950 Objects.requireNonNull(c);
951 return bulkRemove(e -> !c.contains(e));
952 }
953
954 /** Implementation of bulk remove methods. */
955 private boolean bulkRemove(Predicate<? super E> filter) {
956 // checkInvariants();
957 final Object[] es = elements;
958 // Optimize for initial run of survivors
959 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
960 ; i = 0, to = end) {
961 for (; i < to; i++)
962 if (filter.test(elementAt(es, i)))
963 return bulkRemoveModified(filter, i);
964 if (to == end) {
965 if (end != tail) throw new ConcurrentModificationException();
966 break;
967 }
968 }
969 return false;
970 }
971
972 // A tiny bit set implementation
973
974 private static long[] nBits(int n) {
975 return new long[((n - 1) >> 6) + 1];
976 }
977 private static void setBit(long[] bits, int i) {
978 bits[i >> 6] |= 1L << i;
979 }
980 private static boolean isClear(long[] bits, int i) {
981 return (bits[i >> 6] & (1L << i)) == 0;
982 }
983
984 /**
985 * Helper for bulkRemove, in case of at least one deletion.
986 * Tolerate predicates that reentrantly access the collection for
987 * read (but writers still get CME), so traverse once to find
988 * elements to delete, a second pass to physically expunge.
989 *
990 * @param beg valid index of first element to be deleted
991 */
992 private boolean bulkRemoveModified(
993 Predicate<? super E> filter, final int beg) {
994 final Object[] es = elements;
995 final int capacity = es.length;
996 final int end = tail;
997 final long[] deathRow = nBits(sub(end, beg, capacity));
998 deathRow[0] = 1L; // set bit 0
999 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1000 ; i = 0, to = end, k -= capacity) {
1001 for (; i < to; i++)
1002 if (filter.test(elementAt(es, i)))
1003 setBit(deathRow, i - k);
1004 if (to == end) break;
1005 }
1006 // a two-finger traversal, with hare i reading, tortoise w writing
1007 int w = beg;
1008 for (int i = beg + 1, to = (i <= end) ? end : es.length, k = beg;
1009 ; w = 0) { // w rejoins i on second leg
1010 // In this loop, i and w are on the same leg, with i > w
1011 for (; i < to; i++)
1012 if (isClear(deathRow, i - k))
1013 es[w++] = es[i];
1014 if (to == end) break;
1015 // In this loop, w is on the first leg, i on the second
1016 for (i = 0, to = end, k -= capacity; i < to && w < capacity; i++)
1017 if (isClear(deathRow, i - k))
1018 es[w++] = es[i];
1019 if (i >= to) {
1020 if (w == capacity) w = 0; // "corner" case
1021 break;
1022 }
1023 }
1024 if (end != tail) throw new ConcurrentModificationException();
1025 circularClear(es, tail = w, end);
1026 // checkInvariants();
1027 return true;
1028 }
1029
1030 /**
1031 * Returns {@code true} if this deque contains the specified element.
1032 * More formally, returns {@code true} if and only if this deque contains
1033 * at least one element {@code e} such that {@code o.equals(e)}.
1034 *
1035 * @param o object to be checked for containment in this deque
1036 * @return {@code true} if this deque contains the specified element
1037 */
1038 public boolean contains(Object o) {
1039 if (o != null) {
1040 final Object[] es = elements;
1041 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1042 ; i = 0, to = end) {
1043 for (; i < to; i++)
1044 if (o.equals(es[i]))
1045 return true;
1046 if (to == end) break;
1047 }
1048 }
1049 return false;
1050 }
1051
1052 /**
1053 * Removes a single instance of the specified element from this deque.
1054 * If the deque does not contain the element, it is unchanged.
1055 * More formally, removes the first element {@code e} such that
1056 * {@code o.equals(e)} (if such an element exists).
1057 * Returns {@code true} if this deque contained the specified element
1058 * (or equivalently, if this deque changed as a result of the call).
1059 *
1060 * <p>This method is equivalent to {@link #removeFirstOccurrence(Object)}.
1061 *
1062 * @param o element to be removed from this deque, if present
1063 * @return {@code true} if this deque contained the specified element
1064 */
1065 public boolean remove(Object o) {
1066 return removeFirstOccurrence(o);
1067 }
1068
1069 /**
1070 * Removes all of the elements from this deque.
1071 * The deque will be empty after this call returns.
1072 */
1073 public void clear() {
1074 circularClear(elements, head, tail);
1075 head = tail = 0;
1076 // checkInvariants();
1077 }
1078
1079 /**
1080 * Nulls out slots starting at array index i, upto index end.
1081 * Condition i == end means "empty" - nothing to do.
1082 */
1083 private static void circularClear(Object[] es, int i, int end) {
1084 // assert 0 <= i && i < es.length;
1085 // assert 0 <= end && end < es.length;
1086 for (int to = (i <= end) ? end : es.length;
1087 ; i = 0, to = end) {
1088 for (; i < to; i++) es[i] = null;
1089 if (to == end) break;
1090 }
1091 }
1092
1093 /**
1094 * Returns an array containing all of the elements in this deque
1095 * in proper sequence (from first to last element).
1096 *
1097 * <p>The returned array will be "safe" in that no references to it are
1098 * maintained by this deque. (In other words, this method must allocate
1099 * a new array). The caller is thus free to modify the returned array.
1100 *
1101 * <p>This method acts as bridge between array-based and collection-based
1102 * APIs.
1103 *
1104 * @return an array containing all of the elements in this deque
1105 */
1106 public Object[] toArray() {
1107 return toArray(Object[].class);
1108 }
1109
1110 private <T> T[] toArray(Class<T[]> klazz) {
1111 final Object[] es = elements;
1112 final T[] a;
1113 final int head = this.head, tail = this.tail, end;
1114 if ((end = tail + ((head <= tail) ? 0 : es.length)) >= 0) {
1115 // Uses null extension feature of copyOfRange
1116 a = Arrays.copyOfRange(es, head, end, klazz);
1117 } else {
1118 // integer overflow!
1119 a = Arrays.copyOfRange(es, 0, end - head, klazz);
1120 System.arraycopy(es, head, a, 0, es.length - head);
1121 }
1122 if (end != tail)
1123 System.arraycopy(es, 0, a, es.length - head, tail);
1124 return a;
1125 }
1126
1127 /**
1128 * Returns an array containing all of the elements in this deque in
1129 * proper sequence (from first to last element); the runtime type of the
1130 * returned array is that of the specified array. If the deque fits in
1131 * the specified array, it is returned therein. Otherwise, a new array
1132 * is allocated with the runtime type of the specified array and the
1133 * size of this deque.
1134 *
1135 * <p>If this deque fits in the specified array with room to spare
1136 * (i.e., the array has more elements than this deque), the element in
1137 * the array immediately following the end of the deque is set to
1138 * {@code null}.
1139 *
1140 * <p>Like the {@link #toArray()} method, this method acts as bridge between
1141 * array-based and collection-based APIs. Further, this method allows
1142 * precise control over the runtime type of the output array, and may,
1143 * under certain circumstances, be used to save allocation costs.
1144 *
1145 * <p>Suppose {@code x} is a deque known to contain only strings.
1146 * The following code can be used to dump the deque into a newly
1147 * allocated array of {@code String}:
1148 *
1149 * <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
1150 *
1151 * Note that {@code toArray(new Object[0])} is identical in function to
1152 * {@code toArray()}.
1153 *
1154 * @param a the array into which the elements of the deque are to
1155 * be stored, if it is big enough; otherwise, a new array of the
1156 * same runtime type is allocated for this purpose
1157 * @return an array containing all of the elements in this deque
1158 * @throws ArrayStoreException if the runtime type of the specified array
1159 * is not a supertype of the runtime type of every element in
1160 * this deque
1161 * @throws NullPointerException if the specified array is null
1162 */
1163 @SuppressWarnings("unchecked")
1164 public <T> T[] toArray(T[] a) {
1165 final int size;
1166 if ((size = size()) > a.length)
1167 return toArray((Class<T[]>) a.getClass());
1168 final Object[] es = elements;
1169 for (int i = head, j = 0, len = Math.min(size, es.length - i);
1170 ; i = 0, len = tail) {
1171 System.arraycopy(es, i, a, j, len);
1172 if ((j += len) == size) break;
1173 }
1174 if (size < a.length)
1175 a[size] = null;
1176 return a;
1177 }
1178
1179 // *** Object methods ***
1180
1181 /**
1182 * Returns a copy of this deque.
1183 *
1184 * @return a copy of this deque
1185 */
1186 public ArrayDeque<E> clone() {
1187 try {
1188 @SuppressWarnings("unchecked")
1189 ArrayDeque<E> result = (ArrayDeque<E>) super.clone();
1190 result.elements = Arrays.copyOf(elements, elements.length);
1191 return result;
1192 } catch (CloneNotSupportedException e) {
1193 throw new AssertionError();
1194 }
1195 }
1196
1197 private static final long serialVersionUID = 2340985798034038923L;
1198
1199 /**
1200 * Saves this deque to a stream (that is, serializes it).
1201 *
1202 * @param s the stream
1203 * @throws java.io.IOException if an I/O error occurs
1204 * @serialData The current size ({@code int}) of the deque,
1205 * followed by all of its elements (each an object reference) in
1206 * first-to-last order.
1207 */
1208 private void writeObject(java.io.ObjectOutputStream s)
1209 throws java.io.IOException {
1210 s.defaultWriteObject();
1211
1212 // Write out size
1213 s.writeInt(size());
1214
1215 // Write out elements in order.
1216 final Object[] es = elements;
1217 for (int i = head, end = tail, to = (i <= end) ? end : es.length;
1218 ; i = 0, to = end) {
1219 for (; i < to; i++)
1220 s.writeObject(es[i]);
1221 if (to == end) break;
1222 }
1223 }
1224
1225 /**
1226 * Reconstitutes this deque from a stream (that is, deserializes it).
1227 * @param s the stream
1228 * @throws ClassNotFoundException if the class of a serialized object
1229 * could not be found
1230 * @throws java.io.IOException if an I/O error occurs
1231 */
1232 private void readObject(java.io.ObjectInputStream s)
1233 throws java.io.IOException, ClassNotFoundException {
1234 s.defaultReadObject();
1235
1236 // Read in size and allocate array
1237 int size = s.readInt();
1238 elements = new Object[size + 1];
1239 this.tail = size;
1240
1241 // Read in all elements in the proper order.
1242 for (int i = 0; i < size; i++)
1243 elements[i] = s.readObject();
1244 }
1245
1246 /** debugging */
1247 void checkInvariants() {
1248 // Use head and tail fields with empty slot at tail strategy.
1249 // head == tail disambiguates to "empty".
1250 try {
1251 int capacity = elements.length;
1252 // assert 0 <= head && head < capacity;
1253 // assert 0 <= tail && tail < capacity;
1254 // assert capacity > 0;
1255 // assert size() < capacity;
1256 // assert head == tail || elements[head] != null;
1257 // assert elements[tail] == null;
1258 // assert head == tail || elements[dec(tail, capacity)] != null;
1259 } catch (Throwable t) {
1260 System.err.printf("head=%d tail=%d capacity=%d%n",
1261 head, tail, elements.length);
1262 System.err.printf("elements=%s%n",
1263 Arrays.toString(elements));
1264 throw t;
1265 }
1266 }
1267
1268 }